
Notes on g4ip

Course Sta�

Syntax
Let P,Q,R stand for an atomic proposition and let A,B,C stand for an arbitrary
proposition. Let us �x the following additional restricted classes of propositions and
contexts:

A+ ::= P | ⊥ | A ∨B (non-invertible on the right)
A− ::= P | P ⊃ B | (A1 ⊃ A2) ⊃ B (non-invertible on the le�)
Γ− ::= · | Γ−, A−

Ω ::= · | Ω, A

By convention, Ω is treated as an ordered context, whereas Γ− is treated as un-
ordered.

What’s going on here? Why are some propositions marked with + and others
with −? One of the central ideas of structural proof theory is to classify propositions
according to whether their le� or right rules are non-invertible (synchronous). A propo-
sition with synchronous right rules is called positive, and always has asynchronous
le� rules; a proposition with synchronous le� rules is called negative, and always has
asynchronous right rules. �e duality (positive, negative) is called polarity.

�e �y in the ointment is that in intuitionistic/constructive logic, propositions like
∧,> have asynchronous rules on both sides, so in the proper sense they are neither
negative nor positive.

Judgments
For the sake of a clean presentation, we are extending the inversion calculus with a
new form of judgment to apply synchronous (non-invertible) rules; these include the
right rules of right-synchronous connectives and the le� rules of le�-synchronous
connectives. �e main innovation of g4ip is to render the single le� rule of the
implication connective (whose premises are not smaller than its conclusion) into
several compound rules whose premises do decrease in size.

Our forms of judgment are as follows:

Γ−; Ω
g4ip−−→R C Decompose C on the right

Γ−; Ω
g4ip−−→L C+ Decompose Ω on the le�

Γ− g4ip−−→ C+ Apply non-invertible rules

1

If you implement this version of sequent calculus as a functional program, you
would de�ne mutually recursive functions for each of the above forms of judgment; the
restricted classes A+, A− which we have introduced above are going to be essential
for designing a version of the inversion calculus which is su�ciently deterministic,
and will guide your implementation in a crucial way. When in doubt, check that in
each you have maintained the invariants speci�ed by the form of judgment.

Rules
�e rules of our version of g4ip are divided roughly into the inversion phases (right
and le�) and the search phase.

Inversion Phase

We begin in the right inversion phase, where we apply invertible (asynchronous) right
rules as much as we can.

Γ−; Ω
g4ip−−→R A Γ−; Ω

g4ip−−→R B

Γ−; Ω
g4ip−−→R A ∧B

∧R
Γ−; Ω, A

g4ip−−→R B

Γ−; Ω
g4ip−−→R A ⊃ B

⊃R

Γ−; Ω
g4ip−−→R >

>R

When you are performing right inversion with a positive proposition or an atomic
proposition on the right, then you must switch to le� inversion (since positive propo-
sitions don’t have invertible right rules!).

Γ−; Ω
g4ip−−→L C+

Γ−; Ω
g4ip−−→R C+

LR+

�e le� inversion phase is where we decompose Ω as much as we can. �e �rst
few rules are familiar:

Γ−; Ω, A,B
g4ip−−→L C+

Γ−; Ω, A ∧B
g4ip−−→L C+

∧L
Γ−; Ω, A

g4ip−−→L C+ Γ−; Ω, B
g4ip−−→L C+

Γ−; Ω, A ∨B
g4ip−−→L C+

∨L

Γ−; Ω,⊥ g4ip−−→L C+
⊥L

Γ−; Ω
g4ip−−→L C+

Γ−; Ω,> g4ip−−→L C+
>L

Now we come to some compound le�-rules for implication, which are the thing
that g4ip added to our existing inversion calculus. �ese are not all the le� rules for
implication: two of them are waiting for us in the search phase.

2

Γ−; Ω, B
g4ip−−→L C+

Γ−; Ω,> ⊃ B
g4ip−−→L C+

>⊃L
Γ−; Ω, A1 ⊃ A2 ⊃ B

g4ip−−→L C+

Γ−; Ω, (A1 ∧A2) ⊃ B
g4ip−−→L C+

∧⊃L

Γ−; Ω, A1 ⊃ B,A2 ⊃ B
g4ip−−→L C+

Γ−; Ω, (A1 ∨A2) ⊃ B
g4ip−−→L C+

∨⊃L
Γ−; Ω

g4ip−−→L C+

Γ−; Ω,⊥ ⊃ B
g4ip−−→L C+

⊥⊃L

If we hit a negative proposition or an atom in Ω, then we cannot invert it, and we
simply move it to the negative context Γ−.

Γ−, A−; Ω
g4ip−−→L C+

Γ−; Ω, A− g4ip−−→L C+
shift

If we run out of things to invert, then we switch to the search phase!

Γ− g4ip−−→ C+

Γ−; · g4ip−−→L C+
search

Search phase

�e search phase is all about applying synchronous (non-invertible) rules. �is is the
only source of non-determinism in the proof search algorithm, since one order of rule
applications may fail whereas another may succeed. In this presentation, we treat the
init rule as non-invertible, whereas in class we have made it invertible using a side
condition.

P ∈ Γ−

Γ− g4ip−−→ P
init

�e �rst few rules are the familiar right rules for disjunction:

Γ−; · g4ip−−→R A

Γ− g4ip−−→ A ∨B
∨R1

Γ−; · g4ip−−→R B

Γ− g4ip−−→ A ∨B
∨R2

Finally, we hit the remaining compound le� rules for implication:

P ∈ Γ− Γ−;B
g4ip−−→L C+

Γ−, P ⊃ B
g4ip−−→ C+

P⊃L

Γ−;A2 ⊃ B,A1
g4ip−−→R A2 Γ−;B

g4ip−−→L C+

Γ−, (A1 ⊃ A2) ⊃ B
g4ip−−→ C+

⊃⊃L

3

Examples

P ∈ Q,P

Q ∈ Q,P

R ∈ Q,P,R

Q,P,R
g4ip−−→ R

init

Q,P,R; · g4ip−−→L R
search

Q,P ;R
g4ip−−→L R

shift

Q,P,Q ⊃ R
g4ip−−→ R

Q⊃L

Q,P,Q ⊃ R; · g4ip−−→L R
search

Q,P ;Q ⊃ R
g4ip−−→L R

shift

Q,P, P ⊃ Q ⊃ R
g4ip−−→ R

P⊃L

Q,P, P ⊃ Q ⊃ R; · g4ip−−→L R
search

Q,P ;P ⊃ Q ⊃ R
g4ip−−→L R

shift

Q,P ; (P ∧Q) ⊃ R
g4ip−−→L R

∧⊃L

Q; (P ∧Q) ⊃ R,P
g4ip−−→L R

shift

·; (P ∧Q) ⊃ R,P,Q
g4ip−−→L R

shift

·; (P ∧Q) ⊃ R,P,Q
g4ip−−→R R

LR+

·; (P ∧Q) ⊃ R,P
g4ip−−→R Q ⊃ R

⊃R

·; (P ∧Q) ⊃ R
g4ip−−→R P ⊃ Q ⊃ R

⊃R

·; · g4ip−−→R ((P ∧Q) ⊃ R) ⊃ P ⊃ Q ⊃ R
⊃R

4

