Lecture Notes on
Ordered Logic

15-317: Constructive Logic
Frank Pfenning

Lecture 21
November 16, 2017

1 Introduction

In this lecture we first review ordered inference with two new examples: a
finite state transducer (which indicates how to represent finite state trans-
ducers in general), and Turing machines.

After that, we follow the playbook of Part II of this course and develop a
sequent calculus so that all inference will proceed in one direction, namely
bottom-up. We briefly consider some cases in the proof of cut admissibility
for the system and carry out some sample proofs. For more on ordered
logic, we recommend a course on Substructural Logics from Fall 2016 at
Carnegie Mellon University.

Finally, we consider linear logic [Gir87] as an intermediate point between
ordered and intuitionistic logic via a simple change to ordered logic.

2 Example: Finite State Transducers

A subsequential finite-state transducer [Sch77] (FST) consists of a finite num-
ber of states, an input alphabet and an output alphabet, and a transition
function § that takes a state and an input symbol to a new state and an out-
put string. We also distinguish an initial state and a final state, from which
no further transitions are possible. Finite state transducers have a number
of important closure properties and are closely related to deterministic fi-
nite automata (DFAs). They are often depicted with transition diagrams.
As an example we show a FST which transforms an input string consisting

LECTURE NOTES NOVEMBER 16, 2017

http://www.cs.cmu.edu/~fp/courses/15816-f16/

L21.2 Ordered Logic

of a and b symbols by compressing all runs of b into a single b. Each tran-
sition is labeled as x | w where x is either an input symbol or ¢ (when the
input string is empty) and w is a word over the output alphabet.

b|e

In order to represent this in the Lambek calculus so that ordered in-
ference corresponds to computation, we introduce propositions a and b to
represents the symbols, here shared between the input and output alpha-
bets. We also have a proposition $ representing an endmarker and reverse
the word!. For example, the string bbaba will be represented as the ordered
antecedents $ a b a b b. Furthermore, we have a new proposition for every
state in the FST, here qo, q1, and ¢;. Initially, our antecedents will be popu-
lated by the representation of the input string followed by the initial state.
In this example, we start with

$ababbq

We now present inference rules so that each ordered inference corresponds
to a transition of the finite state transducer. In the premise we have the
input (represented as a proposition) followed by the state; in the conclusion
we have the new state followed by the output. The empty input string is
represented by $, which we need to write when we transition into the final

!for reasons that may nor may not become clear in a future lecture

LECTURE NOTES NOVEMBER 16, 2017

Ordered Logic L21.3

state.
aqo b qo $ qo
qo @ @b qr $
a qu bq 5
q0 @ q1 qf $
Since it is convenient, we add one more inference rule
ar

so that the overall computation with input word w, and initial state g to
output v in final state ¢y is modeled by inference

$ wh q0

qr $ vf
$ vl

where s represents the reversal of a string s. We could also fold the last
step into the rules producing ¢y, replacing ¢; by the empty context.

You can see why we used an endmarker $: unlike the usual assumption
for finite-state transducers, ordered inference cannot depend on whether it
takes place at the end of the context. This is because any ordered inference,
by its very definition, applies to any consecutive part of the state. In the
sequent calculus this is explicit in all the left rules that have arbitrary €,
and Qg surrounding the principal proposition of the inference. Trying to
restrict this would lead to a breakdown in the sequent calculus.

We can use this construction to represent any subsequential finite-state
transducer, with one inference rule for every transition. We will not de-
velop the formal details, which are somewhat tedious but straightforward.

We can compose transducers the way we could compose functions. If
transducer T transforms input wo into w; and Ty transforms w; to ws,
then T} ; T, transforms wg to wo. There is a construction on the automata-
theoretic descriptions of transducers to show that 77 ; 75 is indeed another
finite-state subsequential transducer if 7} and 75 are.

Here, in the setting of ordered inference, we can easily represent the
composition of transducers 17 ; ... ; T}, just by renaming the sets of states
apart and then creating the initial state as

n

$wlqd...qf

LECTURE NOTES NOVEMBER 16, 2017

L21.4 Ordered Logic

where q(i) is the initial state of FST T;. As T} starts to produce output, the
configuration will have the form

8w’ gy wi' @5 - 4f

At this point, T5 (represented by q(Q]) can start to consume some of its input
and produce its output, and so on. Effectively, we have a chain of trans-
ducers operating concurrently as long as enough input is available to each
of them. Eventually, all of them will end up in their final state and we will
end up with the final configuration $ v%.

3 Example: Turing Machines

In this section we generalize the construction from the previous section to
represent Turing machines. We represent the contents of the unbounded
tape of the Turing machine as a finite context

$... -1 qapay $

with two endmarkers $. The proposition ¢ represents the current state of
the machine, and we imagine it “looks to its right” so that the contents of
the current cell would be ag. The initial context for the initial state gy is just

$qgoag ... ap $

where qayg .. .a, is the input word written on the tape. Returning to the
general case
$... -1 qapal $

if the transition function for state ¢ and symbol a specifies to write symbol
ay, transition to state ¢/, and move to the right, then the next configuration
would be

$...a-1ay¢ a ...$

This can easily be represented, in general, by the rule
qa

a/ q/

MR

which we call MR for move right.
To see how to represent moving to the left, reconsider

$...a1q9a0a1 ...9%

LECTURE NOTES NOVEMBER 16, 2017

Ordered Logic L21.5

If we are supposed to write gy, transition to ¢/, and move to the left, the
next state should be
$...da1apa ...%

The corresponding rule would, using b for a_;:

bqga

o MLy
q ba

We would have such a rule for each b in the (fortunately finite) tape alpha-
bet (which excludes the endmarker), or we could represent it schematically

Tqa

ML*
q/ za
except we would have a side condition that # $. We should also have
rules that allow us to extend the tape by the designated blank symbol *.
(which is part of the usual definition of Turing machines).

$qa q$

ML 2% Er
$q _d qg.-$!

Finally, if we are in a final state ¢; from which no further transitions are
possible, we can simply eliminate it from the configuration.

qr
—F

A somewhat more symmetric and elegant solution allows the tape head
in state ¢ (represented by the proposition ¢) to be looking either right or
left, represented by ¢ > and < ¢. When we look right and have to move
left or vice versa, we just change the direction in which we are looking to
implement the move. Then we get the following elegant set of rules, two
for each possible transition, two extra ones for extending the tape, and two
(if we like) for erasing the final state.

q > a q>a

—— LRMR — LRML

a q > 4q¢ a

a dq a q

LLMR LLML

a’q’> <]q/a/
>$ $ < <4y qr >
— ER — EL — FL — FR
>.$. . .

LECTURE NOTES NOVEMBER 16, 2017

L21.6 Ordered Logic

The initial configuration represented by the context
$qgo>ar...a,9
and the final configuration as
$by ... b $

and we go from the first to the last by a process of ordered inference.

Of course, a Turing machine may not halt, in which case inference would
proceed indefinitely, never arriving at a quiescent state in which no infer-
ence is possible.

Our modeling of the Turing machine is here faithful in the sense that
each step of the Turing machine corresponds to one inference. There is a
small caveat in that we have to extent the tape with an explicit inference,
while Turing machines are usually preloaded with a two-way infinite tape
with blank symbols on them. But except for those little stutter-steps, the
correspondence is exact.

Composition of Turing machines in this representation is unfortunately
not as simple as for FSTs since the output is not produced piecemeal, going
in one direction, but will be on the tape when the final state is reached. We
would have to return the tape head (presumably in the final state) to the
left end of the tape and then transition to the starting state of the second
machine.

Both for finite-state transducers and Turing machines, nondeterminism
is easy to add: we just add multiple rules if there are multiple possible tran-
sitions from a state. This works, because the inference process is naturally
nondeterministic: any applicable rule can be applied.

We will return to automata and Turing machines in a future lecture
when we will look at the problem again from a different perspective.

4 Ordered Hypothetical Judgments

The notion of grammatical inference represents parsing as the process of
constructing a proof. For example, if we have a phrase (= sequence of
words) wy ... w, we find their syntactical types z; ...z, (guessing if nec-
essary if they are ambiguous) and then set up the problem

(wy :xy) - (Wt xy)

LECTURE NOTES NOVEMBER 16, 2017

Ordered Logic L21.7

where “?” will represent the parse tree as a properly parenthesized expres-
sion (assuming, of course, we can find a proof).

So far, we can only represent the inference itself, but not the goal of
parsing a whole sentence. In order to express that we introduce hypothetical
judgments as a new primitive concept. The situation above is represented
as

(wr 1) (wp txy) =215
or, more generally, as

(pr:x1) (pnian) =>r:z

The turnstile symboxl “==" here separates the succedent r : z from the
antecedents p; : x;. We sometimes call the left-hand side the context or the
hypotheses and the right-hand side the conclusion. Calling the succedent a
conclusion is accurate in the sense that it is the conclusion of a hypothetical
deduction, but it can also be confusing since we also used “conclusions”
to describe what is below the line in a rule of inference. We hope it will
always be clear from the situation which of these we mean.

Since we are studying ordered inference right now, the antecedents that
form the context are intrinsically ordered. When we want to refer to a se-
quence of such antecedents we write {2 where “Omega” is intended to sug-
gest “Order”. When we capture other forms of inference like linear infer-
ence we will revisit this assumption.

5 Inference with Sequents: Looking Left

Now that we have identified hypothetical judgments, written as sequents
) = r : z, we should examine what this means for our logical rules of
inference. Fortunately, we have had only two connectives, over and under,

tirst shown here without the proof terms (that is, without the parse trees):
B/A A A A\B
— /B — 0 \E
B B

Now that the propositions we know appear as antecedents, the direction
of the rules appears to be reversed when considered on sequents. Let us
remember, by analogy, the elimination rule of natural deduction and the
left rules for the sequent calculus for ordinary implication (without consid-
eration of order)

A>DB A 5 'A>B=—=A TI''ADB,B=C
——FF— D
B IN'AD>DB—=—C

DL

LECTURE NOTES NOVEMBER 16, 2017

L21.8 Ordered Logic

In the ordered case, say A \ B the antecedents will have form
Q1 (A\ B) Oy

because we are allowed to apply the \L rule to any antecedent. In the
intuitionistic case, we just says I', A O B because we could silently reorder
the antecedents.

The second consideration is that the proof of A must be from a block of
antecedents that are immediately to the left of A \ B. This is because the
premises of the \ 2 must be consecutive among the current hypothesis.

With these considerations, we arrive at the following rule

O=— A Q;, BQr—C
QL Q(A\B) Qp = C

We have written), and Qp to indicate the rest of the context, which re-
mains unaffected by the inference. The left rule for “over” (B / A) is sym-
metric:

QO BOQr—C Q— A

QL(B/A)QQR:>C

/L

Our inferences, now taking place on the antecedent, take us upward in
the tree. This means we need at lease one more rule to complete the proof
and signal the success of a hypothetical proof. Both forms with and without
the proof terms should be self-explanatory. We use id (for identity) to label
this inference.

—id

A=A
Unlike the usual intuitionistic sequent calculus, A must be the only an-
tecedent. This is akin to saying that we do not allow weakening, neither
implicitly nor explicitly.

6 Inference with Sequents: Looking Right
Thinking about the parsing problem A\ (B /C') should be somehow equiv-

alent to (A \ B) / C since both yield a B when given an A to the left and C
to the right. Setting this equivalence up as two hypothetical judgments

A\(B/C)=(A\B)/C

LECTURE NOTES NOVEMBER 16, 2017

Ordered Logic L21.9

and
(A\B)/C = A\ (B/C)

that we are trying to prove however fails. No inference is possible. We are
lacking the ability to express when we can deduce a succedent with a logical
connective. Lambek [Lamb58] states that we should be able to deduce

C c A

B/ A if B

So B / A should follow from C if we get B if we put A to the right of C.
With pure inference, as practiced in the last lecture, we had no way to turn
this “if” into form of inference rule. However, armed with hypothetical
judgments it is not difficult to express precisely this:

CA=— B
C=B/A

Instead of a single proposition z we allow a context, so we write this

OA— B

— 2" JR
Q= B/A

This is an example of a right rule, because it analyzes the structure of a
proposition in the succedent and we pronounce it as over right. The \R
(under right) rule can be derived analogously.

AQ=— B

Q= A\B

In the next section we will look at the question how we know that these
rules are correct. For example, we might have accidentally swapped these
two rules, in which case our logic would somehow be flawed.

Let’s come back to the motivating example and try to construct a proof

of
A\(B/C)= (A\B)/C

Remember, all the rules work bottom-up, either on some antecedent (a left
rule) or on the succedent (a right rule). No left rule applies here (there is no
x to the left of = \ (...)) but fortunately the /R rule does.

(A\(B/C)) C= A\B
A\(B/C)=(A\B)/C

LECTURE NOTES NOVEMBER 16, 2017

L21.10 Ordered Logic

Again, no left rule applies (the parentheses are in the wrong place) but a

right rule does.
A A\(B/C) C=1B

A\(B/C) C= A\B
A\(B/C)=(A\B)/C

Finally, now a left rule applies.

/R

A— A% (B/O) C=B

A (A\(B/C)) C=B
(A\(B/C)) C= A\B
A\(B/C)= (A\B)/C

\L

One more left rule, and then we can apply identity.

——idpg —— ide
B=— 1B C=~C

id /L
L

A—A' (B/C) C=B
A (A\(B/C)) C=B
(A\(B/C)) C= A\B
A\(B/C)= (A\B)/C

/R

The proof in the other direction is similar and left as exercise.

7 Alternative Conjunction

As already mentioned in the last lecture, some words have more than one
syntactic type. For example, and has type s\ s /s (omitting parentheses now
since the two forms are equivalent by the reasoning the previous section)
and also type n \ n* / n, constructing a plural noun from two singular ones.
We can combine this into a single type = & y, pronounced z with y:

and : (s\'s/s)&(n\n"/n)

Then, in a deduction, we are confronted with a choice between the two for
every occurrence of and. For example, in typing Alice and Bob work and Eve

LECTURE NOTES NOVEMBER 16, 2017

Ordered Logic L21.11

likes Alice, we choose n \ n* / n for the first occurence of and, and s\ s / s for
the second.

Lambek did not explicitly define this connective, but it would be de-
fined by the rules

A& B A& B
Ey
A

As before, these rules turn into left rules in the sequent calculus, shown

here only without the proof terms.

QO AQr = C QL BQr="C
&Ly &Lo
QL(A&B)QR:>C QL(A&B)QR:>C

&L

To derive the right rule we must ask ourselves under which circum-
stances we could use a proposition both as an x and as a y. That’s true, if
we can show both, from the some antecedents.

QA=A Q=18
QM= A&B

&R

8 Concatenation

In a sequent, there are multiple antecedents (in order!) but only one succe-
dent. If we need to consider multiple propositions in the succedent we need
to define a new connective that expresses adjacency as a new proposition.
We write x @ y (read: x fuse y). In the Lambek calculus, we would simply

write
AeB

AB

o)

As a left rule, this is simple turned upside down and becomes

QrrzyQp =z

ol
QrreyQrp—=z

As aright rule for x e y, we have to divide the context into to segments, one
proving z and the other proving y.

91:>:C ng>y

R
D Qo= 2xey *

Note that there is some nondeterminism in this rule if we decide to use it
to prove a sequent, because we have to decide where to split the context

LECTURE NOTES NOVEMBER 16, 2017

L21.12 Ordered Logic

= (2 Qy). For a context with n propositions there are n + 1 possibilities.
For example, if we want to express that a phrase represented by (2 is parsed
into two sentences we can prove the hypothetical judgment

Q= ses
We can then prove
Alice works Bob sleeps ?
n n \ s n n \ § = ses

but we have to split the phrase exactly between works and Bob so that both
premises can be proved. Assuming a notationof p-q: zeyifp: xandgq:y,
the proof term for s e s in this example would be (Alice works) - (Bob sleeps).

9 Emptiness’

In this section we consider 1, the unit of concatenation, which corresponds
to the empty context. The left and right rules are nullary versions of the
binary concatenation. In particular, there must be no antecedents in the
right rule for 1.

Qp Qp = 2

— 1R — 1L
=1 Qr1Qr =2

10 Admissiblity of Cut

We return from the examples to metatheoretic considerations. Our goal in
this section and the next is to show that the cut rule is admissible in the
ordered sequent calculus. Together with identity elimination this gives us
a global version of harmony for our logic and a good argument for thinking
of the right and left rules in the sequent calculus as defining the meaning
of the connectives.

A key step on the way will be the admissibility of cut in the cut-free se-
quent calculus. We say that a rule of inference is admissible if there is a
proof of the conclusion whenever there are proofs of all the premises. This
is a somewhat weaker requirement that saying that a rule is derivable, which
means we have a closed-form hypothetical proof of the conclusion given all

2not covered in lecture

LECTURE NOTES NOVEMBER 16, 2017

Ordered Logic L21.13

the premises. Derivable rules remain derivable even if we extend our logic
by new propositions and inference rules (once a proof, always a proof), but
admissible rules may no longer remain admissible and have to be recon-
sidered.

Since the cut-free sequent calculus will play an important role in this
course, we write {2 = z for a sequent in the cut-free sequent calculus. We
write admissible rules using dashed lines and parenthesized justifications,
as in

N=A QL AQ =C
Q L QQ R — C

Of course, we have not yet proved that cut is indeed admissible here! It
turns out that the proof remains essentially the same as we have seen for
intuitionistic logic.

(cuty)

Theorem 1 (Admissibility of Cut)
IfQ:>A£l7’ZdQLAQR:>Cth€TlQLQQR:>C.

Proof: We assume we are given D and € and we con-
N= A QO AQpr = C
struct F .
QL QQr="C

The proof proceeds by a so-called nested induction, first on A and then
the proofs D and £. This means we can appeal to the induction hypothesis
when

1. either the cut formula A becomes smaller,
2. or A remains the same, and

(@) D becomes smaller and € stays the same,

(b) or D stays the same and £ becomes smaller.

This is also called lexicographic induction since it is an induction over a lexi-
cographic order, first considering = and then D and £.

The idea for this kind of induction can be synthesized from the proof if
we observe what constructions take place in each case. We will see that the
ideas of the cut reductions in the last lecture will be embodied in the proof
cases. We distinguish three kinds of cases based on D and £.

Identity cases. When one premise or the other is an instance of the identity
rule we can eliminate the cut outright. This should be expected since
identity (“if we can use x we may prove x”) and cut (“if we can prove x
we may use x”’) are direct inverses of each other.

LECTURE NOTES NOVEMBER 16, 2017

L21.14 Ordered Logic

Principal cases. When the cut formula z is introduced by the last inference
in both premises we can reduce the cut to (potentially several) cuts on
strict subformulas of A. We have demonstrated this by cut reductions
in the last lecture.

Commutative cases. When the cut formula is a side formula of the last
inference in either premise, we can appeal to the induction hypothesis
on this premise and then re-apply the last inference. These constitute
valid appeals to the induction hypothesis because the cut formula
and one of the deductions in the premises remain the same while the
other becomes smaller.

We now go through representative samples of these cases. First, the two
identity cases.?

Case: id # &
D= ——1id4 and € arbitrary
A— A QO AQpr = C
We have to construct a proof of 27, Q2 Qr = C, but Q = A, so we
canlet F = €£.
Case: D # id
~ i 4 arbitrary,and & = A7:>A idg

We have to construct a proof of 1, 2 Qp = C, but Q, = Qr = (*)
and C = A, so we can let F = D.

Next we look at a principal case, where the cut proposition z (here z; /
x2) was introduced in the last inference in both premises, in which case we
say « is the principal formula of the inference.

Case: /R # /L
Dy & &
0 Ay — Ay Vp= A4 QLA Q=2
D= ——— /R and €= /L
Q:>A1/A2 QL(Al/AQ)Q;%Q/éjZ

*in lecture, we only showed a couple of principal cases

LECTURE NOTES NOVEMBER 16, 2017

Ordered Logic L21.15

Using the intuition gained from cut reduction, we can apply the in-
duction hypothesis on A, £, and D; and we obtain

Dy
Q Q/R — A1 by i.h. on A2,527D1

We can once again apply the induction hypothesis, this time on A4,
D}, and &;:

&
QL QO Q=2 byih.onA;,D},&
Note that D] is the result of the previous appeal to the induction hy-
pothesis and therefore not known to be smaller than D;, but the ap-

peal to the induction hypothesis is justified since A4; is a subformula
of A1 / AQ.

Now we can let F = &] since Qr = 0 QY in this case, so we already
have the right endsequent.

A more concise way to write down the same argument is in the form
of a tree, where rules that are admissible (by induction hypothesis!)
are justified in this manner.

Given
Dy & &1
0 Ay — Ay Vp= A4 QLA Q=2
Q:>A1/A2 QLAl/AQQIRQ/]%:>Z

QL QO U — 2

/L

(cut?)

construct
52 Dl
Q/R - A2 Q A2 - A1 <
(i.h. on Az) 1
QQ’R:>A1 QLAIQ’I’%:%z

0L QQ, U — 2

(i.h.on A;)

This is of course the local reduction, revisited as part of an inductive
proof.

LECTURE NOTES NOVEMBER 16, 2017

L21.16 Ordered Logic

Finally we look at a commutative case, where the last inference rule ap-
plied in the first or second premise of the cut must have been different from
the cut formula. We call this a side formula. We organize the cases around
which rule was applied to which premise. Fortunately, they all go the same
way: we “push” up the cut past the inference that was applied to the side
formula. We show only one example.

Case: D # oR
&1 &
OV =0C QAQr=C
D arbitrary and €& = R
N=—= A Q/LQ/L,AQ32>010CQ

In this case we have the situation

51 52
. V=0 QAQr=C "
[
Q= A QO QY AQpr = C1e(,
cut?
oo 0o e,
and construct
D &
< N=A Q] AQr=1C
1 ih.on A,D, &,
Q,L:>C1 Q,[//QQR:>C’2

o Q0 CieC i
L Sy, R=— (1002

Effectively, we have commuted the cut upward, past the o R inference.
O

Our proof was constructive: it presents an effective method for con-
structing a cut-free proof of the conclusion, given cut-free proofs of the
premises. The algorithm that can be extracted from the proof is nonde-
terministic, since some of the commuting cases overlap when the principal
formula is a side formula in both premises. For most logics (although usu-
ally classical logic) the result is unique up to further permuting conversions
between inference rules, a characterization we will have occasion to discuss
later.

LECTURE NOTES NOVEMBER 16, 2017

Ordered Logic L21.17

11 Linear Logic

In ordered logic, we use ordered antecedents which we have previously al-
ready used to make the inversion phase of proof search deterministic. We
can define

Qu=ec|A|Q-Q

where *- is an associative operator with unit e. In the lecture so far, we have
omitted - and just used juxtaposition, and replace € by the empty context.
Now we obtain linear logic by using antecedents A of the form

An=c|A|A, A

where “) is an associate and commutative operator with unit e. Otherwise,
the rules stay exactly the same as those for ordered logic!

Now we notice some interesting phenomena. For example, in ordered
logic we have two implications, A \ B and B / A. But if order does not
matter, we cannot tell which side of the antecedents A will end up at so the
two become logically equivalent. We write A — B (pronounced A lolli B).

Conjunction is even more interesting. In ordered logic we have three
forms of conjunction A e B (A fuse B), and A o B (A twist B, see Problem
2, Assignment 9) and A & B (A with B). In linear logic, fuse and twist
collapse to A @ B (A tensor B) because their only difference is the order of
the components. On the other hand A& B remains the same and is available
in linear as well as ordered logic. Finally, in intuitionistic logic there is
only one conjunction, A A B, when one considers provability. But, if one
considers the structure of proofs as well, we actually have to: a negative
one (corresponding to A & B) and a positive one (A ® B).

We will discuss linear logic and it operational interpretation further in
the upcoming lectures.

References

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1—
102, 1987.

[Lam58] Joachim Lambek. The mathematics of sentence structure. The
American Mathematical Monthly, 65(3):154-170, 1958.

[Sch77] Marcel Paul Schiitzenberger. Sur une variante des fonctions se-
quentielles. Theoretical Computer Science, 4(1):47-57,1977.

LECTURE NOTES NOVEMBER 16, 2017

http://www.cs.cmu.edu/~fp/courses/15317-f17/homeworks/hw9-handout.pdf
http://www.cs.cmu.edu/~fp/courses/15317-f17/homeworks/hw9-handout.pdf

	Introduction
	Example: Finite State Transducers
	Example: Turing Machines
	Ordered Hypothetical Judgments
	Inference with Sequents: Looking Left
	Inference with Sequents: Looking Right
	Alternative Conjunction
	Concatenation
	Emptinessnot covered in lecture
	Admissiblity of Cut
	Linear Logic

