Constructive Logic (15-317), Fall 2020 Assignment 12: Ordered and Modal Logic

TAs: Avery Cowan, Matthew McQuaid, Long Pham, Ariel Uy

Due: Friday, December 11, 11:59 pm

Submit your homework via Gradescope. Also, according to CMU academic policy, no late days are allowed for this homework.

1 Cut Admissibility for Ordered Logic

In class, we realized a natural deduction presentation of ordered logic. In this homework, we turn to sequent calculus as a formal system for ordered logic. Hence, we introduce right and left rules for each connective, instead of introduction and elimination rules, respectively.

Just like propositional logic, we can prove a cut admissibility theorem for ordered logic (or linear $\operatorname{logic})$. For your convenience, the cut theorem statement is given below.
Theorem 1. If $\Delta \stackrel{\mathcal{D}}{\Longrightarrow} A$ and $\Delta_{L}, A, \stackrel{\mathcal{E}}{\Delta_{R}} \Longrightarrow C$, then $\Delta_{L}, \Delta, \Delta_{R} \Longrightarrow C$.
Please note that the context is an ordered list, exchange, weakening and contraction are disallowed. So, please pay careful attention to the order of propositions in the context.
Task 1 (20 pts). Prove the following principal cases of cut admissibility for ordered logic.

1. Case $(\mapsto): \mathcal{D}$ ends in $\rightharpoondown R$ and \mathcal{E} ends in $\mapsto L$, where $\mapsto L$ is applied on the principal formula of the cut.
2. Case $(\bullet): \mathcal{D}$ ends in $\bullet R$ and \mathcal{E} ends in $\bullet L$, where $\bullet L$ is applied on the principal formula of the cut.

For reference, the relevant rules for ordered logic are provided below.

$$
\begin{array}{cr}
\frac{A, \Delta \Longrightarrow B}{\Delta \Longrightarrow A \longmapsto B} \mapsto R & \frac{\Delta \Longrightarrow A}{\Delta_{L}, \Delta,(A \mapsto B), \Delta_{R} \Longrightarrow C} \mapsto L \\
\frac{\Delta_{1} \Longrightarrow A}{\Delta_{1}, \Delta_{2} \Longrightarrow \Delta_{2} \Longrightarrow B \bullet B} \bullet R & \frac{\Delta_{L}, A, B, \Delta_{R} \Longrightarrow C}{\Delta_{L},(A \bullet B), \Delta_{R} \Longrightarrow C} \bullet L
\end{array}
$$

2 Fun with Modal Logic

Task 2 (30 pts). Prove the truth of the following propositions in modal logic, or state they do not hold.
1.
2.$A \supset \neg \diamond \neg A$
3. $\diamond A \supset \neg \square \neg A$
4. $(\diamond A \wedge \diamond B) \supset \diamond(A \wedge B)$
5. $(\square A \wedge \square B) \supset \square(A \wedge B)$
6. $\diamond(\square A \wedge \diamond(A \supset B)) \supset \diamond B$

