RECITATION 6: SEQUENT CALCULUS

RYAN KAVANAGH

Yesterday, we presented the sequent calculus as a formalism that will be useful in
proof search. We saw that there is a tight correspondence between its rules, and the rules
for giving verifications for natural deduction. Today, we will review the rules for the
sequent calculus and work through a few example proofs.

1. THE RULES
Recall that left rules correspond to “upside down elimination rules” and that right

rules correspond to introduction rules.
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2. SOME EXAMPLE PROOFS
We will spend the remainder of the recitation working through some example proofs.
Exercisel. - = ADA

Proof.
A=A
= ADA ° O

Exercise2. - — AABDBAA

Date: 4 October 2017.
Most example problems are taken from 15-317 (Fall 2015) Recitation 5, whose notes were prepared by Evan
Cavallo, Oliver Daids, and Giselle Reis. Responsibility for any errors herein lies with the present author.
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Proof.
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Recall the following example from Recitation 1.
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Proof.
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Exercise 5. - — (ADB)D ((AAC)D(BACQC))

Proof.
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Exercise 6. Poll class for problems or questions if there is time left.
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