Constructive Logic (15-317), Fall 2020 Assignment 4: Quantification and Arithmetic

Instructor: Karl Crary
TAs: Avery Cowan, Matthew McQuaid, Long Pham, Ariel Uy
Due: Submit to Gradescope by Friday, October 2, 2020, 11:59 pm

1 Quantification

It is important to note that quantification extends as far to the right as syntactically possible. For example, the proposition $\exists x: \tau . A(x) \supset \forall x: \tau . A(x)$ should be interpreted as $\exists x: \tau .(A(x) \supset \forall x: \tau . A(x))$ and not as $(\exists x: \tau . A(x)) \supset(\forall x: \tau . A(x))$. Tutch implements the same convention.

1.1 Distributivity properties

In class, we saw that universal quantification distributes over conjuction, that is,

$$
(\forall x: \tau . A(x) \wedge B(x)) \equiv(\forall x: \tau . A(x)) \wedge \forall x: \tau . B(x) \text { true. }
$$

In this section, we will explore various other distributivity properties.
Task 1 (10 points). Dually, existential quantification distributes over disjunction, that is,

$$
(\exists x: \tau . A(x) \vee B(x)) \equiv(\exists x: \tau . A(x)) \vee \exists x: \tau . B(x) \text { true. }
$$

In this task, you will show this equivalence by giving a natural deduction proof of each of the following directions:
a. $(\exists x: \tau . A(x) \vee B(x)) \supset(\exists x: \tau . A(x)) \vee \exists x: \tau . B(x)$ true
b. $(\exists x: \tau . A(x)) \vee(\exists x: \tau . B(x)) \supset \exists x: \tau . A(x) \vee B(x)$ true

1.2 Constructive and classical quantification

Task 2 (9 points). For each of the following judgments, give a constructive natural deduction proof and the corresponding proof term if it is constructively valid. If it is not constructively valid, state this. N.B. The following judgments are all classically valid.
a. $(\neg \forall x: \tau . \neg A(x)) \supset \exists x: \tau . A(x)$ true
b. $(\exists x: \tau . A(x)) \supset \neg \forall x: \tau . \neg A(x)$ true

1.3 Tutch, Quantified

Tutch uses the concrete syntax ? $\mathrm{x}: \mathrm{t} . \mathrm{A}(\mathrm{x})$ and ! $\mathrm{x}: \mathrm{t} . \mathrm{A}(\mathrm{x})$ for $\exists x: \tau . A(x)$ and $\forall x: \tau . A(x)$, respectively. We encourage you to review the scoping rules for quantifiers described at the beginning of Section 1 of this assignment before starting this portion of the assignment. Please see the Tutch manual for more information on how to use quantifiers in Tutch.

Task 3 (6 points). Prove each of the following propositions using Tutch. Place the proof for part a (and only the proof for part a) in hw4_8a.tut, ..., and the proof for part c (and only the proof for part c) in hw4_8c.tut.
a. proof apply : (!x:t.A(x) => $B(x)$)
=> (!x:t.A(x)) => (!x:t.B(x));
b. proof instance : (!x:t.A(x)) \& (?y:t.B(y)) => ?z:t.A(z);
c. proof frobenius : (R \& ?x:t.Q(x)) <=> ?x:t. (R \& $Q(x))$;

2 Heyting Arithmetic

First, we'll review the system of Heyting arithmetic that we discussed in class.

2.1 Natural Numbers

First, here are the rules for the judgment n : nat.

$$
\begin{aligned}
& \overline{0: \text { nat }} \text { nat } I_{0} \quad \frac{x: \text { nat }}{S(x): \text { nat }} \text { nat } I_{S} \\
& \overline{y \text { : nat }} \quad \overline{C[y] \text { true }}
\end{aligned}
$$

2.2 Equality

Now, we'll add a new atomic proposition, equality, and define the truth judgment at equality.

$$
\begin{gathered}
\frac{x=y \text { true }}{0=0 \text { true }}=I_{00} \quad \frac{x}{S(x)=S(y) \text { true }}=I_{S S} \\
\frac{0=S(x) \text { true }}{C \text { true }}=E_{0 S} \quad \frac{S(x)=0 \text { true }}{C \text { true }}=E_{S 0} \quad \frac{S(x)=S(y) \text { true }}{x=y \text { true }}=E_{S S}
\end{gathered}
$$

2.3 Primitive Recursion

Lastly, we need the ability to define primitive recursive functions like addition and multiplication within the theory of the natural numbers so that we may reason about them in the natural deduction system with the induction principle introduced two subsections ago.

$$
\begin{gathered}
\overline{R\left(0 ; t_{0} ; x, r . t_{S}\right) \Rightarrow_{R} t_{0}} \Rightarrow_{R} I_{0} \quad \overline{R\left(S(n) ; t_{0} ; x, r . t_{S}\right) \Rightarrow_{R}\left[R\left(n ; t_{0} ; x, r . t_{S}\right) / r\right][n / x] t_{S}} \Rightarrow I_{R} I_{S} \\
\frac{A[x] \text { true } \quad x \Rightarrow_{R} y}{A[y] \text { true }} \Rightarrow_{R} E_{1} \quad \frac{A[y] \text { true } \quad x \Rightarrow_{R} y}{A[x] \text { true }} \Rightarrow_{R} E_{2}
\end{gathered}
$$

Task 4 (10 points). Let $m+n$ be defined by $R(m ; n ; x, r . S(r))$. Show that 0 is the right additive identity i.e. give a derivation of $\forall m$: nat. $R(m ; 0 ; x, r \cdot S(r))=m$ true.

