
Final Exam

15-317/657 Constructive Logic
André Platzer

December 17, 2015

Name:

Andrew ID:

Instructions

• This exam is open-book, closed internet.

• Remember to label all inference rules in your deductions.

• Throughout this exam, explain whenever there are notable steps or choices or subtleties and
justify the rationale for your particular choice!

• You have 3 hours to complete the exam.

• There are 6 problems on 16 pages, including blank pages for extra space at the end.

• Consider writing out deductions on scratch paper first.

Max Score

Sequent Calculus 50

Proof Checking 50

Miraculous Sequent Rules 50

Substitutions 60

Unification 50

Prolog 40

Total: 300

1

15-317/657 Final, page 2/16 Andrew ID:
1 Sequent Calculus (50 points)

This question considers the sequent calculus with cut, weakening, and identity.

Task 120 Prove the following equivalence using sequent calculus
(A ∧B)⊃ (C ∧D) ≡ A⊃ ((B ⊃ C) ∧ (B ⊃D))

15-317/657 Final, page 3/16 Andrew ID:
Task 210 Prove the following theorem:

Theorem (Disconnection Property): If =⇒ (¬A∨B)∧C then either A =⇒ ⊥ or =⇒ B and,
either way, also =⇒ C.

Task 320 Recall that ¬¬A⊃A is not provable in the (intuitionistic) sequent calculus. Give a simple
proof that the law of excluded middleA∨¬A is not provable in the (intuitionistic) sequent
calculus either.

15-317/657 Final, page 4/16 Andrew ID:
2 Proof Checking (50 points)
Task 130 Commodore Horgiatiki performed one case of a cut elimination proof for sequent calcu-

lus. But he is missing some parts and is unsure whether he got a correct proof. Fill in
literally all missing arguments and justifications and steps so that you obtain a complete
proof. If there are any errors or missing justifications in Horgiatiki’s proof, identify and
clearly mark all errors and explain carefully why they are incorrect arguments.

If Γ =⇒ A1 (1)
Γ =⇒ A2 (2)
Γ =⇒ A1 ∧A2 by ∧R on (1) and (2) (3)
Γ, A1 ∧A2, A2 =⇒ C (4)
Γ, A1 ∧A2 =⇒ C by ∧L2 on (4) (5)

Then

Γ, A1 =⇒ C by i.h. on and (3) and (4) (6)
Γ, A1 ∧A2 =⇒ C by i.h. on and (2) and (4) (7)
Γ =⇒ C by i.h. on and (3) and (7) (8)

15-317/657 Final, page 5/16 Andrew ID:
Task 220 Mark all errors in the following sequent calculus proof and subsequently explain whether

and why they are soundness-critical or why they could be accepted with a different argu-
ment.

7©
6© a(x)⊃ p(x, x) =⇒ a(x)⊃ p(x, x)

init

5© a(x)⊃ p(x, x), a(x) =⇒ p(x, x)
⊃R

4© a(x), a(x)⊃ p(x, x) =⇒ ∀y p(y, x)
∀R

3© a(x),∀x (a(x)⊃ p(x, x)) =⇒ ∀y p(y, x)
⊃L

2© ∀x (a(x)⊃ p(x, x)) =⇒ a(x)⊃ ∀y p(y, x)

1© ∀x (a(x)⊃ p(x, x)) =⇒ ∀y (a(y)⊃ ∀x p(x, y))
∀R

0© =⇒ ∀x (a(x)⊃ p(x, x))⊃ ∀y (a(y)⊃ ∀x p(x, y))
⊃L

Refer to the line numbers in your answers below. Where 1© refers to the whether the
sequent in line 1© can result by applying the given proof rule to the sequent in 0© etc.

0© acceptable as proof search starts with any well-formed sequent as initial conjecture.
1©

2©

3©

4©

5©

6©

7©

15-317/657 Final, page 6/16 Andrew ID:
3 Miraculous Sequent Rules (50 points)

In this question, we consider suggestions for new and improved proof rules that fierce Captain
Toughch came up with. Either show the proof rules to be sound by deriving them or proving
them to be admissible. Or show that they can be used to prove a formula that we cannot prove
soundly and explain briefly why that formula should not be proved.

Task 110
Γ, A ∨D =⇒ C

Γ, A⊃B =⇒ C ⊃B
R1

Consider linear logic now.

Task 210
Γ; · `̀ A(B

Γ; ∆ `̀ !(A(B)
R2

15-317/657 Final, page 7/16 Andrew ID:
Task 310

Γ; ∆ `̀ A Γ; ∆ `̀ B(C

Γ; ∆, A(B `̀ C
R3

Task 410
Γ; ∆ `̀ A Γ; ∆ `̀ !(B(C)

Γ; ∆, A(B `̀ C
R4

15-317/657 Final, page 8/16 Andrew ID:
Task 510 Recall natural deduction rules for intuitionistic propositional logic such as

B true
A ∨B true

∨IR

Can you give such a natural deduction proof calculus for linear logic? Briefly justify why
or why not.

15-317/657 Final, page 9/16 Andrew ID:
4 Substitutions (60 points)

Recall that a substitution is a function σ from terms to terms that satisfies

f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ) for all function symbols f and terms ti

and has a finite domain dom(σ) = {x : xσ 6= x} of variables. Recall that τσ denotes the sub-
stitution that is the composition of substitution σ after τ . Finally recall that a variable renaming
is a substitution whose only effect is to replace variables by variables, not by arbitrary terms,
and that, moreover, never renames two different variables to the same variable.

Task 120 Let σ and τ be substitutions such that τσ = (·) is the identity substitution. Then is σ a
variable renaming? Prove or disprove.

15-317/657 Final, page 10/16 Andrew ID:
Task 220 Let σ and τ be any substitutions such that τσ = τ . Then is σ a variable renaming? Prove

or disprove.

15-317/657 Final, page 11/16 Andrew ID:
Recall that a representation ` for a substitution is of the form, e.g.:

` = (r1/x1, r2/x2, . . . , rn/xn)

For any such representation ` of a substitution, let ˆ̀denote the substitution belonging to
that representation `.

Task 320 Let `, k be representations of substitutions ˆ̀and k̂, respectively. Under what condition on
` and k is ` ∪ k a representation of the composition k̂ ˆ̀ of ˆ̀ after k̂? Prove correctness of
the condition you identified or prove why no such condition exists.

15-317/657 Final, page 12/16 Andrew ID:
5 Unification (50 points)

Unification specified the judgment t .
= s | θ where θ is the most-general unifier for terms t

and s. But, with some caveats, it works for formulas, too. In this question, we construct the
judgment F .

= G | θ with most-general unifier θ for formulas F and G.

Task 110 Augment the judgment by writing new inference rules to also cover the case p(t̄) for
predicate symbol p with a sequence of terms t̄ as arguments.

Task 210 Augment the judgment further to the case of formulas of the form F ∨G.

Task 310 Give a most-general unifier of

p(f(x), x) ∨ q(g(u, x))

and p(z, g(b, c)) ∨ q(g(z, y))

15-317/657 Final, page 13/16 Andrew ID:
Task 420 Prove soundness of your answers from Tasks 1 and 2, i.e. that the result, θ, of F .

= G | θ
indeed is a unifier for formulas F and G.

15-317/657 Final, page 14/16 Andrew ID:
6 Prolog (40 points)

In this question we will study ways of computing the derivative of polynomials in one variable
with Prolog. Assume that polynomial expressions are represented as data structures of type
poly built in an arbitrary shape from these constructors:

plus(S,T) represents the sum of S and T

times(S,T) represents the product of S and T

var indicates the variable (only one variable occurs so no need for a name)

num(N) represents the number literal N (say as an integer)

In this problem you will define a predicate diff/2 to compute the derivative of a polynomial
expression represented in this way. For example, the following query is expected to succeed:

?- diff(plus(var,num(5)), plus(num(1), num(0))).

Modes in Prolog describe the intended ways of using a predicate. Mode +poly refers to an
input argument of type poly that needs to be provided. Mode -poly refers to an output
argument of type poly that will be computed by the predicate when all inputs are provided.

Task 120 Write a Prolog program diff(+poly,-poly) that takes the polynomial as an input in the
first argument and produces its derivative as an output in the second argument.

15-317/657 Final, page 15/16 Andrew ID:
Task 210 With mode diff(+poly,-poly), the predicate from Task 1 computes a derivative. Is there

a mode with which the predicate from Task 1 computes antiderivatives (also known as
indefinite integrals)? Justify.

Task 310 Is there a mode with which the predicate from Task 1 can be used to check whether a given
polynomial expression is the integral of another given polynomial expression? Justify.

15-317/657 Final, page 16/16 Andrew ID:

Blank page for extra answers if needed

