
CM-Lex and CM-Yacc User’s Manual
(Version 2.0)

Karl Crary
Carnegie Mellon University

October 21, 2017

1 CM-Lex

CM-Lex is a lexer generator for Standard ML and Haskell. It converts a specification file into an SML or
Haskell source-code file that implements a lexer functor. The programmer may then instantiate that functor
with appropriate code for lexing actions to obtain a lexer.

1.1 The specification file

A CM-Lex specification consists of a series of directives:

• name 〈identifier〉
Specifies the name of the generated functor for SML lexers, and the name of the generated module for
Haskell lexers. This is a required directive.

In Haskell specifications, the name must be a valid module identifier, so it must begin with a capital
letter. In SML specifications the name is not required to be capitalized, but it is standard practice in
SML code to capitalize functor names nonetheless.

• alphabet 〈alphabet size〉
Specifies the size of the input alphabet, which must be a positive integer. The generated lexer will not
recognize any symbols whose ordinal is greater or equal to the given value. This is a required directive
and it must appear before any set, regexp, or function directives.

• set 〈name〉 = 〈charset〉
Declares a character set 〈name〉 with the definition 〈charset〉.

• regexp 〈name〉 = 〈regexp〉
Declares a regular expression 〈name〉 with the definition 〈regexp〉.

• function 〈function name〉 : 〈type name〉 = 〈clauses〉
Specifies a lexing function 〈function name〉 that has type 〈type name〉 and is defined by 〈clauses〉, where
each clause has the form:

〈regexp〉 => 〈action name〉

1



• monadic

Haskell specifications only: Specifies that CM-Lex should generate a monadic lexer.

Comments are written “/* comment text */” and may appear anywhere in the specification. Comments
may be nested.

1.1.1 Character sets and regular expressions

For the purposes of CM-Lex, symbols are identified with nonnegative integers. Typically the number is the
ASCII code of a character, but establishing the correspondence is left to the programmer.

〈symbol〉 ::=
〈number〉 the indicated number
’ 〈printable character〉 the ASCII code of the indicated character

Character sets and regular expressions are specified using the Scheme Shell’s SRE notation:

〈charset〉 ::=

〈identifier〉 the indicated character set

〈symbol〉 the singleton set containing 〈symbol〉
empty the empty set

any the universal set (all symbols up to N − 1, where N is the alphabet size)

(or 〈charset〉 ...) set union
(| 〈charset〉 ...)

(and 〈charset〉 ...) set intersection
(& 〈charset〉 ...)

(- 〈charset〉 ...) set difference: the first set minus all the following sets

(~ 〈charset〉 ...) set complement: equivalent to (- any (or 〈charset〉 . . . ))

(range 〈range-spec〉 ...) union of the specified ranges
(/ 〈range-spec〉 ...)

〈range-spec〉 ::=
〈symbol1〉 〈symbol2〉 the range of symbols from 〈symbol1〉 to 〈symbol2〉 (inclusive)

〈regexp〉 ::=

〈identifier〉 the indicated character set or regular expression

〈symbol〉 match the indicated symbol

any match any character

epsilon match the empty string

empty match nothing

eos match end-of-stream

" 〈string〉 " match the indicated string: that is, the sequence of symbols given
by the ASCII codes of the characters of 〈string〉 (the string can
contain any printable character other than a quotation mark)

2



(seq 〈regexp〉 ...) concatenation
(: 〈regexp〉 ...)

(or 〈regexp〉 ...) choice
(| 〈regexp〉 ...)

(? 〈regexp〉) zero or one matches

(* 〈regexp〉) zero or more matches

(+ 〈regexp〉) one or more matches

(= 〈number〉 〈regexp〉) exactly 〈number〉 matches

(>= 〈number〉 〈regexp〉) at least 〈number〉 matches

(** 〈number1〉 〈number2〉 〈regexp〉) between 〈number1〉 and 〈number2〉 matches (inclusive)

1.1.2 Function specifications

A lexing function is specified by the directive:

function 〈function name〉 : 〈type name〉 =

〈regexp〉 => 〈action〉
...

This generates a function named 〈function name〉 with return type 〈type name〉. That function finds the
longest prefix of its input stream that matches any of the given regular expressions and activates the cor-
responding action. If the longest possible match matches two different regular expressions, CM-Lex prefers
the one that appears earlier.

If a function is inexhaustive (i.e., if it is possible for an input stream to satisfy none of the regular expressions),
CM-Lex adds a default action that raises an exception. The programmer can add an explicit default action
by adding a clause epsilon => my_default to the end of the clause list. This ensures that the function is
exhaustive, because it always can at least match the empty prefix.

An action name can be used more than once, either in the same function specification, or even in different
function specifications, provided that the functions have the same return type.

1.2 Invocation

CM-Lex is invoked from the command line with the specification file’s name as its argument. The desired
output file name can be specified with the -o flag. Otherwise, the output file name is derived from from the
input file name by appending the appropriate suffix.

cmlex foo.cmlex # generates foo.cmlex.sml

cmlex foo.cmlex -o bar.sml # generates bar.sml

cmlex-hs foo.cmlex # generates foo.cmlex.hs

cmlex-hs foo.cmlex -o bar.hs # generates bar.hs

3



1.3 Streams (Standard ML)

The generated lexer takes its input in the form of a lazy stream, which is a possibly-infinite list in which
each element is computed the first time it is needed, and then memoized for future uses.

A stream type is included in CM-Lib, a library packaged with CM-Lex and CM-Yacc. The module Stream
implements the signature STREAM, an abbreviated version of which appears below:

signature STREAM =

sig

type ’a stream

datatype ’a front = Nil | Cons of ’a * ’a stream

val front : ’a stream -> ’a front

val lazy : (unit -> ’a front) -> ’a stream

end

The front function forces the computation of the next element of the stream, if any. It returns a front,
which exposes whether the stream is empty, and, if not, gives its next element and the remainder of the
stream. The lazy function builds a stream from a thunk returning the stream’s front. A thunk is used so
that the front need not be computed until the stream is forced.

The STREAM signature also includes a variety of other functions for building and manipulating streams. For
example, fromString and fromTextInstream build character streams that read input from a string and
from an SML IO stream, respectively:

val fromString : string -> char stream

val fromTextInstream : TextIO.instream -> char stream

A lexer need not use streams, it may use any type that implements the type class STREAMABLE, which specifies
types that are compatible with the stream forcing operation, front:

signature STREAMABLE =

sig

type ’a t

datatype ’a front = Nil | Cons of ’a * ’a t

val front : ’a t -> ’a front

end

The canonical implementation of STREAMABLE is StreamStreamable, which implements t as simply Stream.stream.
However, the programmer may also use ListStreamable, which implements t as list, or any other way he
or she chooses.

1.4 The generated functor (Standard ML)

CM-Lex generates a functor from the given specification file. For example, consider the specification:

4



name LexerFun

alphabet 128

function foo : t =

(* ’a) => astar

function bar : u =

(* ’b) => bstar

CM-Lex generates the functor:

functor LexerFun

(structure Streamable : STREAMABLE

structure Arg :

sig

type symbol

val ord : symbol -> int

type t

type u

type self = { bar : symbol Streamable.t -> u,

foo : symbol Streamable.t -> t }

type info = { match : symbol list,

len : int,

start : symbol Streamable.t,

follow : symbol Streamable.t,

self : self }

val astar : info -> t

val bstar : info -> u

end)

:>

sig

val bar : Arg.symbol Streamable.t -> Arg.u

val foo : Arg.symbol Streamable.t -> Arg.t

end

= . . . implementation . . .

The functor takes in two arguments. The first structure argument is an implementation of of the STREAMABLE
type class for the lexer to use. This is typically StreamStreamable (so Streamable.t = Stream.stream),
but need not be.

The second structure argument, Arg, implements the lexer’s actions. First, the programmer defines the type
of the symbols that the lexer processes. This is typically char, but need not be. Whatever symbol type is
chosen, ord gives the coercion from symbols to the numbers that CM-Lex uses to identify them.

Next, the programmer implements the types used for the functions’ result types. The specification uses two
type names, t and u, so the functor demands t and u as type arguments.

Next are two type definitions we will return to in a moment, and finally the programmer implements the

5



lexing actions. The specification uses two action names, astar and bstar, so the functor demands astar

and bstar as value arguments.

Since astar was used as an action for foo, which was declared to return type t, the astar action must
return type t. Similarly, bstar must return type u.

Once given the two structure arguments, the generated functor returns a structure containing the two lexing
functions, foo and bar. Each one takes in an Arg.symbol Streamable.t (typically a char stream), and
returns the appropriate type.

1.4.1 The match info

When a lexing action is invoked by the lexer, it is passed a record containing various matching information:

• match: the actual symbols that were matched.

• len: the length of match.

• follow: the remaining stream after the matched symbols.

• start: the stream on which the lexer was called (i.e., beginning with the matched symbols). This is
useful for re-lexing some or all of the stream, as in Lex’s yyless directive.

• self: a record containing the lexing functions being defined, so that actions can reinvoke the lexer.

Note that the lexing functor is stateless. Nowhere does it maintain the current input stream. Rather, it is
the job of the programmer, through the lexing actions, to manage the input stream.

Typically, an action calls the lexer (through the self argument) on the remaining stream (i.e., the follow

argument). However, the programmer may manipulate the stream as he or she desires. For example, one
may push additional symbols onto the stream (as in Lex’s yymore directive), simply by doing so before
calling the lexer.

1.5 Streams (Haskell)

As in Standard ML, Haskell lexers use a type class Streamable that specifies types compatible with the
stream forcing operation front:

data Front a b =

Nil

| Cons a b

class Monad m => Streamable s m where

front :: s a -> m (Front a (s a))

A type constructor s is streamable (with an associated monad m) if it provides a front operation that takes
an s a and then — in the monad m — returns a stream front with head a and tail s a. This differs from
the STREAMABLE class in Standard ML, which makes no explicit mention of a monad since SML permits
side-effects.

6



One important instance is lists. Lists are purely functional streamables, and thus belong to Streamable

with any monad (but particularly with Identity).

For effectful streams, the canonical instance is the Stream type:

newtype Stream m a =

Stream (m (Front a (Stream m a)))

For example, streams that result from reading input from a file will typically have the type Stream Char IO.
Forcing such a stream will result in an IO effect and return a Front containing a character and the rest of
the stream. The effect occurs because it might be necessary to read the file to obtain the next character.

A Stream can be formed from a Front in two ways:

eager :: Monad m => Front a (Stream m a) -> Stream m a

lazy :: MonadMemo m => m (Front a (Stream m a)) -> m (Stream m a)

When a front is held outright, eager coerces it to a stream. However, when one has a front under a monad
(the typical case for monadic lexers), one uses lazy, which memoizes the monadic front before coercing it
to a stream. The memoization means that if the stream is forced more than once, the monadic operation
is not repeated; instead the prior result is recalled. This requires that the monad belong to the MonadMemo

class, which includes Identity, IO, and ST, as well as every monad belonging to MonadIO.

The Stream module contains a variety of other functions for building and manipulating streams. For example,
fromList and fromHandle build character streams that read input from a list (or string) and from an IO
handle, respectively:

fromList :: Monad m => [a] -> Stream m a

fromHandle :: Handle -> IO (Stream IO Char)

1.6 The generated functor (Haskell)

Instantiating the generated code for Haskell is conceptually similar to the process for Standard ML. However,
Haskell, unlike Standard ML, does not support functors. Instead, the tool generates an ersatz functor using
polymorphic functions. For example, again consider the specification from Section 1.4:

name LexerFun

alphabet 128

function foo : t =

(* ’a) => astar

function bar : u =

(* ’b) => bstar

7



CM-Lex generates a module exporting:1

data Arg stream symbol t u =

Arg { ord :: symbol -> Int,

{- type arguments -}

t :: Proxy t,

u :: Proxy u,

{- action arguments -}

astar :: LexInfo stream symbol -> t,

bstar :: LexInfo stream symbol -> u }

foo :: Streamable stream Identity

=> Arg stream symbol t u -> stream symbol -> t

bar :: Streamable stream Identity

=> Arg stream symbol t u -> stream symbol -> u

To use the functor, one constructs an inhabitant of the Arg type. As in the Standard ML version, an argument
contains an ord function that converts symbols to integers, implementations of the type arguments (t and
u) in this example, and implementations of the actions (astar and bstar in this example). One then calls
the functions (foo and bar) with the argument to obtain the lexing functions.

The type arguments are given by proxy fields using the Data.Proxy module in the Haskell standard library.
The terms put into the proxy fields are not used; their purpose is solely to specify the types. They are filled
in with Proxy :: Proxy T for the desired T.

Each action is passed a LexInfo, which is defined as follows:

data LexInfo stream symbol =

LexInfo

{ match :: [symbol],

len :: Int,

start :: stream symbol,

follow :: stream symbol }

The information in the LexInfo is similar to that from Section 1.4.1. However, note that LexInfo does not
include a self field. In Haskell a self field is not necessary: since anything can call anything else, no special
mechanism is necessary for an action to reinvoke the lexer.

1.6.1 Monadic lexers

If the monadic directive is added to the specification, CM-Lex generates a monadic lexer. In a monadic
lexer, the module contains:

1For readability, we use unqualified names here.

8



data Arg stream monad symbol t u =

Arg { ord :: symbol -> Int,

{- type arguments -}

monad :: Proxy monad,

t :: Proxy t,

u :: Proxy u,

{- action arguments -}

astar :: LexInfo stream symbol -> monad t,

bstar :: LexInfo stream symbol -> monad u }

foo :: Streamable stream monad

=> Arg stream monad symbol t u -> stream symbol -> monad t

bar :: Streamable stream monad

=> Arg stream monad symbol t u -> stream symbol -> monad u

Observe that the types of the actions astar and bstar, and the lexing functions foo and bar, now end in
monad t and monad u, intead of t and u.

A worked example of how to use this appears in Section 4.

1.7 The automaton listing

In the generated file, embedded as a comment immediately after the functor’s interface specification, is a
listing of each lexing function’s state machine. For each lexing function, the listing gives the initial state
and the total number of states, and for each state, it gives the state that results from each possible input
symbol. Symbols that are not listed, implicitly transition to the error state.

2 CM-Yacc

CM-Yacc is an LALR(1) parser generator for Standard ML and Haskell. It converts a specification file into
an SML or Haskell source-code file that implements a parser functor. The programmer may then instantiate
that functor with appropriate code for lexing actions to obtain a parser.

2.1 The specification file

A CM-Yacc specification consists of a series of directives:

• name 〈identifier〉
Specifies the name of the generated functor for SML parsers, and the name of the generated module
for Haskell parsers. This is a required directive.

In Haskell specifications, the name must be a valid module identifier, so it must begin with a capital
letter. In SML specifications the name is not required to be capitalized, but it is standard practice in
SML code to capitalize functor names nonetheless.

9



• terminal 〈name〉 [ of 〈type name〉 ] [ 〈precedence〉 ]

Declares a terminal. If the “of 〈type name〉” form is used, then the terminal carries a value of type
〈type name〉. Otherwise it carries no value. If the 〈precedence〉 form is used, the terminal is marked
with a precedence, which is used to resolve shift-reduce conflicts.

• nonterminal 〈name〉 : 〈type name〉 = 〈production〉 ... 〈production〉
Declares a nonterminal carrying a value of type 〈type name〉. The nonterminal expands using the
productions in 〈production list〉.

• start 〈name〉
Indicates that the nonterminal 〈name〉 is the start symbol. This is a required directive.

• follower 〈name〉
Indicates that the terminal 〈name〉 is permitted to follow the start symbol. (In other words, it is
permitted to be the first symbol after a complete parse.) If no followers are given, only the end of the
stream is permitted to follow the start symbol.

• data 〈identifier〉
Haskell specifications only: Specifies the name that the tool should give to the datatype of terminals.
This is a required directive. (In Standard ML, the datatype of terminals is always named terminal.)

• monadic

Haskell specifications only: Specifies that CM-Lex should generate a monadic parser.

Comments are written “/* comment text */” and may appear anywhere in the specification. Comments
may be nested.

2.1.1 Productions

Each production has the form:

〈production〉 ::=
〈right-hand-side〉 => 〈action〉 [ 〈precedence〉 ]

〈right-hand-side〉 ::=
〈constituent〉 ... 〈constituent〉

〈constituent〉 ::=
〈terminal-or-nonterminal〉
〈label〉 : 〈terminal-or-nonterminal〉
( 〈constituent〉 )

〈label〉 ::=
〈positive integer〉
〈identifier〉

Each production gives a right-hand-side (made up of terminals and nonterminals) into which the nonterminal
being defined can expand. The right-hand-side may be empty. When a production is used, the action is called
to convert the data carried by the right-hand-side’s constituents into the data carried by the nonterminal.

10



The labels on constituents determine which constituents’ data are passed to the action. If a constituent
omits the label, it passes no data to the action. If no constituents pass data to the action, the domain type
of the action function will be unit (() in Haskell). Otherwise, the labels determine the action’s domain
type.

A label is either a positive integer or an identifier. In a single production, all the labels must be of the same
sort (i.e., all numbers or all identifiers). If the labels are identifiers, the constituents’ data are passed in a
record, and the labels are used as the names of the record’s fields. If the labels are numbers, all the numbers
from 1 to n must be used, and the action’s domain is an n-tuple. The numbers indicate the order in which
the constituents’ data appear in the tuple. Except: If only the label 1 is used, the datum is passed bare, not
in a 1-tuple.

For example, with the directive:

nonterminal Production : production =

2:Constituents ARROW 1:Ident 3:Precedence => single_production

the action single_production has type ident * constitutents * precedence -> production (assum-
ing that Ident, Constituents, and Precedence are declared to carry types ident, constitutents, and
precedence, respectively).

2.1.2 Precedence

If precedences are used, the tool consults them to resolve shift-reduce conflicts. They have the form:

〈precedence〉 ::=
precl 〈number〉 left associative with precedence 〈number〉
precr 〈number〉 right associative with precedence 〈number〉
noprec no precedence

Precedences range from 0 to 100, with higher numbers indicating higher precedence (i.e., binding more
tightly). For a terminal, a noprec precedence is equivalent to omitting the precedence. For a production,
if no precedence is given, the production’s precedence is inferred from the precedence of its last terminal.
A production has no precedence if it is given precedence noprec, if it contains no terminals, or if its last
terminal does not have a precedence.

2.2 Invocation

CM-Yacc is invoked from the command line with the specification file’s name as its argument. The desired
output file name can be specified with the -o flag. Otherwise, the output file name is derived from from the
input file name by appending the appropriate suffix.

cmyacc foo.cmyacc # generates foo.cmyacc.sml

cmyacc foo.cmyacc -o bar.sml # generates bar.sml

cmyacc-hs foo.cmyacc # generates foo.cmyacc.hs

cmyacc-hs foo.cmyacc -o bar.hs # generates bar.hs

11



2.3 The generated functor (Standard ML)

CM-Yacc generates a functor from the given specification file. For example, consider the specification:

name ParserFun

terminal NUMBER of t

terminal PLUS

terminal TIMES

nonterminal Factor : t =

1:NUMBER => number_factor

1:NUMBER TIMES 2:Factor => times_factor

nonterminal Term : t =

1:Factor => factor_term

1:Factor PLUS 2:Term => plus_term

start Term

CM-Yacc generates the functor:

functor ParserFun

(structure Streamable : STREAMABLE

structure Arg :

sig

type t

val plus_term : t * t -> t

val factor_term : t -> t

val times_factor : t * t -> t

val number_factor : t -> t

datatype terminal =

NUMBER of t

| PLUS

| TIMES

val error : terminal Streamable.t -> exn

end)

:>

sig

val parse : Arg.terminal Streamable.t -> Arg.t * Arg.terminal Streamable.t

end

= . . . implementation . . .

As with CM-Lex, the functor takes two arguments, a STREAMABLE and an argument that implements the
parser’s actions. The Arg structure also must supply the datatype that implements terminals, and it must
supply an error function. The error function is called when the parser detects a syntax error. It is passed

12



the stream of terminals beginning with the terminal that generated the error, and it should return an exn,
which the parser then raises.

The result of the functor is a function parse. It takes in a stream of terminals, and it returns a pair: the data
carried by the start symbol, and the stream of terminals that follows the complete parse. (If no followers
are specified, the stream that follows the parse is always empty.)

2.4 The generated functor (Haskell)

The generated code is an ersatz functor, similar to the one generated by CM-Lex (Section 1.6). For example,
consider the specification:

name ParserFun

terminal NUMBER of t

terminal PLUS

terminal TIMES

nonterminal Factor : t =

1:NUMBER => number_factor

1:NUMBER TIMES 2:Factor => times_factor

nonterminal Term : t =

1:Factor => factor_term

1:Factor PLUS 2:Term => plus_term

start Term

data Terminal

CM-Yacc generates a module exporting:2

2For readability, we use unqualified names here.

13



data Terminal t =

NUMBER t

| PLUS

| TIMES

data Arg stream t =

Arg { error :: stream (Terminal t) -> SomeException,

{- type arguments -}

t :: Proxy t,

{- action arguments -}

plus_term :: t -> t -> t,

factor_term :: t -> t,

times_factor :: t -> t -> t,

number_factor :: t -> t }

parse :: Streamable stream Identity

=> Arg stream t -> stream (Terminal t) -> (t, stream (Terminal t))

If the monadic directive is added to the specification, CM-Yacc instead generates:

data Terminal t =

NUMBER t

| PLUS

| TIMES

data Arg stream monad t =

Arg { error :: stream (Terminal t) -> monad SomeException,

{- type arguments -}

monad :: Proxy monad,

t :: Proxy t,

{- action arguments -}

plus_term :: t -> t -> t,

factor_term :: t -> t,

times_factor :: t -> t -> t,

number_factor :: t -> t }

parse :: Streamable stream monad

=> Arg stream monad t

-> stream (Terminal t) -> monad (t, stream (Terminal t))

A worked example of how to use this appears in Section 4.

2.5 The automaton listing

In the generated file, embedded as a comment immediately after the functor’s interface specification, is a
listing of the parsing function’s state machine. Its form should be familiar to users of Yacc’s automaton

14



listings.

The bulk of the listing is a list of the automaton’s states. For example:

State 4:

0 : Factor -> . NUMBER / 1

1 : Factor -> . NUMBER TIMES Factor / 1

2 : Term -> . Factor / 0

3 : Term -> . Factor PLUS Term / 0

3 : Term -> Factor PLUS . Term / 0

NUMBER => shift 2

Factor => goto 1

Term => goto 6

The state begins with a list of LR(1) items, each of which gives one scenario in which the parser could be in
the state. For example, the item

3 : Term -> Factor PLUS . Term / 0

means that the parser could be in the process of recognizing Factor PLUS Term which it would then reduce
to Term using the 3rd production (counting from zero). The dot is a cursor, indicating that so far it has
seen Factor PLUS. The “/ 0” gives the production’s lookahead set: the set of terminals that can follow this
production.

The lookahead sets are given after the state listings, such as:

lookahead 0 = $

lookahead 1 = $ PLUS

The $ is a special terminal representing the end of the stream. In lookahead set 0, only the end of the stream
can follow the production. In lookahead set 1, the PLUS terminal can also follow it.

The LR(1) items are given to help the user understand the parser the tool has constructed. Following the
LR(1) is the state’s action table. For each terminal, the action table indicates shift, reduce, or error. (Error
transitions are omitted from the listing.) In a shift n transition, the parser consumes the terminal and
transitions to state n. In a reduce n transition, the parser leaves the terminal on the stream, reduces using
production n, and retrieves an old state from its stack.

For example, in the state

15



State 2:

0 : Factor -> NUMBER . / 1

1 : Factor -> NUMBER . TIMES Factor / 1

$ => reduce 0

PLUS => reduce 0

TIMES => shift 5

the parser will reduce using production 0 if it sees either end-of-stream or PLUS. If it sees TIMES it will shift
it and transition to a state that includes the item:

1 : Factor -> NUMBER TIMES . Factor / 1

Following the action table is the state’s goto table. When a state is re-entered after a reduce, the goto table
tells which state the parser should enter, depending on which nonterminal was just reduced.

2.6 Shift-reduce conflicts

When a grammar is ambiguous, an action table may list multiple possible actions. For example, consider:

name ParserFun

terminal NUMBER of t

terminal PLUS

terminal TIMES precl 0

nonterminal Term : t =

1:NUMBER => number_term

1:Term PLUS 2:Term => plus_term

1:Term TIMES 2:Term => times_factor

start Term

The grammar is ambiguous, and it declares that TIMES is left associative, but it gives no precedence for
PLUS. Its automaton contains the state:

State 5:

1 : Term -> Term . PLUS Term / 1

2 : Term -> Term . TIMES Term / 1

2 : Term -> Term TIMES Term . / 1

$ => reduce 2

PLUS => shift 4, reduce 2 CONFLICT

TIMES => reduce 2, shift 3 PRECEDENCE

16



In this state, only the end-of-stream action is unambiguous. When PLUS is seen, the parser could either shift,
or reduce using production 2. The actual generated functor uses the first action listed. When TIMES is seen,
the parser could either shift or reduce, but the left associativity of TIMES indicates that the parser should
resolve the conflict in favor of the reduce.

Thus, the CONFLICT notation marks an unresolved ambiguity, while the PRECEDENCE notation marks an
ambiguity resolved by precedence.

Whenever there is an unresolved shift-reduce conflict, the tool prefers the shift. When there is a reduce-
reduce conflict, the tool chooses an arbitrary production. Reduce-reduce conflicts usually indicate a serious
problem with the grammar, so once one has been detected, the tool no longer uses precedence to resolve
shift-reduce conflicts.

3 A Standard ML example

As a more realistic example, we implement a calculator that processes an input stream and returns its value.
For simplicity, the calculator stops at the first illegal character (which might be the end of the stream). The
lexer specification is:

name CalcLexFun

alphabet 128

set digit = (range ’0 ’9)

set whitechar = (or 32 9 10) /* space, tab, lf */

function lex : t =

(+ digit) => number

’+ => plus

’* => times

’( => lparen

’) => rparen

(+ whitechar) => whitespace

/* Stop at the first illegal character */

epsilon => eof

which generates the functor:

17



functor CalcLexFun

(structure Streamable : STREAMABLE

structure Arg :

sig

type symbol

val ord : symbol -> int

type t

type self = { lex : symbol Streamable.t -> t }

type info = { match : symbol list,

len : int,

start : symbol Streamable.t,

follow : symbol Streamable.t,

self : self }

val eof : info -> t

val lparen : info -> t

val number : info -> t

val plus : info -> t

val rparen : info -> t

val times : info -> t

val whitespace : info -> t

end)

:>

sig

val lex : Arg.symbol Streamable.t -> Arg.t

end

= . . . implementation . . .

The parser specification is:

18



name CalcParseFun

terminal NUMBER of t

terminal PLUS

terminal TIMES

terminal LPAREN

terminal RPAREN

nonterminal Atom : t =

1:NUMBER => number_atom

LPAREN 1:Term RPAREN => paren_atom

nonterminal Factor : t =

1:Atom => atom_factor

1:Atom TIMES 2:Factor => times_factor

nonterminal Term : t =

1:Factor => factor_term

1:Factor PLUS 2:Term => plus_term

start Term

which generates the functor:

functor CalcParseFun

(structure Streamable : STREAMABLE

structure Arg :

sig

type t

val plus_term : t * t -> t

val factor_term : t -> t

val times_factor : t * t -> t

val atom_factor : t -> t

val paren_atom : t -> t

val number_atom : t -> t

datatype terminal =

NUMBER of t

| PLUS

| TIMES

| LPAREN

| RPAREN

val error : terminal Streamable.t -> exn

end)

:>

sig

val parse : Arg.terminal Streamable.t -> Arg.t * Arg.terminal Streamable.t

end

= . . . implementation . . .

19



We then assemble the calculator as follows:

structure Calculator

:>

sig

val calc : char Stream.stream -> int

end

=

struct

open Stream

datatype terminal =

NUMBER of int

| PLUS

| TIMES

| LPAREN

| RPAREN

structure Lexer =

CalcLexFun

(structure Streamable = StreamStreamable

structure Arg =

struct

type symbol = char

val ord = Char.ord

type t = terminal front

type self = { lex : char stream -> t }

type info = { match : char list,

follow : char stream,

self : self,

len : int,

start : char stream }

fun number ({ match, follow, self, ... }:info) =

Cons (NUMBER (Option.valOf (Int.fromString (String.implode match))),

lazy (fn () => #lex self follow))

fun simple terminal ({ follow, self, ... }:info) =

Cons (terminal, lazy (fn () => #lex self follow))

val plus = simple PLUS

val times = simple TIMES

val lparen = simple LPAREN

val rparen = simple RPAREN

fun whitespace ({ follow, self, ...}:info) =

#lex self follow

fun eof _ = Nil

end)

20



structure Parser =

CalcParseFun

(structure Streamable = StreamStreamable

structure Arg =

struct

type t = int

fun id x = x

val number_atom = id

val paren_atom = id

val atom_factor = id

fun times_factor (x, y) = x * y

val factor_term = id

fun plus_term (x, y) = x + y

datatype terminal = datatype terminal

fun error _ = Fail "syntax error"

end)

fun calc strm = #1 (Parser.parse (lazy (fn () => Lexer.lex strm)))

end

4 A Haskell example

Here we show how to build the calculator example in Haskell. The lexer specification is:

name CalcLexFun

alphabet 128

set digit = (range ’0 ’9)

set whitechar = (or 32 9 10) /* space, tab, lf */

function lex : t =

(+ digit) => number

’+ => plus

’* => times

’( => lparen

’) => rparen

(+ whitechar) => whitespace

/* Stop at the first illegal character */

epsilon => eof

monadic

which generates a module exporting:

21



data Arg stream monad symbol t =

Arg { ord :: symbol -> Int,

{- type arguments -}

monad :: Proxy.Proxy monad,

t :: Proxy.Proxy t,

{- action arguments -}

eof :: LexEngine.LexInfo stream symbol -> monad t,

lparen :: LexEngine.LexInfo stream symbol -> monad t,

number :: LexEngine.LexInfo stream symbol -> monad t,

plus :: LexEngine.LexInfo stream symbol -> monad t,

rparen :: LexEngine.LexInfo stream symbol -> monad t,

times :: LexEngine.LexInfo stream symbol -> monad t,

whitespace :: LexEngine.LexInfo stream symbol -> monad t }

lex :: LexEngine.Streamable stream monad

=> CalcLexFun.Arg stream monad symbol t -> stream symbol -> monad t

The parser specification is:

name CalcParseFun

terminal NUMBER of t

terminal PLUS

terminal TIMES

terminal LPAREN

terminal RPAREN

nonterminal Atom : t =

1:NUMBER => number_atom

LPAREN 1:Term RPAREN => paren_atom

nonterminal Factor : t =

1:Atom => atom_factor

1:Atom TIMES 2:Factor => times_factor

nonterminal Term : t =

1:Factor => factor_term

1:Factor PLUS 2:Term => plus_term

start Term

data Terminal

monadic

which generates a module exporting:

22



data Terminal t =

NUMBER t

| PLUS

| TIMES

| LPAREN

| RPAREN

data Arg stream monad t =

Arg { error :: stream (Terminal t) -> monad Control.Exception.SomeException,

{- type arguments -}

monad :: Proxy.Proxy monad,

t :: Proxy.Proxy t,

{- action arguments -}

plus_term :: t -> t -> t,

factor_term :: t -> t,

times_factor :: t -> t -> t,

atom_factor :: t -> t,

paren_atom :: t -> t,

number_atom :: t -> t }

parse :: ParseEngine.Streamable stream monad

=> CalcParseFun.Arg stream monad t -> stream (Terminal t)

-> monad (t, stream (Terminal t))

We then assemble the calculator as follows:

module Calc where

import Data.Proxy

import Data.Char as Char

import Control.Exception

import Util.Stream

import Util.LexEngine

import CalcLexFun as Lex

import CalcParseFun as Parse

type Term = Terminal Int

{- The lexer -}

simple :: Term -> LexInfo (Stream IO) Char -> IO (Front Term (Stream IO Term))

simple terminal info =

do {

t <- lazy (Calc.lex (follow info));

return (Cons terminal t)

}

lexarg =

23



Lex.Arg

{

Lex.ord = Char.ord,

Lex.monad = Proxy :: Proxy IO,

Lex.t = Proxy :: Proxy (Front Term (Stream IO Term)),

Lex.number =

(\ info ->

do {

t <- lazy (Calc.lex (follow info));

return (Cons (NUMBER (read (match info))) t)

}),

Lex.lparen = simple LPAREN,

Lex.rparen = simple RPAREN,

Lex.plus = simple PLUS,

Lex.times = simple TIMES,

Lex.whitespace =

(\ info -> Calc.lex (follow info)),

Lex.eof =

(\ info -> return Nil )

}

lex :: Stream IO Char -> IO (Front Term (Stream IO Term))

lex s = Lex.lex lexarg s

{- The parser -}

newtype SyntaxError = SyntaxError (Stream IO Term)

instance Show SyntaxError where

show _ = "syntax error"

instance Exception SyntaxError

parsearg =

Parse.Arg

{

Parse.error =

(\ s -> return (toException (SyntaxError s))),

Parse.monad = Proxy :: Proxy IO,

Parse.t = Proxy :: Proxy Int,

Parse.plus_term = (+),

Parse.times_factor = (*),

Parse.number_atom = id,

Parse.paren_atom = id,

Parse.atom_factor = id,

24



Parse.factor_term = id

}

calc :: Stream IO Char -> IO Int

calc s =

do {

s <- lazy (Calc.lex s);

(x, _) <- Parse.parse parsearg s;

return x

}

A Installation

To install CM-Lex and CM-Yacc, obtain the source code either from the distribution at:

www.cs.cmu.edu/~crary/cmtool/

or from Github at kcrary/cmtool. (The project uses a submodule, so if you clone the project from Github,
use the --recursive option.)

Then follow the instructions in the INSTALL file. You will need either MLton or Standard ML of New
Jersey installed. This manual is included as manual.pdf.

25


