
Midterm II Sample Questions

15-317 Constructive Logic
Frank Pfenning

November 7, 2017

Name: Sample Solution Andrew ID: fp

Instructions

• This exam is closed book, closed notes.

• You have 80 minutes to complete the exam.

• There are only 4 problems!

Admissibility Logic Deriving

of Cut Prolog Programming Rules

Prob 1 Prob 2 Prob 3 Prob 4 Prob 5 Total

Score 30 30 30 30 120

Max 30 30 30 30 120

1

1 Admissibility of Cut (30 pts)

In functional languages, we have parametric polymorphism and abstract types, which corre-
sponds to universal and existential quantification over types, respectively. The corresponding
constructs in logic are universal and existential quantification over propositions.

In this problem we consider the existential quantifier, given by the following rules in the se-
quent calculus.

Γ =⇒ [B/x]A

Γ =⇒ ∃x:prop. A
∃R

Γ,∃x:prop. A, [p/x]A =⇒ C

Γ, ∃x:prop. A =⇒ C
∃Lp

In the ∃R rule, B must be a proposition. In the ∃L rule, p must be a fresh propositional variable.
The substitution principle for propositions says that we can always substitute a proposition for a
propositional variable throughout a proof; you will need that below.

We state the admissibility of cut as

D
Γ =⇒ A

E
Γ, A =⇒ C

Γ =⇒ C
cutA

Task 1 (20 pts). Show what would be the critical case in the proof of the admissibility of cut,
when the cut formula is inferred by ∃R in D and by ∃L in E . You should only be concerned about
eliminating the cut at proposition ∃x:prop. A; do not be concerned about whether you are actually
justified in applying the induction hypothesis (see Task 3).

Case: D =

D′
Γ =⇒ [B/x]A

Γ =⇒ ∃x:prop. A
∃R and E =

E ′
Γ, ∃x:prop. A, [p/x]A =⇒ C

Γ,∃x:prop. A =⇒ C
∃Lp

F ′
Γ, [p/x]A =⇒ C by cut on ∃x:prop. A, D, and E ′

[B/p]F ′

Γ, [B/x]A =⇒ C by substitution property for propositions and [B/p][p/x]A = [B/x]A

F
Γ =⇒ C by cut on [B/x]A, D′, and [B/p]F ′

Task 2 (5 pts). The admissibility of cut is shown by a nested induction, which can also be formu-
lated as a well-founded induction over a lexicographic order. Complete the following paragraph,
using Γ, A, C, D, and E from the statement of the admissibility of cut.

The proof is by nested induction, first over A , then over D and E .

This means in an appeal to the induction hypothesis, either A becomes smaller and

D and E are arbitrary, or A remains the same and one of D

and E becomes smaller while the other remains the same.

2

Task 3 (5 pts). When adding quantifiers over propositions, this particular induction argument
fails. Explain why by completing the following paragraph.

The case for ∃R against ∃L would require us to appeal to the induction hypothesis on
[B/x]A, D′, and [B/p]F ′ . However, this is not smaller than

∃x:prop. A, D, and E because [B/x]A may be bigger than ∃x:prop. A .

3

2 Prolog (30 pts)

One issue with lists in functional programs is that we can access them only at one end. In logic
programming, so-called difference lists allows us to access both ends! Recall that Prolog notation
for a list is [] for the empty list, and [X|Xs] for the list with head X and tail Xs. We abbreviate
[X1|[X2|[X3|...|Xs]]] as [X1,X2,X3,...|Xs].

A difference list with elements x1, . . . , xn has the form diff([x1,...,xn|L],L) where L is a
logic variable, subject to unification. Note that it must be the same logic variable L at the tail end
of the list, and as the second argument to the constructor diff, but that different difference lists
may have different variables (ha!).

Complete the following programs, always assuming that the given difference lists are in the
form shown above.

Task 1 (5 pts). If to_list(diff(K,L), Xs) and diff(K,L) represents [x1,...,xn] then the ordi-
nary list Xs is [x1,...,xn].

to_list(diff(K,L), K) :- L = [].

% or

% to_list(diff(K,[]), K).

Task 2 (5 pts). If prepend(Y, diff(K,L), D) and diff(K,L) represents [x1,...,xn], then the
difference list D represents [Y,x1,...,xn].

prepend(Y, diff(K,L), diff([Y|K], L)).

Task 3 (10 pts). If postpend(diff(K,L), Y, D) and diff(K,L) represents [x1,...,xn], then the
difference list D represents [x1,...,xn,Y].

postpend(diff(K,L), Y, diff(K,M)) :- L = [Y|M].

% or

% postpend(diff(K,[Y|M]), Y, diff(K,M)).

4

Task 4 (10 pts). If concat(diff(K,L), diff(M,N), D) and diff(K,L) represents [x1,...,xi]

and diff(M,N) represents [y1,...,yj] then difference list D represents [x1,...,xi,y1,...,yj].

concat(diff(K,L), diff(L,M), diff(K,M)).

5

3 Logic Programming (30 pts)

We explore some programming over heap-ordered binary trees. A binary tree is heap-ordered if the
key at every node is less than or equal to the key at its children. We assume we have predicate
N <= K which succeeds if N ≤ K. Both N and K must be ground, that is, free of variables subject
to unification. We represent binary trees with leaf and node constructors.

tree(leaf).

tree(node(Left, N, Right)) :- tree(Left), nat(N), tree(Right).

Task 1 (15 pts). Define a backward chaining predicate ordered(Tree) in Prolog that tests if a given
tree is heap-ordered. It should have mode ordered(+tree) and always terminate in this mode.
You may define auxiliary predicates as needed and use N <= K.

ordered(leaf).

ordered(node(Left, N, Right)) :-

below(N, Left), below(N, Right).

below(N, leaf).

below(N, node(Left, K, Right)) :-

N <= K, ordered(node(Left, K, Right)).

6

Task 2 (15 pts). Now define a forward chaining predicate ord(T) that tests if a given tree is heap-
ordered. The assertion ord(T) for a given (ground) tree T should derive no iff the assumption that
T is heap-ordered is inconsistent. You may generate additional assertions leq(N,K), assuming
that this will prove no iff N is not less than or equal to K. Your program must saturate.

You may give your answer in the form of inference rules (read from the premises to the conclu-
sion), propositions with all positive atoms, or in Prolog syntax (but keeping in mind the clauses
will be applied with forward chaining).

ord(node(Left , N,Right))

below(N,Left)

ord(node(Left , N,Right))

below(N,Right)

below(N, node(Left ,K,Right))

leq(N,K)

below(N, node(Left ,K,Right))

ord(node(Left ,K,Right))

7

4 Deriving Inference Rules (30 pts)

We can use forward chaining in order to derive “big-step” inference rules from propositions. Re-
call a few characteristic rules for forward chaining, where all atoms are positive.

Γ, [D(X)]
f−→ G+

Γ, [∀x.D(x)−]
f−→ G+

∀L∗
Γ, P+ f−→ G+

Γ, [↑P+]
f−→ G+

↑L
Γ, P+ f−→ [P+]

id+

Γ, [D−1]
f−→ G+

Γ, [D−1 ∧D−2]
f−→ G+

∧L1

Γ, [D−2]
f−→ G+

Γ, [D−1 ∧D−2]
f−→ G+

∧L2

Γ
f−→ [G+

1] Γ, [D−2]
f−→ G+

Γ, [G+
1 ⊃D−2]

f−→ G+
⊃L

where X is a freshly chosen variable subject to unification in ∀L.

Task 1 (5 pts). When is an inference rule with judgment K in the premise and judgment J in the
conclusion derivable? Circle all that apply. Correct: (i), (iii)

(i) There is a hypothetical proof of the conclusion J from hypothesis K.

(ii) If we add this rule to the system we do not change the provable judgments.

(iii) If we substitute a proof for K in the premise we obtain a proof for J .

(iv) There is a differentiable function from K to J .

(v) If we add the rule the system remains in harmony.

Now consider the negative propositions

↑numbits(e, z),
∀n. ∀k. numbits(n, k)⊃ (↑numbits(b0(n), s(k)) ∧ ↑numbits(b1(n), s(k)))

where all atomic propositions numbits(,) are positive. Using these two propositions as antecedents
we can deduce numbits(n, k) iff the number of bits b0 and b1 in the binary number n is the unary
number k.

Task 2 (5 pts). Derive all inference rules that arise from left focusing on ↑numbits(e, z).

Γ, numbits(e, z) −→ G+

Γ, [↑numbits(e, z)] −→ G+
↑L

Γ, numbits(e, z) −→ G+

Γ −→ G+
R0

8

Task 3 (15 pts). Derive all inference rules that arise from left focusing on

∀n. ∀k. numbits(n, k)⊃ (↑numbits(b0(n), s(k)) ∧ ↑numbits(b1(n), s(k)))

numbits(N,K) ∈ Γ

Γ
f−→ [numbits(N,K)]

id+

Γ, numbits(b0(N), s(K))
f−→ G+

Γ, [↑numbits(b0(N), s(K))]
f−→ G+

↑L

Γ, [(↑numbits(b0(N), s(K)) ∧ ↑numbits(b1(N), s(K)))]
f−→ G+

∧L1

Γ, [numbits(N,K)⊃ (↑numbits(b0(N), s(K)) ∧ ↑numbits(b1(N), s(K)))]
f−→ G+

⊃L

Γ, [∀n. ∀k. numbits(n, k)⊃ (↑numbits(b0(n), s(k)) ∧ ↑numbits(b1(n), s(k)))]
f−→ G+

∀L× 2

Γ, numbits(N,K), numbits(b0(N), s(K)) −→ G+

Γ, numbits(N,K) −→ G+
R1

and, symmetrically, using ∧L2 instead of ∧L1:

Γ, numbits(N,K), numbits(b1(N), s(K)) −→ G+

Γ, numbits(N,K) −→ G+
R2

Task 4 (5 pts). Use your rules to prove that numbits(b0(b1(e)), s(s(z))), that is, the number of bits
in the binary number 2 is 2.

Define G0 = numbits(b0(b1(e)), s(s(z)))

numbits(e, z), numbits(b1(e), s(z)), numbits(b0(b1(e)), s(s(z))) −→ G0

id

numbits(e, z), numbits(b1(e), s(z)) −→ G0

R1

numbits(e, z) −→ G0

R2

· −→ G0

R0

To just use derived rules, we should also derive a rule by focusing on G0 on the right. This new
rule

Γ, numbits(b0(b1(e)), s(s(z))) −→ G0

R3

would just replace the use of id in the last step.

9

