
Computational lambda-calculus and monads

Eugenio Moggi∗

Lab. for Found. of Comp. Sci.

University of Edinburgh

EH9 3JZ Edinburgh, UK

On leave from Univ. di Pisa

Abstract

The λ-calculus is considered an useful mathematical
tool in the study of programming languages. However,
if one uses βη-conversion to prove equivalence of pro-
grams, then a gross simplification1 is introduced. We
give a calculus based on a categorical semantics for
computations , which provides a correct basis for prov-
ing equivalence of programs, independent from any
specific computational model.

Introduction

This paper is about logics for reasoning about pro-
grams, in particular for proving equivalence of pro-
grams. Following a consolidated tradition in theoret-
ical computer science we identify programs with the
closed λ-terms, possibly containing extra constants,
corresponding to some features of the programming
language under consideration. There are three ap-
proaches to proving equivalence of programs:

• The operational approach starts from an oper-

ational semantics, e.g. a partial function map-
ping every program (i.e. closed term) to its result-
ing value (if any), which induces a congruence re-
lation on open terms called operational equiva-

lence (see e.g. [10]). Then the problem is to prove
that two terms are operationally equivalent.

• The denotational approach gives an interpreta-
tion of the (programming) language in a math-
ematical structure, the intended model. Then
the problem is to prove that two terms denote the
same object in the intended model.

∗Research partially supported by EEC Joint Collaboration
Contract # ST2J-0374-C(EDB).

1Programs are identified with total functions from values to
values.

• The logical approach gives a class of possible

models for the language. Then the problem is to
prove that two terms denotes the same object in
all possible models.

The operational and denotational approaches give only
a theory (the operational equivalence ≈ and the set Th
of formulas valid in the intended model respectively),
and they (especially the operational approach) deal
with programming languages on a rather case-by-case
basis. On the other hand, the logical approach gives
a consequence relation ` (Ax ` A iff the formula A is
true in all models of the set of formulas Ax), which
can deal with different programming languages (e.g.
functional, imperative, non-deterministic) in a rather
uniform way, by simply changing the set of axioms
Ax, and possibly extending the language with new
constants. Moreover, the relation ` is often semide-
cidable, so it is possible to give a sound and complete
formal system for it, while Th and ≈ are semidecidable
only in oversimplified cases.

We do not take as a starting point for proving equiv-
alence of programs the theory of βη-conversion, which
identifies the denotation of a program (procedure) of
type A → B with a total function from A to B, since
this identification wipes out completely behaviours like
non-termination, non-determinism or side-effects, that
can be exhibited by real programs. Instead, we pro-
ceed as follows:

1. We take category theory as a general theory of
functions and develop on top a categorical se-

mantics of computations based on monads.

2. We consider how the categorical semantics should
be extended to interpret λ-calculus.

At the end we get a formal system, the computational
lambda-calculus (λc-calculus for short), for proving
equivalence of programs, which is sound and com-
plete w.r.t. the categorical semantics of computations.

1

The methodology outlined above is inspired by [13]2,
and it is followed in [11, 8] to obtain the λp-calculus.
The view that “category theory comes, logically, be-
fore the λ-calculus” led us to consider a categorical
semantics of computations first, rather than to mod-
ify directly the rules of βη-conversion to get a correct
calculus.

A type theoretic approach to partial functions and
computations is attempted in [1] by introducing a type
constructor Ā, whose intuitive meaning is the set of
computations of type A. Our categorical semantics is
based on a similar idea. Constable and Smith, how-
ever, do not adequately capture the general axioms for
computations (as we do), since they lack a general no-
tion of model and rely instead on operational, domain-
and recursion-theoretic intuition.

1 A categorical semantics of

computations

The basic idea behind the semantics of programs de-
scribed below is that a program denotes a morphism
from A (the object of values of type A) to TB (the
object of computations of type B).

This view of programs corresponds to call-by-value
parameter passing, but there is an alternative view of
“programs as functions from computations to compu-
tations” corresponding to call-by-name (see [10]). In
any case, the real issue is that the notions of value and
computation should not be confused. By taking call-
by-value we can stress better the importance of values.
Moreover, call-by-name can be more easily represented
in call-by-value than the other way around.

There are many possible choices for TB correspond-
ing to different notions of computations, for instance
in the category of sets the set of partial computa-
tions (of type B) is the lifting B + {⊥} and the set of
non-deterministic computations is the powerset P(B).
Rather than focus on specific notions of computations,
we will identify the general properties that the object
TB of computations must have. The basic require-
ment is that programs should form a category, and
the obvious choice for it is the Kleisli category for a
monad.

Definition 1.1 A monad over a category C is a
triple (T, η, µ), where T : C → C is a functor, η: IdC

.
→

2“I am trying to find out where λ-calculus should come from,
and the fact that the notion of a cartesian closed category is a
late developing one (Eilenberg & Kelly (1966)), is not relevant
to the argument: I shall try to explain in my own words in the
next section why we should look to it first”.

T and µ:T 2 .
→ T are natural transformations and the

following equations hold:

• µTA;µA = T (µA);µA

• ηTA;µA = idTA = T (ηA);µA

A computational model is a monad (T, η, µ) satis-
fying the mono requirement: ηA is a mono for every
A ∈ C.

There is an alternative description of a monad (see
[7]), which is easier to justify computationally.

Definition 1.2 A Kleisli triple over C is a triple
(T, η, ∗), where T : Obj(C) → Obj(C), ηA:A → TA,
f∗:TA→ TB for f :A → TB and the following equa-
tions hold:

• η∗A = idTA

• ηA; f∗ = f

• f∗; g∗ = (f ; g∗)∗

Every Kleisli triple (T, η, ∗) corresponds to a monad
(T, η, µ) where T (f :A → B) = (f ; ηB)∗ and µA =
id∗

TA.

Intuitively ηA is the inclusion of values into compu-
tations and f∗ is the extension of a function f from
values to computations to a function from computa-
tions to computations, which first evaluates a compu-
tation and then applies f to the resulting value. The
equations for Kleisli triples say that programs form
a category, the Kleisli category CT , where the set
CT (A,B) of morphisms from A to B is C(A, TB), the
identity over A is ηA and composition of f followed
by g is f ; g∗. Although the mono requirement is very
natural there are cases in which it seems appropriate
to drop it, for instance: it may not be satisfied by the
monad of continuations.

Before going into more details we consider some ex-
amples of monads over the category of sets.

Example 1.3 Non-deterministic computations:

• T () is the covariant powerset functor, i.e. T (A) =
P(A) and T (f)(X) is the image of X along f

• ηA(a) is the singleton {a}

• µA(X) is the big union ∪X

Computations with side-effects:

• T () is the functor (× S)S , where S is a
nonempty set of stores . Intuitively a computa-
tion takes a store and returns a value together
with the modified store.

• ηA(a) is (λs:S.〈a, s〉)

• µA(f) is (λs:S.eval(fs)), i.e. the computation
that given a store s, first computes the pair
computation-store 〈f ′, s′〉 = fs and then returns
the pair value-store 〈a, s′′〉 = f ′s′.

Continuations:

• T () is the functor RR()

, where R is a nonempty
set of results . Intuitively a computation takes a
continuation and returns a result.

• ηA(a) is (λk:RA.ka)

• µA(f) is (λk:RA.f(λh:RRA

.hk))

One can verify for himself that other notions of compu-
tation (e.g. partial, probabilistic or non-deterministic
with side-effects) fit in the general definition of monad.

1.1 A simple language

We introduce a programming language (with existence
and equivalence assertions), where programs denote
morphisms in the Kleisli category CT corresponding
to a computational model (T, η, µ) over a category C.
The language is oversimplified (for instance terms have
exactly one free variable) in order to define its inter-
pretation in any computational model. The additional
structure required to interpret λ-terms will be intro-
duced incrementally (see Section 2), after computa-
tions have been understood and axiomatized in isola-
tion.

The programming language is parametric in a sig-
nature (i.e. a set of base types and unary command
symbols), therefore its interpretation in a computa-
tional model is parametric in an interpretation of the
symbols in the signature. To stress the fact that the
interpretation is in CT (rather than C), we use τ1 ⇀ τ2
(instead of τ1 → τ2) as arities and ≡ : τ (instead of
= :Tτ) as equality of computations of type τ .

• Given an interpretation [[A]] for any base type A,
i.e. an object of CT , then the interpretation of a
type τ : : = A | Tτ is an object [[τ]] of CT defined
in the obvious way, [[Tτ]] = T [[τ]].

• Given an interpretation [[p]] for any unary com-
mand p of arity τ1 ⇀ τ2, i.e. a morphism from
[[τ1]] to [[τ2]] in CT , then the interpretation of a
well-formed program x: τ ` e: τ ′ is a morphism
[[x: τ ` e: τ ′]] in CT from [[τ]] to [[τ ′]] defined by
induction on the derivation of x: τ ` e: τ ′ (see Ta-
ble 1).

• On top of the programming language we consider
equivalence and existence assertions (see Table 2).

Remark 1.4 The let-constructor is very important se-
mantically, since it corresponds to composition in the
Kleisli category CT . While substitution corresponds
to composition in C. In the λ-calculus (let x=e in e′) is
usually treated as syntactic sugar for (λx.e′)e, and this
can be done also in the λc-calculus. However, we think
that this is not the right way to proceed, because it
amounts to understanding the let-constructor, which
makes sense in any computational model, in terms of
constructors that make sense only in λc-models . On
the other hand, (letx=e in e′) cannot be reduced to
the more basic substitution (i.e. e′[x: = e]) without
collapsing CT to C.

The existence assertion e ↓ means that e denotes a
value and it generalizes the existence predicate used in
the logic of partial terms/elements, for instance:

• a partial computation exists iff it terminates;

• a non-deterministic computation exists iff it gives
exactly one result;

• a computation with side-effects exists iff it does
not change the store.

2 Extending the language

In this section we describe the additional structure re-
quired to interpret λ-terms in a computational model.
It is well-known that λ-terms can be interpreted in a
cartesian closed categories (ccc), so one expects that
a monad over a ccc would suffice, however, there are
two problems:

• the interpretation of (letx=e in e′), when e′ has
other free variables beside x, and

• the interpretation of functional types.

Example 2.1 To show why the interpretation of the
let-constructor is problematic, we try to interpret
x1: τ1 ` (letx2=e2 in e): τ , when both x1 and x2 are
free in e. Suppose that g2: τ1 → Tτ2 and g: τ1 ×
τ2 → Tτ are the interpretations of x1: τ1 ` e2: τ2
and x1: τ1, x2: τ2 ` e: τ respectively. If T were IdC ,
then [[x1: τ1 ` (letx2=e2 in e): τ]] would be 〈idτ1 , g2〉; g.
In the general case, Table 1 says that ; above is
indeed composition in the Kleisli category, therefore
〈idτ1 , g2〉; g becomes 〈idτ1 , g2〉; g

∗. But in 〈idτ1 , g2〉; g
∗

there is a type mismatch, since the codomain of
〈idτ1 , g2〉 is τ1 × Tτ2, while the domain of Tg is
T (τ1 × τ2).

The problem is that the monad and cartesian prod-
ucts alone do not give us the ability to transform a
pair value-computation (or computation-computation)
into a computation of a pair. What is needed is
a morphism tA,B from A × TB to T (A × B), so
that x1: τ1 ` (letx2=e2 in e):Tτ will be interpreted by
〈idτ1 , g2〉; tτ1,τ2 ; g

∗.
Similarly for interpreting x: τ ` p(e1, e2): τ

′, we need
a morphism ψA,B :TA×TB → T (A×B), which given
a pair of computations returns a computation com-
puting a pair, so that, when gi: τ → Tτi is the inter-
pretation of x: τ ` ei: τi, then [[x: τ ` p(e1, e2): τ

′]] is
〈g1, g2〉;ψτ1,τ2 ; [[p]]∗.

Definition 2.2 A strong monad over a category C
with finite products is a monad (T, η, µ) together with a
natural transformation tA,B from A×TB to T (A×B)
s.t.

t1,A;T (rA) = rTA

tA×B,C ;T (αA,B,C) = αA,B,TC ; (idA × tB,C); tA,B×C

(idA × ηB); tA,B = ηA×B

(idA × µB); tA,B = tA,TB ;T (tA,B);µA×B

where r and α are the natural isomorphisms

• rA: 1×A → A

• αA,B,C : (A×B) × C → A× (B × C)

Remark 2.3 The natural transformation t with the
above properties is not the result of some ad hoc con-
siderations, instead it can be obtained via the following
general principle:

when interpreting a complex language the 2-
category Cat of small categories, functors
and natural transformations may not be ad-
equate and one may have to use a different
2-category which captures better some funda-
mental structures underlying the language.

Since monads and adjunctions are 2-category concepts,
the most natural way to model computations (and
datatypes) for more complex languages is simply by
monads (and adjunctions) in a suitable 2-category.
Following this general principle we can give two ex-
planations for t, one based on enriched categories (see
[4]) and the other on indexed categories (see [3]).

The first explanation takes as fundamental a com-
mutative monoidal structure on C, which models the
tensor product of linear logic (see [6, 14]). If C is a
monoidal closed category, in particular a ccc, then it
can be enriched over itself by taking C(A,B) to be
the object BA. The equations for t are taken from [5],

where a one-one correspondence is established between
functorial and tensorial strengths3:

• the first two equations say that t is a tensorial

strength of T , so that T is a C-enriched functor.

• the last two equations say that η and µ are natu-
ral transformations between C-enriched functors,
namely η: IdC

.
→ T and µ:T 2 .

→ T .

So a strong monad is just a monad over C enriched
over itself in the 2-category of C-enriched categories.

The second explanation was suggested to us by G.
Plotkin, and takes as fundamental structure a class D
of display maps over C, which models dependent types
(see [2]), and induces a C-indexed category C/D . Then
a strong monad over a category C with finite products
amounts to a monad over C/D in the 2-category of
C-indexed categories, where D is the class of first pro-
jections (corresponding to constant type dependency).

In general the natural transformation t has to be
given as an extra parameter for models. However, t
is uniquely determined (but it may not exists) by T
and the cartesian structure on C, when C has enough
points.

Proposition 2.4 If (T, η, µ) is a monad over a cat-
egory C with finite products and enough points (i.e.
for any f, g:A → B if h; f = h; g for every points
h: 1 → A, then f = g), and tA,B is a family of mor-
phisms s.t. for all points a: 1 → A and b: 1 → TB

〈a, b〉; tA,B = b;T (〈!B; a, idB〉)

where !B is the unique morphism from B to the ter-
minal object 1, then (T, η, µ, t) is a strong monad over
C.

Remark 2.5 The tensorial strength t induces a natu-
ral transformation ψA,B from TA× TB to T (A×B),
namely

ψA,B = cTA,TB ; tTB,A; (cTB,A; tA,B)∗

where c is the natural isomorphism

• cA,B :A×B → B ×A

The morphism ψA,B has the correct domain and
codomain to interpret the pairing of a computation of
type A with one of type B (obtained by first evaluating
the first argument and then the second). There is also

3A functorial strength for an endofunctor T is a natural
transformation stA,B :BA

→ (TB)TA which internalizes the
action of T on morphisms.

a dual notion of pairing, ψ̃A,B = cA,B ;ψB,A;TcB,A

(see [5]), which amounts to first evaluating the second
argument and then the first.

The reason why a functional type A → B in a pro-
gramming language (like ML) cannot be interpreted
by the exponential BA (as done in a ccc) is fairly ob-
vious; in fact the application of a functional procedure
to an argument requires some computation to be per-
formed before producing a result. By analogy with
partial cartesian closed categories (see [8, 11]), we will
interpret functional types by exponentials of the form
(TB)

A
.

Definition 2.6 A λc-model over a category C with
finite products is a strong monad (T, η, µ, t) together
with a T -exponential for every pair 〈A,B〉 of objects
in C, i.e. a pair

〈(TB)
A
, evalA,TB : ((TB)

A ×A) → TB〉

satisfying the universal property that for any object C
and f : (C × A) → TB there exists a unique h:C →

(TB)
A
, denoted by ΛA,TB,C(f), s.t.

f = (ΛA,TB,C(f) × idA); evalA,TB

Like p-exponentials, a T -exponential (TB)
A

can be
equivalently defined by giving a natural isomorphism
CT (C ×A,B) ∼= C(C, (TB)

A
), where C varies over C.

The programming language introduced in Sec-
tion 1.1 and its interpretation can be extended accord-
ing to the additional structure available in a λc-model
as follows:

• there is a new type 1, interpreted by the terminal
object of C, and two new type constructors τ1×τ2
and τ1 ⇀ τ2 interpreted by the product [[τ1]]× [[τ2]]

and the T -exponent (T [[τ2]])
[[τ1]] respectively

• the interpretation of a well-formed program Γ `
e: τ , where Γ is a sequence x1: τ1, . . . , xn: τn, is a
morphism in CT from [[Γ]] (i.e. [[τ1]]× . . .× [[τn]]) to
[[τ]] (see Table 3)4.

3 The λc-calculus

In this section we introduce a formal system, the λc-

calculus, with two basic judgements: existence (Γ `
e ↓ τ) and equivalence (Γ ` e1 ≡ e2: τ).

4In a language with products nonunary commands can be
treated as unary commands from a product type.

We claim that the formal system is sound and com-

plete w.r.t. interpretation in λc-models. Soundness
amounts to showing that the inference rules are admis-
sible in any λc-model, while completeness amounts to
showing that any λc-theory has an initial model (given
by a term-model construction). The inference rules of
the λc-calculus are partitioned as follows:

• general rules for terms denoting computations,
but with variables ranging over values (see Ta-
ble 4)5

• the inference rules for let-constructor and types of
computations (see Table 5)

• the inference rules for product and functional
types (see Table 6)

Remark 3.1 A comparison among λc-, λv- and λp-
calculus shows that:

• the λv-calculus proves less equivalences between
λ-terms, e.g. (λx.x)(yz) ≡ (yz) is provable in the
λc- but not in the λv-calculus

• the λp-calculus proves more equivalences between
λ-terms, e.g. (λx.yz)(yz) ≡ (yz) is provable in the
λp- but not in the λc-calculus, because y can be
a procedure, which modifies the store (e.g. by in-
creasing the value contained in a local static vari-
able) each time it is executed.

• a λ-term e has a value in the λc-calculus, i.e.
e is provably equivalent to some value (either a
variable or a λ-abstraction), iff e has a value in
the λv-calculus/λp-calculus. So all three calculi
are correct w.r.t. call-by-value operational equiv-
alence.

Conclusions and further research

The main contribution of this paper is the category-
theoretic semantics of computations and the general
principle for extending it to more complex languages
(see Remark 2.3), while the λc-calculus is a straightfor-
ward fallout, which is easier to understand and relate
to other calculi.

This semantics of computations corroborates the
view that (constructive) proofs and programs are

5The general rules of sequent calculus, more precisely those
for substitution and quantifiers, have to be modified slightly,
because variables range over values and types can be empty.
These modifications are similar to those introduced in the logic
of partial terms (see Section 2.4 in [9]).

rather unrelated, although both of them can be un-
derstood in terms of functions. For instance, vari-
ous logical modalities (like possibility and necessity in
modal logic or why not and of course of linear logic) are
modelled by monads or comonads which cannot have a
tensorial strength. In general, one should expect types
suggested by logic to provide a more fine-grained type
system without changing the nature of computations.

Our work is just an example of what can be achieved
in the study of programming languages by using a
category-theoretic methodology, which free us from
the irrelevant detail of syntax and focus our mind on
the important structures underlying programming lan-
guages. We believe that there is a great potential to be
exploited here. The λc-calculus open also the possibil-
ity to develop a new Logic of Computable Functions
(see [12]), based on an abstract semantic of compu-
tations rather than domain theory, for studying ax-
iomatically different notions of computation and their
relations.

Acknowledgements

My thanks to M. Hyland, A. Kock (and other partic-
ipants to the 1988 Category Theory Meeting in Sus-
sex) for directing me towards the literature on monads.
Discussions with R. Amadio, R. Burstall, J.Y. Girard,
R. Harper, F. Honsell, Y. Lafont, G. Longo, R. Milner,
G. Plotkin provided useful criticisms and suggestions.
Thanks also to M. Tofte and P. Taylor for suggesting
improvements to an early draft.

References

[1] R.L. Constable and S.F. Smith. Partial objects
in constructive type theory. In 2nd LICS Conf.
IEEE, 1987.

[2] J.M.E. Hyland and A.M. Pitts. The theory of
constructions: Categorical semantics and topos-
theoretic models. In Proc. AMS Conf. on Cate-
gories in Comp. Sci. and Logic (Boulder 1987),
1987.

[3] P.T. Johnstone and R. Pare, editors. Indexed Cat-
egories and their Applications, volume 661 of Lec-
ture Notes in Mathematics. Springer Verlag, 1978.

[4] G.M. Kelly. Basic Concepts of Enriched Category
Theory. Cambridge University Press, 1982.

[5] A. Kock. Strong functors and monoidal monads.
Archiv der Mathematik, 23, 1972.

[6] Y. Lafont. The linear abstract machine. Theoret-
ical Computer Science, 59, 1988.

[7] E. Manes. Algebraic Theories, volume 26 of Grad-
uate Texts in Mathematics. Springer Verlag, 1976.

[8] E. Moggi. Categories of partial morphisms and
the partial lambda-calculus. In Proceedings Work-
shop on Category Theory and Computer Pro-
gramming, Guildford 1985, volume 240 of Lec-
ture Notes in Computer Science. Springer Verlag,
1986.

[9] E. Moggi. The Partial Lambda-Calculus. PhD
thesis, University of Edinburgh, 1988.

[10] G.D. Plotkin. Call-by-name, call-by-value and
the λ-calculus. Theoretical Computer Science, 1,
1975.

[11] G. Rosolini. Continuity and Effectiveness in
Topoi. PhD thesis, University of Oxford, 1986.

[12] D.S. Scott. A type-theoretic alternative to CUCH,
ISWIM, OWHY. Oxford notes, 1969.

[13] D.S. Scott. Relating theories of the λ-calculus. In
R. Hindley and J. Seldin, editors, To H.B. Curry:
essays in Combinarory Logic, lambda calculus and
Formalisms. Academic Press, 1980.

[14] R.A.G. Seely. Linear logic, ∗-autonomous cate-
gories and cofree coalgebras. In Proc. AMS Conf.
on Categories in Comp. Sci. and Logic (Boulder
1987), 1987.

RULE SYNTAX SEMANTICS

var
x: τ ` x: τ = η[[τ]]

let
x: τ ` e1: τ1 = g1
x1: τ1 ` e2: τ2 = g2
x: τ ` (let x1=e1 in e2): τ2 = g1; g

∗
2

p: τ1 ⇀ τ2
x: τ ` e1: τ1 = g1
x: τ ` p(e1): τ2 = g1; p

∗

[]
x: τ ` e: τ ′ = g
x: τ ` [e]:Tτ ′ = g; ηT [[τ ′]]

µ
x: τ ` e:Tτ ′ = g
x: τ ` µ(e): τ ′ = g;µ[[τ ′]]

Table 1: Programs and their interpretation

RULE SYNTAX SEMANTICS

eq
x: τ1 ` e1: τ2 = g1
x: τ1 ` e2: τ2 = g2
x: τ1 ` e1 ≡ e2: τ2 ⇐⇒ g1 = g2

ex
x: τ1 ` e: τ2 = g
x: τ1 ` e ↓ τ2 ⇐⇒ g factors through η[[τ2]]

i.e. there exists (unique) h s.t. g = h; η[[τ2]]

Table 2: Atomic assertions and their interpretation

RULE SYNTAX SEMANTICS

var
x1: τ1, . . . , xn: τn ` xi: τi = πn

i ; η[[τi]]

let
Γ ` e1: τ1 = g1
Γ, x1: τ1 ` e2: τ2 = g2
Γ ` (let x1=e1 in e2): τ2 = 〈id[[Γ]], g1〉; t[[Γ]],[[τ1]]; g

∗
2

∗
Γ ` ∗: 1 = ![[Γ]]; η1

〈〉
Γ ` e1: τ1 = g1
Γ ` e2: τ2 = g2
Γ ` 〈e1, e2〉: τ1 × τ2 = 〈g1, g2〉;ψ[[τ1]],[[τ2]]

πi

Γ ` e: τ1 × τ2 = g
Γ ` πi(e): τ1 = g;T (πi)

λ
Γ, x1: τ1 ` e2: τ2 = g
Γ ` (λx1: τ1.e2): τ1 ⇀ τ2 = Λ[[τ1]],T [[τ2]],[[Γ]](g); η[[τ1⇀τ2]]

app
Γ ` e1: τ1 = g1
Γ ` e: τ1 ⇀ τ2 = g
Γ ` e(e1): τ2 = 〈g, g1〉;ψ(T [[τ2]])

[[τ1]],[[τ1]]
; (eval[[τ1]],T [[τ2]])

∗

Table 3: Interpretation in a λc-model

We write [x: = e] for the substitution of x with e in .

E.x Γ ` x ↓ τ

subst
Γ ` e ↓ τ Γ, x: τ ` A

Γ ` A[x: = e]

≡ is an congruence relation

Table 4: General rules

We write (letx=e in e) for (letx1=e1 in (. . . (let xn=en in e) . . .)), where n is the lenght of the sequence x (and e).
In particular, (let ∅=∅ in e) stands for e.

unit Γ ` (let x=e inx) ≡ e: τ

ass Γ ` (let x2=(letx1=e1 in e2) in e) ≡ (letx1=e1 in (let x2=e2 in e)): τ x1 6∈ FV(e)

let.β Γ ` (let x1=x2 in e) ≡ e[x1: = x2]: τ

let.p Γ ` p(e) ≡ (let x=e in p(x)): τ

E.[] Γ ` [e] ↓ Tτ

T.β Γ ` µ([e]) ≡ e: τ

T.η Γ ` [µ(x)] ≡ x:Tτ

Table 5: rules for let and computational types

E.∗ Γ ` ∗ ↓ 1

1.η Γ ` ∗ ≡ x: 1

E.〈 〉 Γ ` 〈x1, x2〉 ↓ τ1 × τ2

let.〈 〉 Γ ` 〈e1, e2〉 ≡ (let x1, x2=e1, e2 in 〈x1, x2〉): τ1 × τ2

E.πi Γ ` πi(x) ↓ τi

×.β Γ ` πi(〈x1, x2〉) ≡ xi: τi

×.η Γ ` 〈π1(x), π2(x)〉 ≡ x: τ1 × τ2

E.λ Γ ` (λx: τ1.e) ↓ τ1 ⇀ τ2

β Γ ` (λx1: τ1.e2)(x1) ≡ e2: τ2

η Γ ` (λx1: τ1.x(x1)) ≡ x: τ1 ⇀ τ2

Table 6: rules for product and functional types

