
Constructive Logic (15-317), Fall 2018
Assignment 6: Computing proofs

Course Staff

Due: Friday, October 19, 2018, 11:59 pm

Submit your homework as a single file, not a tar. Just submit inversion_calculus.sml. After
submitting via autolab, please check the submission’s contents to ensure it contains what you expect.
No points can be given to a submission that isn’t there.

You might have noticed, after some practice, that proving a theorem in a calculus becomes quite a
mechanical task. Wouldn’t it be great if we could have the computer do that for us? That is exactly our
goal for this homework: to implement an automatic theorem prover for propositional intuitionistic logic.

The first thing to think about is which calculus we will use. It should be clear by now that natural
deduction is not the best choice, as it is too non-deterministic. The verification calculus could be a bit
better, as it avoids the redundant steps that eliminate and introduce the same connective over and over
again, but it still has the problem of keeping track of the right assumptions at the right places. Maybe we
should try the sequent-style presentation of natural deduction, since this keeps the context in place. In
this case we need to be very smart about which direction to work at each step, since we can either go
upwards or downwards. Instead of trying to come up with heuristics for that, why don’t we use the
sequent calculus itself, where proof construction always happens from the bottom up?

Indeed, sequent calculi are much better behaved for proof search. But we need to be careful about it.
Think about the first sequent calculus we have seen. In this first version, the formulas on the left side of
the sequent were persistent. This means we can always choose to decompose those formulas. In fact, any
sequent calculus that has what we call implicit contraction1 of some formulas runs into the same problem.
The inversion calculus avoids these problems. This calculus refines the restricted sequent calculus into
two mutually dependent forms of sequents.

∆ ; Ω
R−→ C Decompose C on the right

∆ ; Ω
L−→ C Decompose Ω on the left

Above, Ω is an ordered context (say, a stack) that we only access at the right end. ∆ is a context restricted
to those formulas whose left rules are not invertible, and C in the second sequent is a formula whose
right rule is not invertible. Both types of sequents can also contain atoms. For reference, the rules are
below. For further information, please see the notes for Lecture 12.

1Usually in the form of applying a rule to decompose a formula and keeping a copy of the original formula in the context.
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Right Invertible Rules

∆ ; Ω
R−→ A ∆ ; Ω

R−→ B

∆ ; Ω
R−→ A ∧B

∧R
∆ ; Ω

R−→ >
>R

Switching Modes

∆ ; Ω
L−→ P

∆ ; Ω
R−→ P

LRP (P atomic)
∆ ; Ω

L−→ A ∨B

∆ ; Ω
R−→ A ∨B

LR∨
∆ ; Ω

L−→ ⊥

∆ ; Ω
R−→ ⊥

LR⊥

Left Invertible Rules

∆, P ; · L−→ P

init (P atomic)

∆ ; Ω ·A ·B L−→ C

∆ ; Ω · (A ∧B)
L−→ C

∧L
∆ ; Ω

L−→ C

∆ ; Ω · > L−→ C
>L

∆ ; Ω · ⊥ L−→ C
⊥L

∆ ; Ω ·A L−→ C ∆ ; Ω ·B L−→ C

∆ ; Ω · (A ∨B)
L−→ C

∨L

Shift Rules

∆, P ; Ω
L−→ C

∆ ; Ω · P L−→ C

shiftP (P atomic)

Search Rules

∆ ; · R−→ A

∆ ; · L−→ A ∨B

∨R1

∆ ; · R−→ B

∆ ; · L−→ A ∨B

∨R2

Proof search using inversion (no implication)

In class, we saw a version of the inversion calculus for intuitionistic propositional logic (with truth,
falsehood, disjunction, conjunction and implication); all the rules of the inversion calculus have the
property that the “weight” of the sequents decrease when the rules are read bottom-up, except the left
rule for implication. If it weren’t for this rule, we could therefore use the inversion calculus directly to
implement a terminating decision procedure for intuitionistic propositional logic.

There are two standard solutions to this problem in the literature: the hacker’s solution is to implement
loop detection in order to ensure that the proof search process always bottoms out; a more elegant solution,
which we will see during Recitation in the coming week, is provided by Dyckhoff’s contraction-free sequent
calculus, called g4ip, which decomposes the ⊃L rule into several different rules.

In this assignment, we will avoid this issue by implementing a proof search engine for the implication-
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free fragment of the inversion calculus, where we omit the implication connective. In the next homework,
you will extend this theorem prover to support implication using the g4ip calculus.

Tip The rules themselves are non-deterministic, so one must invest some effort in extracting a deter-
ministic implementation from them.

Task 1. Implement a proof search procedure based on the inversion calculus without implication.
Efficiency should not be a primary concern, but see the hints below regarding invertible rules. Strive
instead for correctness and elegance, in that order.

You should write your implementation in Standard ML.2 Some starter code is provided in the file
prop.sml, included in this homework’s handout, to clarify the setup of the problem and give you some
basic tools for debugging.

signature PROP =
sig

datatype prop = (* A ::= *)
Atom of string (* P *)

| True (* | T *)
| And of prop * prop (* | A1 & A2 *)
| False (* | F *)
| Or of prop * prop (* | A1 | A2 *)

val toString : prop -> string
val eq : prop * prop -> bool

end

structure Prop :> PROP

Your task is implement a structure InversionCalculusmatching the signature INVERSION_CALCULUS.
The signature has been provided below, and is included in the handout materials.

signature INVERSION_CALCULUS =
sig
(* decide D A = true iff . ; D --R--> A has a proof,

decide D A = false iff . ; D --R--> A has no proof

*)
val decide : Prop.prop list -> Prop.prop -> bool

end

A simple test harness assuming this structure is given in the structure Test in the file test.sml, also
included in the handout. Feel free to post any additional interesting test cases you encounter to Piazza.

Here are some hints to help guide your implementation:

• Be sure to apply all invertible rules before you apply any non-invertible rules. Recall that the
non-invertible rules in inversion calculus are∨R1, ∨R2.

• When it comes time to perform non-invertible search, you’ll have to consider all possible choices
you might make.

• The provided test cases can help you catch many easy-to-make errors. Test your code early and
often! If you come up with any interesting test cases of your own that help you catch other errors,
we encourage you to share them on Piazza.

There are many subtleties and design decisions involved in this task, so don’t leave it until the last minute!

2If you are not comfortable writing in Standard ML, you should contact the instructors and the TAs for help.
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