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1 Introduction

The verificationist point of view, already introduced earlier in the course, is
that the meaning of a logical connective should be determined by its intro-
duction rule. From this meaning we derive and then check the soundness
and completeness of the elimination rules. These “local” checks pertain
only to a single connective at a time.

Under this point of view, what is the meaning of a proposition, of course
constructed from multiple logical connectives? We say the meaning of a
proposition is determined by its verifications [ML83]. In order to be consis-
tent with the explanation of the connectives, a verification should therefore
proceed by introduction rules. However, we also need to take the elimi-
nation rules into account because they inevitably appear in the proof of a
proposition.

Intuitively, a verification should be a proof that only analyzes the con-
stituents of a proposition. This restriction of the space of all possible proofs
is necessary so that the definition is well-founded. For example, if we al-
lowed all proofs, then in order to understand the meaning of A, we would
have to understand the meaning of B O A and B, the whole verificationist
approach is in jeopardy because B could be a proposition containing, say,
A. But the meaning of A would then in turn depend on the meaning of A,
creating a vicious cycle.

In this section we will make the structure of verifications more explicit.
We write A1 for the judgment “A has a verification”. Naturally, this should
mean that A is true, and that the evidence for that has a special form. Even-
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tually we will also establish the converse: if A is true then A has a verifica-
tion. Verifications also play a helpful role in proof search, because A limits
limit how a proof of A can look like to a much more canonical form.

From the proof search perspective, the notion of verification is called
intercalation [SB98].

Conjunction is easy to understand. A verification of A A B should con-
sist of a verification of A and a verification of B.

At Bt
AN Bt N

We reuse here the names of the introduction rule, because this rule is strictly
analogous to the introduction rule for the truth of a conjunction.

Implication, however, introduces a new hypothesis which is not explic-
itly justified by an introduction rule but just a new label. For example, in
the proof

—_— U
ANDBt
rue AE;
A true 5
(AN B) D Atrue

U

the conjunction A A B is not justified by an introduction.

The informal discussion of proof search strategies earlier, namely to use
introduction rules from the bottom up and elimination rules from the top
down contains the answer. We introduce a second judgment, A| which
means “A may be used”. Al should be the case when either A true is a
hypothesis, or A is deduced from a hypothesis via elimination rules. Our
local soundness arguments provide some evidence that we cannot deduce
anything incorrect in this manner.

We now go through the connectives in turn, defining verifications and
uses.

Conjunction. In summary of the discussion above, we obtain:

At Bt ANB] AAB]
——— Al AE
AN Bt Al Bl

AFEs

The first/left elimination rule can be read as: “If we can use A N B we can
use A”, and similarly for the right elimination rule. The directions of the
arrows of verifications and uses matches nicely with the direction in which
we end up applying the proof rules. The AI rule with all its verifications
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is applied toward the top: A verification A A B of A A B will continue to
seek a verification A1 of A as well as a verification Bt of B. In contrast, the
elimination rule AE; with all its uses is applied toward the bottom: If we
have license A A B| to use A A B, then we also have license A] to use A.

Implication. The introduction rule creates a new hypothesis, which we
may use in a proof. The assumption is therefore of the judgment A|

Al
Bt
AD BT -

Iu

In order to use an implication A D B we first require a verification of A.
Just requiring that A may be used would be too weak, as can be seen when
trying to prove ((A D A) D B) D B1 (see Section 2) It should also be clear
from the fact that we are not eliminating a connective from A.

A> Bl At
——————— OF
B]

Verifications and uses meet in D/* and DF due to the direction of the im-
plication. A verification A D BT of A D B consists of a verification B1 of
B that has license A| to use the additional hypothesis A. A use A D B/ of
A D B gives license to use B/ but only after launching a verification A1 to
verify that A actually holds.

Disjunction. The verifications of a disjunction immediately follow from
their introduction rules.

At BT
Vg,
AV BT AV BY

Vip

A disjunction is used in a proof by cases, called here VE. This intro-
duces two new hypotheses, and each of them may be used in the corre-
sponding subproof. Whenever we set up a hypothetical judgment we are
trying to find a verification of the conclusion, possibly with uses of hy-
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potheses. So the conclusion of VE should be a verification.

u w
Al Bl

AVBL Ot O
ct

VE©

Truth. The only verification of truth is the trival one.

— TI
T

A hypothesis T| cannot be used because there is no elimination rule for T.

Falsehood. There is no verification of falsehood because we have no in-
troduction rule.

We can use falsehood, signifying a contradiction from our current hy-
potheses, to verify any conclusion. This is the zero-ary case of a disjunction.

One might argue that a license to use L should give us a license to use any
arbitrary other C'. But the L E rule restricts this such that L is only used
to show the C we are actually looking to verify, as in conclusion C'1 of VE.

Atomic propositions. How do we construct a verification of an atomic
proposition P? We cannot break down the structure of P because there is
none, so we can only proceed if we already know P is true. This can only
come from a hypothesis, so we have a rule that lets us use the knowledge
of an atomic proposition to construct a verification.

Pl

PiTH

This rule has a special status in that it represents a change in judgments
but is not tied to a particular local connective. We call this a judgmental rule
in order to distinguish it from the usual introduction and elimination rules
that characterize the connectives.
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Global soundness. Local soundness is an intrinsic property of each con-
nective, asserting that the elimination rules for it are not too strong given
the introduction rules. Global soundness is its counterpart for the whole
system of inference rules. It says that if an arbitrary proposition A has a
verification then we may use A without gaining any information. That is,
for arbitrary propositions A and C:

Al
If At and C;T then C1.

We would want to prove this using a substitution principle, except that the
judgment At and A] do not match. In the end, the arguments for local
soundness will help us carry out this proof later in this course when we
have progressed to sequent calculus.

Global completeness. Local completeness is also an intrinsic property of
each connective. It asserts that the elimination rules are not too weak, given
the introduction rule. Global completeness is its counterpart for the whole
system of inference rules. It says that if we may use A then we can construct
from this a verification of A. That is, for arbitrary propositions A:

Al
A1,

Global completeness follows from local completeness rather directly by in-
duction on the structure of A. Note how crucial it is to distinguish the
verification judgment A1 from the use judgment A| to be able to clearly
state the goal of global completeness.

Because it can often shorten proofs, we implicitly used global complete-
ness in our formulation of verifications in lecture. That is, we allowed

Al

AfTN

for arbitrary A.

Global soundness and completeness are properties of whole deductive
systems. Their proof must be carried out in a mathematical metalanguage
which makes them a bit different than the formal proofs that we have done
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so far within natural deduction. Of course, we would like them to be cor-
rect as well, which means they should follow the same principles of valid
inference that we have laid out so far.

There are two further properties we would like, relating truth, verifica-
tions, and uses. The first is that if A has a verification or A may be used,
then A is true. This is rather evident since we have just specialized the in-
troduction and elimination rules, except for the judgmental rule |1. But
under the interpretation of verification and use as truth, this inference be-
comes redundant.

Significantly more difficult is the property that if A is true then A has
a verification. Since we justified the meaning of the connectives from their
verifications, a failure of this property would be devastating to the verifi-
cationist program. Fortunately it holds and can be proved by exhibiting
a process of proof normalization that takes an arbitrary proof of A true and
constructs a verification of A.

All these properties in concert show that our rules are well constructed,
locally as well as globally. Experience with many other logical systems in-
dicates that this is not an isolated phenomenon: we can employ the verifi-
cationist point of view to give coherent sets of rules not just for constructive
logic, but for classical logic, temporal logic, spatial logic, modal logic, and
many other logics that are of interest in computer science. Taken together,
these constitute strong evidence that separating judgments from proposi-
tions and taking a verificationist point of view in the definition of the logical
connectives is indeed a proper and useful foundation for logic.

Finally observe how verifications play a role in informing proof search
by reducing the proof search space. The direction of the arrows indicates
in which direction a judgment should be expanded during proof search. A
verification AT needs to be verified upwards by applying its appropriate in-
troduction rule. A license to use A| can be used downwards by applying its
appropriate elimination rule. Verifications and uses meet in the judgmen-
tal rule | 1. In fact, when you carefully examine the example deductions we
have conducted so far, you will see that they all already ended up following
the proof search order that verifications and uses mandate. What needed
our creativity in proof search so far has no become systematic thanks to a
distinction of whether A needs to be verified or whether A can be assumed
to hold.
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2 A Counterexample

In this section we illustrate how things may go wrong if we do not define
the notation of verification correctly.

If the DE elimination rule would be modified to have second premise
use A| instead of verification A1:

A> Bl Al

DE?
Bl

Then the verification of ((A > A) D B) D B1 would be stuck:

(ADA)DB¢U ADA|
Bl
BfTN

((A>DA)D>DB)D> Bt -

DE?

u

because there is no rule that applies to A D A|. In contrast to the successful
verification with the correct D F rule:

Al
AiTN
u w
(ADA)DB] ADATDI
By SE
FTN

U

((ADA)DB)D Bt -

3 Normal and Neutral Proof Terms

Any verification is a proof. This very easy to see, because we can traverse
a verifcation and replace both A1 and A| by A true and obtain a proof. The
minimal required change is to collapse instances of the rule

Al
i 1

into simply A true, because otherwise premise and conclusion of the rule
would be identical.
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These observations suggest that we should not need to devise a new
notation for proof terms, just reuse them and distinguish those that consti-
tute verifications. Indeed, we need two classes of terms, so that NV : AT (N
is a verification of A) and R : Al (R is a justification for the use of A). In the
language of programs, these already happen to have names coming from a
different tradition: terms NN are called normal and terms R are called neutral.
By annotating the inference rules for verifications and uses, we obtain the
following grammatical characterization of these classes of terms.

Neutral R == =z Variable Hyp
| RN Application DF
| fstR|snd R Projections NE1 2
Normal N == fnxz= N Function DI
| (Nl, NQ) Pair NI
| () Unit TI
| inlN |inrM Injections V12
| (case Rof inlzy = Nj |inlzg = Ny) Case VE
| abort R Abort 1FE
| R Normal Term |1

At first glance, the case and abort construct appear to be in the wrong place,
but then we look back at the rules and see that they do indeed construct a
verification of some C.

It is now easy to verify that a normal term (which includes all neutral
terms) can never be reduced. This is why this class of terms if called normal
which means as much as irreducible. For example, the general proof term
fst (M, M>) does not fit this grammar, because only fst R is allowed, and a
neutral term R cannot be a pair.

If we go back to local reductions, this should not be surprising. A local
reduction arises if an elimination is applied to the result of an introduction,
but this means and elimination is directly below an introduction which is
ruled out for verifications. The grammar above just document this on proof
terms.

4 Counting Normal Proofs

First, we observe that there is no introduction rule for | and therefore no
verification of L. In other words, not every proposition has a verification.
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If we assume global soundness (yet to be proved), then this implies the
consistency of the logic.

As a second example, how many verifications are there of A D A, for a
propositional variable A? A minute of doodling will tell you there can be
only one, namely:

Al
AiT“
A> AL "

IU
This also means there is exactly one normal term of type A D A:

fnru=u:ADA

Similarly, there are exactly two verification sof A D (A D A), as we checked
in lecture, and therefore also only two normal proof terms

fnru=frw=u
fnu=fnw=w

Taking things a step further, we see that the normal proofs of type A> (A D
A) D A are bijection with the natural numbers:

zero = fnz=fns=z
one = fnz=fns= s(z)
two = fnz=fns= s(s(2))
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