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1 Introduction

In this lecture we will first define subsingleton logic which is the subset of
ordered logic where each judgment has at most one antecedent. Then we
provide an operational interpretation of subsingleton logic in which cut reduc-
tion drives computation. This is in contrast to what we have been doing so
far, where logical inference, that is, proof construction models computation.
The correspondence from this lecture is summarized in the following

table.

Logic Programming

Propositions Session types

Ordered proofs Concurrent programs

Cut reduction ~ Communication

This is an instance of a very general connection between proofs and pro-
grams studied in type theory. We can vary the logic and the computational
interpration. The big upside of this form of correspondence is that it helps
us design programming languages in concert with the logic for reasoning
about its programs.

This analysis was pioneered by Curry [Cur34] who related proofs in
axiomatic form with combinatory logic. Late, Howard [How69] made the
discovery that the Church’s simply typed A-calculus was in bijective cor-
respondence with intuitionistic natural deduction. The particular instance
of this correspondence for subsingleton logic is a recent discovery by DeY-
oung and yours truly [DP16].
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L23.2 Subsingleton Logic

2 Subsingleton Logic

We can examine the rules for each of the connectives to see which of them
are still meaningful if we restrict ourselves to at most one antecedent. For
example,

NAFB

QFB/A/R

would have a premise with two antecedents if the conclusion has only one.

What remains from the connectives we have introduced so far is only
x &y and 1. But we haven’t had a notion of disjunction yet, which is written
as z @ y. It is a disjunction, which means that = @ y is true if either z or y is
true. So we have two right rules:

Qr4 o arB _n
QrAaB QFAeB

Knowing that z or y is true, but not which one, means that the left rule
proceeds by cases.

QL AQrFC Qp BQptC
QL (A®B) QrtFC

oL

It is straightforward to check the identity expansion and cut reduction, as
well as extend the proof of cut elimination accordingly. Disjunction, just
like the alternative conjunction, make sense in subsingleton logic.

We summarize the rules of subsingleton logic, with two small nota-
tional changes: we write w for zero or one antecedent.

) wkHA AFRC
idg —cC
AFA whkC

uty

whA . wkB . AFC BFC
wkA®B | wkAeB A®BFC

®L

whkA wkB Arc BFC
whkA&B AgBFC ' A& BFC

FC

1L
-F1 1-C
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Subsingleton Logic L23.3

3 Proofs as Programs

We write w - P : A with two alternative interpretations:
1. Pisa proof of A with antecedent w.
2. Pis a process providing A and using w.
Two processes are composed by cut, so that if
whHP:A AFQ:C

then P and @ can run next to each other and exchange messages. Which
messages can be exchanged is dictated by the type (= proposition) A.
As an example, consider

wHP:A®B A®BFQ:C

The proof P of A @ B will contain critical information, namely if A is true
or if B is true. Since the proof @ of C' must account for both possibilities,
we see that P will eventually send some information (inl if A is true, or inr
if B is true) and @ will receive it. In a synchronous communication model,
the message exchange can ony take place if both sides are ready, which
correspond to a principal case of cut where A @ B is the principal formula
in both inferences. Using this intuition to fill in proof terms for one of the
cases we arrive at:
wkHP:A AF@Q1:C BFEQ@2:C

: SR : : ®L
wk (Rinl; P): A& B A@ BF (caseL (inl= Q1 | inr=Q2)) : C

This reduces to the new cut at type A
wkHP:A AFQ,:C

So we think of (R.inl ; P) as sending the label inl to the right and then
continuing as P, while caseL (inl = @ | inr = Q2) receives either inl or inr
from the left and continues as ()1 or )2, respectively. The types A that type
the interface between two processes are called session types (see [HHN114]
for a survey). A strong logical foundation for session types in linear logic
was discovered by Caires and your lecturer [CP10] and later extended by
others [Wad12, CPT13, Ton15].

If ® Ry was used in the first proof, then the new cut would be at type B.
In either case, the communication corresponds exactly to a principal case
in cut reduction.
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L23.4 Subsingleton Logic

Looking at computation more globally, processes are configured into a
linear chain
PiPy|Ps |- | Py

Such a configuration is well-typed if we have
(WO = P1 . Al) (A1 + P2 . AQ) (A2 F P3 . Ag) . (An + Pn . An)

where for any two adjacent processes, the type A; provided by P; has to be
the same as the one used by P .

We now go through the rules and connective of ordered logic and de-
velop the operational interpretation of proofs.

Cut as Composition. Cut is straightforward, since it just corresponds to
parallel composition.

wHEP:A AFQ:C
wkE(P|Q):C

Computationally, a process P | ) will spawn P and continue as ) which
might written as

(PlQ)

Pl@
Clearly, this rule preserves the typing invariant for a configuration if (P |
Q) is typed by the cut rule, since the type A provided by P is exactly the

same as the one as used by @), and the left and right interfaces w and C,
respectively, are preserved.

Identity as Forwarding. Cut creates two processes from one, while iden-
tity removes one process from the configuration, acting like a “forwarding”
between the processes to its sides.

i
AI—(—):AIA

The computation rule simply removes the process from the configuration.

<~
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Subsingleton Logic L23.5

Again, this preserves the typing invariant for configurations since the pro-
cesses to the left and right of (<+) have the same type A on the right and
left sides, respectively.

Now we come to the logical connectives. We already foreshadowed
the case for disjunction, but we first generalize it to be more amenable for
programming without changing its logical meaning.

Disjunction as Internal Choice. We generalize disjunction to be an n-ary
connective by writen &{l; : A;}icr for some finite index set I and labels
l;. Now the binary disjunction is defined as A & B = &{inl : A,inr : B}.
Disjunction is also called internal choice since the proof itself determines
which of the alternatives is chosen.

The right rule will send the apropriate label while the left rule will re-
ceive it and branch on it.

whkP: A (kEI) A FQ;: C (forallieI)

DRy, ®L
whk (Rl ; P): o{l;: Ai}ier ®{l; : Aitier Fcasel(l; = Qi)icr : C

Again, the computation rule just mirrors the cut reduction and therefore is
easily seen to preserve configuration typing.

(R.ly ; P) | (caseL(l; = Qi)ier)
P | Q

The interface type between the two adjacent processes transitions from
S{l; : Ai}ier to Ay for some k € 1.

®C

Alternative Conjunction as External Choice. Again, we generalize from
A&Bto &{l; : Ai}icr and defined A&B = &{inl : A,inr: B}. A&B is some-
times called external choice since its proof must account for both possibilities
and the clients selects between them. Otherwise, it is the straightforward
dual of @, sending to the left and receiving from the right.

wI—PZAZ (fOI‘aHZEI) AkI—QC (kGI)
&R &Ly,
wt caseR(l; = P)icr : &{li + Ai}ier &{li + Aitier F (LIk 5 Q) : C

Again, the computation rule just mirrors the cut reduction and therefore is
easily seen to preserve configuration typing.

(caseR(l; = Pi)ier) | (Llx 5 Q)
P Q
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L23.6 Subsingleton Logic

Unit as Termination. The unit 1 just corresponds to termination. Since
communication is synchronous, the paired process to the right just waits
for the termination to occur.

. FQ:C
— 1 1
-FcloseR : 1 1FwaitL; @ : C

L

The computation rule lets the waiting process proceed while the closing

one disappears.
closeR | (waitL ; Q)

Q

This preserves types since there is no left interface to the configuration be-
fore and after the step, and the right interface C' is preserved. Again, this
can simply be read off from the cut reduction.

This completes the introduction of the computational interpretation of
subsingleton logic. We will not discuss the computational metatheory, namely
the progress and preservation theorems guarantee. Briefly, preservation here
means that the configuration of process will remain well-typed during the
computation, and progress that at least one process in a closed configura-
tion can always take a step unless we are communicating and the right end
of the configuration.

LECTURE NOTES NOVEMBER 28, 2017



Subsingleton Logic L23.7

4 Example: Subsequential Finite State Transducers

We have already introduced FSTs in Lecture 21, where we provided an im-
plementation using the computation-as-ordered-inference paradigm. Here,
we will use the computation-as-ordered-proof-reduction paradigm instead.
We begin with the example of an FST that compresses runs of b into a single
b.

ala b|b

We would like to represent the transducer as a process 1" that receives
the input string, symbol by symbol, from the left and sends the output
string, again symbol by symbol, to the right.

string = T : string

The first problem is how to represent the type string. It is easy to represent
symbols as labels and a choice between symbols a, b, and the endmarker $
as an internal choice

®fa: Ay, b: Ay, $: Ag} T : string

Clearly, T' can proceed with a ©L rule, which means it can branch on
whether it receives an a, b, or a §. After receiving an a, for example, what
should the type on the left be? We can receive further symbols, so it should
be again string. This leads us to

string = @®{a : string, b : string, $ : Ag}

which is an example of a recursive type since string is defined in terms of
itself. What should the remaining unspecified type Ag be? Once we receive
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L23.8 Subsingleton Logic

the endmarker we can receive no further symbols (or anything else) from
the left, we can only wait for the process to our left (that produced the
string) to terminate. So Ag = 1 and we have

string = ®{a : string, b : string, $ : 1}

It is convenient in this setting to think of the string as being equal to the type
on the right. If every type definition is contractive [GHO5] in the sense that
it starts with a type constructor (@, &,1) then we do not need any explicit
right or left rules since we can “silently” replace a type by its definition and
apply the appropriate rule. This is the idea behind equirecursive treatment
of recursive types. One should be worried that they could destroy all the
good properties of the logic, but with some care this does not have to be
the case.
Here is a simple program that produces the string babb:

1F "babb : string
Tbabb?’ =R.b;R.a;Rb;Rb;RS$; «

To deal with recursive types, the program will have to be similarly re-
cursive. At the level of proofs, this can be analyzed as circular proofs [FS13],
tixed points [Bael2], or corecursive proofs [TCP14]. We will just freely use
recursion. Each state of the FST becomes a process definition that captures
how the FST behaves with the corresponding input. Output is handled
simply by sending the appropriate label to the right, and the new state is
handled by invoking this state.

Qo = casel (a= R.a; Qo
b= Rb;Q
‘$:>R.$;Qf)

Q1 = casel (a= R.a; Qo
| b=
|$=RS$; Q)

Qf = <

The type of the final state () is a bit different, since we know input and
output have completed by the time this state is reached. We have

string = Qo : string
string = Q1 : string
1 FQp -1
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Subsingleton Logic L23.9

We also note an alternative definition for Q¢
@y = waitL ; closeR

These two definitions are equivalent in the sense that (waitL ; closeR) is
the identity expansion of <> : 1. We will not go into detail, but this means
that those two processes are observationally equivalent and can be used inter-
changeably [PCPT14].

At this point we could almost formulate a conjecture such as

l_w_| | QO
I—Q.)—I

where () is the process representing the initial state of the machine that
transforms input w to output v. Before reading on, consider why this may
not hold.!

'We did not discuss this find point regarding the operational semantics in lecture.
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Yes: the problem is that when 7" attempts to send an output symbol
to the right, there is no consumer so the process will actually block and
the computation will come to a halt. There are at least two ways to solve
this problem. One is to make communication asynchronous so that output
(sending a label to the left of right) can always take place. This has two
advantages: (1) it is more realistic from the implementation perspective,
and (2) it increases the available parallelism.

Another solution is to create a client that will accept the expected output
string. This client could be written in the form of a finite automaton, which
we discuss in the next section.

5 Finite-State Automata

A (deterministic) finite-state automaton works almost exactly like a sub-
sequential transducer, but it will output only either acc or rej, not a whole
string. This is easy to model:

answer = @{acc : 1,rej : 1}

It generalizes the grammar for strings by allowing two different endmark-
ers (instead of just $), and has otherwise no symbols.
Then we would write

string &= reject : answer
reject = casel (a = reject | b = reject | $ = Rurej ; <)

string \- accept : answer
accept = casel (a = accept | b = accept | $ = R.acc ; )

string b= Lbab. : answer
Lbaba = casel (a = reject
| $ = Rorej; <
| b = caseL (b = reject
| $ = Rurej; <
| a = casel (a = reject
|$ = Rurej; <
| b = accept)))

We can then test our machine with
“bbab™ | Qo | Lbab_

(R.acé ;<)
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Now we can state more generally that

Tw™ | Qo | Lyl

(R.acc ; )

if and only of the FST with initial state )y transduces input w to output v.
The proof of essentially this theorem is sketched in a recent paper [DP16].

The transitions of the transducer here are not exactly in one-to-one cor-
respondence with the steps of proof construction, since the sequence of
reading the input and writing the output are usually seen as a single step.
Except for this potential minor difference regarding what counts as a step
(depending on the precise formulation of the finite-state transducer), au-
tomata transitions are modeled precisely a logical inference steps.

In fact, the opposite is also true. If we have a cut-free proof

string = P : string

then P will behave like a finite state transducer. The proof is essentially by
inversion: Since the proof is cut-free, P can proceed only by forwarding,
receiving from the left, sending to the right, or recursing. From this we can
easily construct an FST with the same behavior, again allowing for some
minor discrepancies in how steps are counted.

Taken together, this means we have an isomorphism between proofs in
subsingleton logic containing only @ and 1 and inductively defined types
and subsequential finite state transducers. A recent paper [DP16] slightly
generalized FSTs so that they encompass finite-state automata as well by
allowing multiple distinct endmarkers, as we have done for the represen-
tation of string acceptors.

As a last remark, we notice that composition of transducers is logically
trivial, namely just cut. If we have

string =T : string and string = Ty : string
then
string = (11 | Tz) : string

Here, the two transducers will run in parallel, similarly to our earlier mod-
eling of transducers via ordered inference. 77 will pass its output to 75,
which will in turn pass its output to a consumer on the right. We can also
just perform cut elimination to obtain a cut-free 7’ equivalent to (7} | T5),
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but a word of caution: in the presence of corecursive (circular) proofs, the
usual cut elimination algorithms has to work somewhat differently [FS13].
Nevertheless, it is an illustration how logical tools such as cut elimination
can be used in programming languages, this time in program transforma-
tion.

For example, we can write a program flip that turns a’s into b’s and vice
versa:

string & flip : string

flip = casel (a = R.b; flip
| b= R.a; flip
|$=RS$; <)

Now we can write a program that compresses runs of a’s instead of b’s
(renaming ()g to compress, for consistency):

string b= compress,, : string
string = compress, : string

compress, = flip | compress, | flip
compress, = Qo

Note that in the process configuration
flip | compress, | flip

the three processes will actually work concurrently, passing through the
letters a and b in the form of a pipeline.
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Exercises

Exercise 1 Write a transducer over the alphabet a, b which produces ab for
every occurrence of ab in the input and erases all other symbols.

1. Present it in the form of ordered inference rules.

2. Present it in the form of a well-typed program.

Exercise 2 Rewrite your parity-computing inference rules from Exercise
L2.2 as a transducer, replacing eps with the endmarker $.

1. Present the transducer in the form of ordered inference rules, for ref-
erence. You may freely change your solution of Exercise L2.2 in order
to prepare it for part 2.

2. Rewrite it in the form of a well-typed ordered concurrent program.

Exercise 3 Rewrite the program below as a finite state transducer, expressed
as a set of ordered inference rules. Describe the function on strings that Qo
computes.

Qo = casel (a = Q1

| b= Qo
|$=RS$; <)
Q1 = casel (a = Q1
b= Rb; Qs
|$=RS$; <)
Q2 =casel (a = R.a; Q1
| b= Q2
|$=RS$; <)

Exercise 4 Reconsider the transducers for compressing runs of b’s, given
here as a set of ordered inference rules. We present here the version without
an explicit final state.

a qo b q0 $ q0
qo a g1 b $
a qi baq 3q
qo G q1 $
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In our encoding as a program @ of type string = Qo : string we treated
letters as messages and states as processes. No explicit representation of
the final state is necessary with the rules above.

Define a dual encoding where symbols of the alphabet and endmarkers
are represented processes and states as messages.

1.

Define an appropriate type state so that state - P, : state where P, is
the process representation for the alphabet symbol a.

For each symbol a of the transducer alphabet, define the process F,.

Give the type of the process Py representing the endmarker $. You
may choose whether to represent a final state as an explicit message
of some form or not.

Define the process P for the endmarker.

Define the initial configuration for the string babb and initial state gp.
Then describe it in general for the machine under consideration here.

Define the final configuration for the given example string and initial
state. Then describe it in general for the machine under consideration
here.

Do you foresee any difficulties for encoding subsequential finite state
transducers in general in this style? Note that FSTs read one symbol
at a time but may output any number of symbols (including none) in
one transition. Describe how this could be handled, or explain why a
dual construction may only work for a restricted class of FSTs.

Consider how to compose transducers and compare to the composi-
tion in the original encoding given in lecture.
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