Notes on g4ip

Course Staff

Syntax

Let P, @, R stand for an atomic proposition and let A, B, C stand for an arbitrary
proposition. Let us fix the following additional restricted classes of propositions and
contexts:

At = P|L|AVB (non-invertible on the right)
A~ = P|PDB|(A1 D A3) DB (non-invertible on the left)
r- == -|I' A"

Q == QA

By convention, () is treated as an ordered context, whereas I' "~ is treated as un-
ordered.

What’s going on here? Why are some propositions marked with + and others
with —? One of the central ideas of structural proof theory is to classify propositions
according to whether their left or right rules are non-invertible (synchronous). A propo-
sition with synchronous right rules is called positive, and always has asynchronous
left rules; a proposition with synchronous left rules is called negative, and always has
asynchronous right rules. The duality (positive, negative) is called polarity.

The fly in the ointment is that in intuitionistic/constructive logic, propositions like
A, T have asynchronous rules on both sides, so in the proper sense they are neither
negative nor positive.

Judgments

For the sake of a clean presentation, we are extending the inversion calculus with a
new form of judgment to apply synchronous (non-invertible) rules; these include the
right rules of right-synchronous connectives and the left rules of left-synchronous
connectives. The main innovation of g4ip is to render the single left rule of the
implication connective (whose premises are not smaller than its conclusion) into
several compound rules whose premises do decrease in size.

Our forms of judgment are as follows:

r—Q iip>R C Decompose C on the right
r ;0 &% o Decompose €2 on the left

r- & o Apply non-invertible rules

If you implement this version of sequent calculus as a functional program, you
would define mutually recursive functions for each of the above forms of judgment; the
restricted classes A", A~ which we have introduced above are going to be essential
for designing a version of the inversion calculus which is sufficiently deterministic,
and will guide your implementation in a crucial way. When in doubt, check that in
each you have maintained the invariants specified by the form of judgment.

Rules

The rules of our version of g4ip are divided roughly into the inversion phases (right
and left) and the search phase.

Inversion Phase

We begin in the right inversion phase, where we apply invertible (asynchronous) right
rules as much as we can.

I &P 4 P;QﬂRBAR I .0 A% B .
I Q&% AAB r .08 A58
TR

r ;Q—>g4ipRT

When you are performing right inversion with a positive proposition or an atomic
proposition on the right, then you must switch to left inversion (since positive propo-
sitions don’t have invertible right rules!).

raofs oo
I'—Q %R Ccr

The left inversion phase is where we decompose 2 as much as we can. The first
few rules are familiar:

Fi;Q’A’Bﬂ}LCJF AL F7§97A—>g4ip|_07 Ff;Q,Bﬂ)LCJr

gdip i VL
I Q0 AABER Of I :;0,AvBESR Of
r ;Qﬂ)LC'
4i Ll 4i TL
r:Q, 1 =% o r:Q 1% ¢

Now we come to some compound left-rules for implication, which are the thing
that g4ip added to our existing inversion calculus. These are not all the left rules for
implication: two of them are waiting for us in the search phase.

r.q B &P o I :Q, A4, DA, > B &% o

e oL - ASL
;0 To>BE% ¢ T 397(/11/\/12)33&”_0‘
r ;QaAlDB,AQDBﬂ)LC' T ,Q g4iPLC.
D59, (41 V Az) DB 55 OF r;Q,1>BE% cf

If we hit a negative proposition or an atom in €2, then we cannot invert it, and we
simply move it to the negative context I'".

I, A0 &% o
;0,4 &% ot

shift

If we run out of things to invert, then we switch to the search phase!
_ ghip +
I =—d7a

T search
r;.=—_ Cc"

Search phase

The search phase is all about applying synchronous (non-invertible) rules. This is the
only source of non-determinism in the proof search algorithm, since one order of rule
applications may fail whereas another may succeed. In this presentation, we treat the
init rule as non-invertible, whereas in class we have made it invertible using a side
condition.

Pel ..
— - Init
r- &0 p

The first few rules are the familiar right rules for disjunction:

| AR r.. &P B
TVRl TVRZ
' >4 AvVB ' =4 AVB

Finally, we hit the remaining compound left rules for implication:

Pel T :BE% o
r,P>B & o

DL

T4y D B, A £ 4, T8 5% o

I, (A1 D Ay) > B &P o

DODL

Examples

ReQPR

i Init
Q,P,R—R

. search

Q7PaR;'—>LR hif

. i shifrt

QEQ7P Q7P7R—>LRQDL
Q,P.Q>RE™ R :
g searc

QaPaQDRa'—>LR .

shift

PecQ,P QP.Qo>RE% R
Q.P,P>Qo>RE%R
Q.P,P>QOR;-E% R
Q.P;P>Q-o>RE™ R
Q.P;(PAQ) >R E% R
Q:(PAQ) DR, PE% R
S(PAQ)OR,P,QE™S R
S(PAQ)DOR,P,Q &P R
S(PAQ) DR PEP:Q>OR

PoL

search

shift

ADL

shift

shift
LR,

DR
DR

S(PAQ ODREHePSQOR
~;~ﬂ>R((PAQ)DR)DPDQDR

DR

