Midterm I Exam

15-317 Constructive Logic
Frank Pfenning

September 28, 2017

Name: Andrew ID:

Instructions

e This exam is closed-book, closed-notes.
¢ You have 80 minutes to complete the exam.

e There are 5 problems.

Natural Quantifiers

Deduction Harmony Verifications in Arithmetic Induction

Prob1 | Prob2 | Prob3 | Prob4 | Prob 5 || Total

Score

Max 30 30 30 25 35 150




1 Natural Deduction (30 pts)

Task 1 (15 pts). The following purported proof (where we have abbreviated the judgment P true
by just writing P) is fatally flawed. Circle every incorrect rule application and unjustified hypoth-
esis, leaving the correct ones unmarked.
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Task 2 (5 pts). A logic is inconsistent if (circle all that apply)
(a) it frequently changes its mind about truth
(b) AV —A true for every proposition A
(c) A A A true for some proposition A

(d) A true for every proposition A

Task 3 (10 pts). Pick some propositions A, B, and C' which demonstrate that
if (ANB)DC)D((ADC)A(BDC)) were true for all propositions A, B, and C, then intuition-
istic logic would be inconsistent. You do not need to prove the inconsistency.

A =

B =




2 Harmony (30 pts)

In this problem we consider a new judgment A false which expresses that A has a refutation. The
defining property we use is that A false must contradict A true in the sense that

A false A true
#

contray

where “#” is our judgment of contradiction. We index the rule of contradiction with the proposi-
tion A that has both a refutation and a proof.

Each connective should now have zero or more refutation rules. For example, AV B false if
A false and B false, and —A false if A true. Written as rules (where R stands for refutation):

A false B false A true
VR —
AV B false —A false

For the refutation rule(s) for a connective to be sound with respect to the introduction rule(s) for
the connective, we have to show that any contradiction at the proposition that is introduced can
already be obtained from its constituents. For example, the following reductions (written as =¢
to distinguish them from the usual local reductions) witness the soundess of V R because we match
up any possible refutation of AV B (only one, VR) with every possible introduction of AV B (two,
namely VI; and VIy).

D £ F
A false B false R A true VI, D Fa
AV B false AV B true A false A true
contraayp —— contray
# =c #
D & F
A false B false B true
VR Vi & i
AV B false AV B true B false B true
contraavp ————————— contrag
# =c #



Task 1 (10 pts). Give refutation rule(s) for A A B false.

Task 2 (10 pts). Give refutation rule(s) for A D B false.

Task 3 (10 pts). Show the soundess of your refutation rule(s) from Task 2.



3 Verifications (30 pts)

Task 1 (15 pts). Complete the following partial verification by writing in the missing propositions,
judgments (1 and |), and inference rule names.
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Task 2 (5 pts). Annotate the induction rule nat ' with 1 and | to carry over verifications to Heyting
arithmetic. You do not need to annotate the judgment n : nat or = : nat since we have not refined
the typing judgment in lecture.
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4 Quantifiers in Arithmetic (25 pts)

Task 1 (25 pts). Heyting arithmetic is based on natural numbers n : nat, equality between natural
numbers = = y, and the usual intuitionistic connectives including universal and existential quan-
tification. Moreover, functions on natural numbers can be defined by primitive recursion. Many
other notions are usually given as notational definitions. Fill in the missing notational definitions
below. We have already provided some examples for you. The answers will not be unique, but
you are constrained in that you canuse only ¥, 3, O, A, V, L, T, equality (=), and addition (z + y).
No other predicates or functions are allowed unless explicitly stated.

(@) r<y=

For the remaining questions, you may use x < y for arbitrary natural numbers = and y.

(-) The bounded existential quantifier:
3o < n. A(z) £ Jrmat.z < n A A(z)

(b) The bounded universal quantifier:

Vo < n. A(z) =

(c) Uniqueness: A(x) is true for exactly one natural number x.

Jlamnat. A(z) £

(-) Infinitely many: A(x) is true for infinitely many natural numbers x.
J®x:nat. A(z) £ Vymnat. Jz:nat.y < 2 A A(2)

(d) Finitely many: A(x) is true for finitely many natural numbers x. Note that this includes the
possibility that there are no x satisfying A(x).

Jfing:nat. A(z) £
(e) Almost all: A(z) is true for all natural numbers x with finitely many exceptions.

valmy:nat. A(z) £




5 Induction (35 pts)

We define new predicates even(z) and odd(x) on natural numbers with the following introduction
rules (again abbreviating P true as P):

odd(z) even(z)
evenl —  evenl;
even(0) even(sx) no rule odd/j odd(sx)

odd/;

Task 1 (10 pts). Write eliminations rule(s) for the even and odd predicates. If there is no elimination
rule for a particular form of proposition, please note this explicitly.

Task 2 (15 pts). Fill in the details of the following proof.
Theorem. Vz. even(x) V odd(z).

Proof: By mathematical induction on z.

Base: z = 0. Then

Step: Assume the ind. hyp.:

To show:

We complete the proof as follows:




Task 3 (10 pts). We assign proof terms as follows:

M : odd(z) M : even(x)
— evenly evenl, oddIg
ev0 : even(0) evs M : even(sx) ods M : odd(sx)

Complete the following function extracted from your proof. If you need additional proof terms
for your elimination rules from Task 1, please state the rule and its proof term below the program.

fun even_odd 0 =

even_odd (s x) =



