
Constructive Logic (15-317), Fall 2019
Assignment 10: Practicing Prolog and Focusing

Instructor: Karl Crary
TAs: Avery Cowan, David Kahn, Siva Somayyajula∗

Due: Friday, November 15, 2019, 11:59 pm

Submit your homework in two parts: (1) a tar archive containing the files: g4ip.pl, and coloring.pl

to Autolab as well as (2) your written solutions in a PDF to Gradescope.
After submitting via Autolab, please check the submission’s contents to ensure it contains what

you expect. No points can be given to a submission that isn’t there.

1 Practicing Prolog

1.1 Implementing a theorem prover (one more time)

Now that you are experts in implementing G4ip in Standard ML, it is time to try doing so in Prolog.
Remember, do not translate implementations from Standard ML directly to Prolog! You’ll make life
harder for yourself, because these problems are designed to be directly expressible as logic programs.

Task 1 (15 points). Implement a theorem prover for G4ip in Prolog. You must define the predicate
prove/1 for proving a formula, and use the predefined logical operators (see accompanying g4ip.pl file).
This means that, given a valid ground formula a, the query prove(a) should succeed (with true or yes).

For your convenience, we have provided you with a shell script to test your implementation. You can
invoke it by going

$./test_g4ip.sh

1.2 Colouring maps

Graph colouring is an interesting problem in graph theory. A graph colouring is an assignment of
colours to each vertex such that no two adjacent vertices have the same colour. Of particular interest is a
colouring using a minimum number of colours; this number is called the chromatic number of the graph.
The four-colour theorem states that any planar graph1 can be coloured using at most four colours. The
theorem was proved in 1976 using a computer program, and has caused much controversy (is a computer
proof really a proof?). It has since been formally verified using the Coq theorem prover in 2005.

As a consequence of this theorem, any map can be coloured with at most four colours such that no
adjacent regions have the same colour. This is because every map can be represented by a planar graph,
with one vertex for each region, and an edge between two vertices if and only if their corresponding
regions are adjacent.

Consider, for example, Australia’s map in Figure 1. Observe that this map uses more colours than
necessary, although this might make it more visually appealing.

∗Based on an assignment by Giselle Reis.
1A graph that can be drawn on the plane with no crossing edges.

1

Figure 1: Australia (more colourful than necessary)

Task 2 (15 points). Implement a predicate color graph(nodes, edges, colours) that associates with the
graph (nodes, edges) all of the valid 4-colourings of the graph. Submit your implementation in a file
named coloring.pl.

The predicate color graph should find all valid colourings via backtracking. For efficiency reasons,
you may prefer to find all valid colourings without repetition, but we will not be checking this. Once all
valid solutions have been found via backtracking, the predicate should fail. You may assume the graph is
finite and planar, and your implementation should satisfy the following requirements:

1. You should define a color/1 predicate with four colours.

2. Assume there are predicates node/1 and edge/2.

3. In color graph/3, the first parameter is a list of node/1 terms, the second parameter is a list of
edge/2 terms, and the third parameter is a list of pairs (a,c), where a is a node and c is a colour.

4. The predicate color graph should be a multisolution for the mode color graph(+nodes,+edges,−colouring).
That is, a call to this predicate that agrees with its mode ought to return at least one solution if it
terminates, which it should! (Indeed, the four-colour theorem tells us that we will always be able to
find a 4-colouring for a planar graph, and the graph’s finiteness guarantees there are only finitely
many such colourings.)

To clarify the terminology, consider the predicate childOf(P ,Q), which we claim is multisolution for the
mode childOf(+person,−person):

person(alice).

person(bob).

person(eve).

person(mallory).

childOf(eve, alice).

childOf(eve, bob).

childOf(alice, eve). % Yes, this family tree has a cycle...

childOf(bob, eve).

childOf(mallory, alice).

childOf(mallory, bob).

% Repeated for the sake of contrasting findall and setof below.

childOf(mallory, bob).

We can ask Prolog to backtrack and find additional solutions by entering ”;” when prompted:

| ?- childOf(eve, Parent).

2

Parent = alice ? ;

Parent = bob

yes

Observe that childOf(+person,−person) is multisolution because it will always terminate with at least
one solution. In contrast, childOf(−person,+person) is not multisolution, because for no term P does
childOf(P ,mallory) hold. For your convenience, we have provided you with a shell script to test your
implementation. You can invoke it by going

$./test_coloring.sh

2 Focusing and Chaining

A major theme of this course has been the discovery of theory through practice: strategies for efficient
proof search in the concrete conditions of real-world implementations are transformed into razor-edged
intellectual weapons, entirely new logics which sharpen the principal contradiction of proof theory: the
dialectic of the positive and negative (polarity).

The decomposition of truth into verification and use was our first encounter with the scientific law,
“One Divides Into Two”. By studying invertibility in the context of the sequent calculus (when does
a conclusion imply its premises?), we were able to achieve a firmer grasp of the fault-lines at play,
summarized in a dangerously over-simplified2 form below:

LEFT RULE RIGHT RULE

POSITIVE invertible non-invertible
NEGATIVE non-invertible invertible

Inversion Invertible rules can always be applied without any need for backtracking: since the con-
clusion of an invertible rule implies its premises, the “future truth” of the goal is preserved under
free application of such rules. This practical insight, which is crucial for implementing a performant
proof search engine, can be codified by sharpening the logic to include deterministic inversion phases
Γ; Ω −→L C and Γ; Ω −→R C (where Ω is an ordered context of propositions).

Chaining While the above gives a clear and deterministic account of invertible rules, the non-invertible
ones beg for something similar. In this week’s lecture, we began to study chaining, which fixes a dynamics

for the non-invertible rules based on two forms of judgment, Γ −→ [A+] and Γ; [A−] −→ C . Chaining
is a technique to minimize backtracking by applying a sequence of non-invertible rules in one go.

2.1 Practicing focusing

Task 3 (10 pts). Construct a derivation in focused logic for the following sequent:

·; · −→R ↓
((
a+ ⊃ b−

)
∧
(
a+ ⊃ c−

))
⊃
(
a+ ⊃

(
b− ∧ c−

))
2In structural or persistent logic, some rules which ought to be non-invertible turn out to be invertible; polarity arises properly

from the proof search dynamics of linear logic, and casts an imperfect shadow in persistent logic.

3

Task 4 (20 pts). Consider the following depolarized formula:

¬(a+ ∨ b−)⊃ ¬a+ ∧ ¬b−

Come up with two distinct polarizations of the formula, adding shifts in the appropriate places; you
do not need to prove them. Hint: remember that in depolarized constructive logic, negation ¬A ≡ A⊃⊥;
in your solution, you must choose a polarization for negations.

2.2 Saturation

Consider the following grammar of ground terms representing binary numbers:

n ::= ε | b0(n) | b1(n)

In class, we learned to write forward logic programs using inference rules; a forward logic pro-
gramming engine will apply these inference rules until saturation is reached, and then the result of our
program can be read from the saturated proof state. In the tasks that follow, you are free to introduce any
auxiliary predicates that you require. You need to ensure that your rules saturate when new facts of the
indicated form are added to the database.

In the problems that follow, you are required to implement forward logic programs by writing down
systems of inference rules. You may find it useful to experiment with DLV, an implementation of forward
logic programming which can be downloaded here: http://www.dlvsystem.com/dlv/. DLV can be
used to test your ideas on specific cases and quickly determine if they are likely to work; but it is not
required.

Task 5 (5 pts). Implement a forward logic program std(n) which derives the atom no iff it is not the case
that n is in standard form. You may assume that n is ground (i.e. not subject to unification).

Task 6 (5 pts). Next, implement a forward logic program succ(m,n) which derives no when it is not the
case that m+ 1 = n. For the purpose of this exercise, you may assume that m and n are ground. You may
also assume that m and n are in standard form.

Submitting your assignment

• Please generate a tarball containing your solution files by running

$ tar cf hw10.tar coloring.pl g4ip.pl

and submit the resulting hw10.tar file to Autolab.

• Submit your written solutions as hw10.pdf to Gradescope.

4

http://www.dlvsystem.com/dlv/

	Practicing Prolog
	Implementing a theorem prover (one more time)
	Colouring maps

	Focusing and Chaining
	Practicing focusing
	Saturation

