
Overcoming the Knowledge Engineering
Bottleneck for Understanding Student

Language Input
Carolyn P. Rosé, Andy Gaydos, Brian S. Hall, Antonio Roque, and Kurt VanLehn

Learning Research and Development Center, University of Pittsburgh, Pittsburgh PA, 15260

Abstract. In this paper we present Carmel-Tools, a new set of authoring tools for over-
coming the knowledge engineering bottleneck for building tutorial dialogue systems
that can accept natural language text input from students. Carmel-Tools provides the
facilities for speeding up and simplifying the task of creating domain specific knowl-
edge sources for sentence level language understanding. Carmel-Tools can build up
domain specific lexical resources automatically from raw human tutoring corpora. It
provides a GUI interface for authors to design their own first order propositional repre-
sentation as well as facilities for annotating example sentences with their correspond-
ing interpretation in this designed representational language. It then generalizes over
these annotations and automatically generates all domain specific semantic knowledge
sources required for interpreting novel input texts that are similar in content to those
that have been annotated.

1 Introduction

In this paper we describe Carmel-Tools1 a new publicly available resource for the tutorial di-
alogue systems community. In recent years a tremendous amount of interest has developed in
building tutorial dialogue systems. The goal of tutorial dialogue systems is to use dialogue to
provide students with a learning environment that exhibits the characteristics that have been
shown to correlate with student learning gains, such as student activity. For example, it has
been demonstrated that generating words rather than simply reading them promotes subse-
quent recall of those words (Slamecka and Graf, 1978). Furthermore, encouraging student
self-explanation, which includes both generating inferences from material they have read and
relating new material to old material, has been shown to correlate with learning (Chi et al.,
1981; Pressley et al., 1992).

While tutorial dialogue systems are becoming increasingly prevalent, and this research
is mature enough to yield successful evaluations with students [18, 9, 2, 7, 5], the problem
of text input understanding has continued to pose serious obstacles. Many systems, such as
Paco [16], CATO-Dial [2], Ms. Lindquist [9], and MarCo [20], finesse the problem by avoid-
ing language input altogether in favor of menu-based input or even logical forms. However,
entering logical forms is tedious and error prone, and some recent studies have demonstrated
that menu-selections are only effective with some students and not for others for stimulating
self-explanation leading to learning [4].

1To obtain a copy of Carmel-Tools, contact the first author at rosecp@pitt.edu.



The majority of tutorial dialogue systems that accept language input from students have
employed shallow techniques. For example, CIRCSIM-TUTOR [6] and Andes-Atlas [18]
have been demonstrated to successfully interpret short student answers using shallow se-
mantic grammars. However, such approaches have not yet been demonstrated to scale up to
processing longer student turns in a way that is effective for assessing a student’s knowledge
state. Other systems have processed longer student inputs, even multi-sentential input, using
text classification approaches. For example, the AUTO-TUTOR system [7] and the Research
Methods Tutor [14] use Latent Semantic Analysis (LSA) [11], which is a “bag of words”
approach to text classification. Thus, LSA makes its prediction about what class to assign to
an input text based only on which words are included in that text. While AUTO-TUTOR was
able to use LSA successfully to handle student input in the Computer Literacy domain, LSA
has been demonstrated to have difficulty in highly causal domains such as Research Methods
[14].

Text classification approaches are attractive for tutoring systems because they require no
sophisticated knowledge engineering effort and are very robust to noisy input. Nevertheless,
text classification approaches have some inherent limitations in the context of tutorial dia-
logue systems. First, text classification is a coarse-grained approach to understanding student
input. Thus, it may gloss over subtle details, such as minor vocabulary mistakes or missing
pieces of information, that would be desirable to question students about and possibly correct.
Secondly, it is limited to a pre-defined set of discrete classifications anticipated by authors.

Thus, it is desirable to be able to construct more detailed analyses of student text input,
such as those that can be provided by symbolic language processing approaches. Systems
that perform such a sophisticated type of linguistic analysis of student input include BEE-
TLE [22], WHY-ATLAS [21], and the Geometry Tutor [1]. Both BEETLE and WHY-ATLAS
use the CARMEL Core Understanding Component [17] for sentence level understanding of
student input. Geometry Tutor uses CARMEL’s LCFLEX robust parser and the Loom de-
scription logic system [12]. One major difficulty in symbolic processing of student text input
is the tremendous amount of time and expertise required to build domain specific knowledge
sources that can effectively transform the wide range of student text inputs into a form that
can be used for reasoning about a student’s knowledge state. Thus, in this paper we present
Carmel-Tools, a new set of authoring tools for overcoming the knowledge engineering bottle-
neck for building tutorial dialogue systems that can accept natural language text input from
students. Carmel-Tools provides the facilities for speeding up and simplifying the task of cre-
ating domain specific knowledge sources for the CARMEL Core Understanding Component.

2 CARMEL

The purpose of the CARMEL Core Input Understanding Component [17] is to provide a gen-
eral resource for robust sentence level interpretation that can be adapted for use in different
systems. CARMEL produces a deep syntactic functional analysis of an input text which is
ultimately transformed into a first order predicate representation that can then be used for
reasoning about a student’s knowledge state. For example, in WHY-ATLAS, CARMEL’s rep-
resentation for each sentence in a student’s essay is sent to a discourse level understanding
component [13] that uses Tacitus-lite to construct a proof from this predicate language repre-
sentation.

The CARMEL grammar uses features from the broad coverage COMLEX lexicon [8],



which we have augmented for our purposes. The lexicon provides a clean interface between
syntactic and semantic knowledge. In our enhanced version of COMLEX, semantic con-
structor functions are linked into lexical entries where the entry may act as a lexical head
corresponding to the associated semantic concept. Syntactic functional roles are matched to
argument positions in the semantic constructor functions. Thus, as syntactic functional roles
are assigned at parse time, semantic interpretation can proceed in parallel. CARMEL’s deep
syntactic analysis can be thought of as a normalized representation of the input sentence,
which is convenient for semantic interpretation since the head-argument relations from which
the propositional content of the sentence is derived remain consistent across sentences that
have the same propositional content but different surface syntactic properties. Thus, the same
semantic knowledge used for building an analysis of the propositional content of one sur-
face syntactic variation of a sentence is sufficient for building a representation for all surface
syntactic variations of that sentence.

Prior to the existence of Carmel-Tools, despite the fact that CARMEL’s grammar and
lexicon are domain independent, all domain specific resources required by CARMEL for se-
mantic interpretation had to be authored by hand for each domain. CARMEL requires four
different domain specific knowledge sources, all of which are now automatically generated
by Carmel-Tools. The first domain specific resource, the lexical ontology, describes the frame
based semantic representation produced at parse time. From this, semantic constructor func-
tions are compiled automatically. Pointers to these functions must then be inserted into ap-
propriate entries in the lexicon where they can instruct the parser how to build up semantic
representations in parallel to the syntactic ones that are generated by the syntactic grammar.
A file of parsed examples that have been properly disambiguated is required for training the
parser’s statistical disambiguation model. The predicate mapper, which maps the parser’s
frame based representation into a predicate logic representation, requires a definition of the
predicate language as well as rules for mapping between the frame based representation and
that predicate language.

3 The Authoring Process

The Carmel-Tools authoring process involves designing a Predicate Language Definition,
augmenting the base lexical resources by either loading raw human tutoring corpora or en-
tering example texts by hand, and annotating example texts with their corresponding rep-
resentation in the defined Predicate Language Definition. From this authored knowledge,
CARMEL’s semantic knowledge sources can be generated and compiled. The author can
then test the compiled knowledge sources and then continue the authoring process by up-
dating the Predicate Language Definition, loading additional corpora, annotating additional
examples, or modifying already annotated examples.

The Carmel-Tools authoring process was designed to eliminate the most time-consuming
parts of the authoring process. In particular, its GUI interface guides authors in such a way as
to prevent them from introducing inconsistencies between knowledge sources. For example, a
GUI interface for entering propositional representations for example texts insures that the en-
tered representation is consistent with the author’s Predicate Language Definition. Compiled
knowledge sources contain pointers back to the annotated examples that are responsible for
their creation. Thus, it is also able to provide troubleshooting facilities to help authors track
down potential sources for incorrect analyses generated from compiled knowledge sources.



When changes are made to the Predicate Language Definition, Carmel-Tools is able to test
whether each proposed change would cause conflicts with any annotated example texts. An
example of such a change would be deleting an argument from a predicate type where some
example has as part of its analysis an instantiation of a predicate with that type where that
argument is bound. If so, it lists these example texts for the author and requires the author to
modify the annotated examples first in such a way that the proposed change will not cause
a conflict, in this case that would mean uninstantiating the variable that the author desires to
remove. In cases where changes would not cause any conflict, such as adding an argument to
a predicate type, renaming a predicate, token, or type, or removing an argument that is not
bound in any instantiated proposition, these changes are made everywhere in the database
automatically.

3.1 Defining the Predicate Language Definition

Sentence: The horizontal velocity of the pumpkin is the same as
the horizontal velocity of the runner at the time of the release.

((velocity ID1 pumpkin horizontal ?var0 ?var1 ?var2 ?var3)
(velocity ID2 man horizontal ?var4 ?var5 ?var6)
(rel-value ID3 ID1 ID2)
(become ID4 contact man pumpkin attached detached ?var7)
(rel-time ID5 ID3 ID4 before))

Figure 1: Example CARMEL propositional representation

The author may begin the authoring process by designing the propositional language that
will be the output representation from CARMEL using the authored knowledge sources. This
is done on the Predicate Language Definition page of the Carmel-Tools GUI interface, which
is not displayed due to space restrictions.

The author is completely free to develop a representation language that is as simple or
complex as is required by the type of reasoning, if any, that will be applied to the output rep-
resentations by the tutoring system as it formulates its response to the student. For example,
in a very simple system such as Andes-Atlas [18], each sentence could be assigned a very
simple atomic representation where each atomic value is associated with an answer class that
completely determines the response the system will give the student.

More complex systems require more complex representations. For example, Figure 1 dis-
plays CARMEL’s analysis for a typical sentence for the WHY-ATLAS system. Thus, we pro-
vide a framework in which a Davidsonian style propositional representations can be defined
[10]. The interface includes facilities for defining a list of predicates and Tokens to be used
in constructing propositional analyses. Each predicate is associated with a basic predicate
type, which is a associated with a list of arguments. For example, in the WHY-ATLAS predi-
cate language definition, the predicate acceleration is defined as having type pred-
type2, which has 6 arguments, namely ?identifier, ?body, ?comp, ?Mag-der,
?mag-zero, and ?dir. Based on the Hobbs (1985) formulation of Davidsonian semantics,
the first argument, namely ?identifier, refers to the “condition” that exists when the



predication expressed by the whole instantiated proposition is true. The atomic value bound
to this argument can then be used as an identifier to refer to that “condition”. This makes the
representation more general as it makes it natural to modify propositions with a wide range
of adverbials. For instance, in the example in Figure 1 we see that the representation of the
adverbial expression “at the time of release” is represented by the instantiated rel-time
predicate that refers both to the instantiated rel-value predicate referring to the state in
which the two velocities are equal as well as the instantiated become predicate that refers to
the event of the pumpkin being released from the man’s hands.

Each basic predicate type argument is itself associated with a type that defines the range of
atomic values, which may be tokens or identifiers referring to propositions, that can be bound
to it. Thus, tokens also have types. Each token has one or more basic token types. Besides
basic predicate types and basic token types, we also allow the definition of abstract types that
can subsume other types. The interface provides facilities for defining, modifying, and delet-
ing types, tokens, and predicates, although this portion of the interface is not displayed in
this paper due to space restrictions. The GUI interface for maintaining the predicate language
definition allows the author to quickly take inventory of the defined predicate language, in
particular identifying which types belong to which predicates and tokens, and conversely,
which predicates and tokens are defined as having which types. A graphical view of the en-
tire type hierarchy is displayed when the author clicks on a Display Type Hierarchy
button.

3.2 Generating Lexical Resources and Annotating Example Sentences

Figure 2: An Example Analysis

When the predicate language definition is defined, the next step is to generate the domain



specific lexical resources and annotate example sentences with their corresponding represen-
tation within this defined predicate language. The author begins this process on the Example
Map Page, which is not shown due to space restrictions. Note that the author may at any
time go back to the Predicate Language Definition page and modify the predicate language
definition as desired.

Although the lexicon is one of CARMEL’s domain independent resources, it is very large
and unwieldy to use as a whole. In addition to keeping the syntactic lexical entries in memory
for access by the parser, a word table with all morphological variations of the morphemes in
the lexicon is constructed for use with the spelling corrector. If such a table were constructed
for the entire COMLEX lexicon, not only would the space requirements be prohibitive, but the
spelling corrector’s performance would also suffer since many domain inappropriate words
would be included there which could easily be incorrectly selected. Thus, Carmel-Tools pro-
vides facilities for specializing these lexical resources based on an analysis of raw human
tutoring corpora.

Carmel-Tools provides facilities for loading a raw human tutoring corpus file. Carmel-
Tools then makes a list of each unique morpheme it finds in the file and then augments both
its base lexicon (using entries from COMLEX), in order to include all morphemes found in
the transcript file that were not already included in the base lexicon, and the spelling correc-
tor’s word list, so that it includes all morphological forms of the new lexical entries. It also
segments the file into a list of student sentence strings, which are then loaded into a Corpus
Examples list, which appears on the interface. Searching and sorting facilities are provided to
make it easy for authors to find sentences that have certain things in common in order to orga-
nize the list of sentences extracted from the raw corpus file in a convenient way. For example,
a Sort By Similarity button causes Carmel-Tools to sort the list of sentences accord-
ing to their respective similarity to a given text string according to an LSA match between
the example string and each corpus sentence. The interface also includes the Token List and
the Predicate List, with all defined tokens and predicates that are part of the defined predicate
language. When the author clicks on a predicate or token, the Examples list beside it will
display the list of annotated examples that have been annotated with an analysis containing
that token or predicate. Thus, note that an example sentence likely appears in multiple lists
since its representation will include a combination of predicates and tokens.

Figure 2 display how individual texts are annotated. The Analysis box displays the propo-
sitional representation of the example text. This analysis is constructed using the Add To-
ken, Delete, Add Predicate, and Modify Predicate buttons, as well as their
sub-windows, which are not shown. Once the analysis is entered, the author may indicate
the compositional breakdown of the example text by associating spans of text with parts of
the analysis by means of the Optional Match and Mandatory Match buttons. For
example, the noun phrase “the man” corresponds to the man token, which is bound in two
places. Each time a match takes place, the Carmel-Tools internal data structures create one or
more templates that show how pieces of syntactic analyses corresponding to spans of text are
matched up with their corresponding propositional representation. From this match Carmel-
Tools infers both that “the man” is a way of expressing the meaning of the man token in text
and that the subject of the verb hold can be bound to the ?body1 argument of the become
predicate. By decomposing example texts in this way, Carmel-Tools constructs templates that
are general and can be reused in multiple annotated examples. It is these learned templates
that form the basis for all compiled semantic knowledge sources. The list of templates that
indicates the hierarchical breakdown of this example text are displayed in the Templates list



on the right hand side of Figure 2.

3.3 Generalizing Templates

Templates can be made more general by entering paraphrases for portions of template pat-
terns. Internally what this accomplishes is that all paraphrases listed can be interpreted by
CARMEL as having the same meaning so that they can be treated as interchangeable in the
context of this template. A paraphrase can be entered either as a specific string or as a Defined
Type, including any type defined in the Predicate Language Definition. What this means is
that the selected span of text can be replaced by any span of text that can be interpreted in
such a way that its predicate representation’s type is subsumed by the indicated type. This
allows a high level of generalization in templates.

4 Conclusions

In this paper we have presented Carmel-Tools, a new publicly available resource for the tuto-
rial dialogue community. While our ultimate goal is to provide tools that do not require any
computational linguistics expertise to use, we believe that we have not yet achieved that goal.
Nevertheless, Carmel-Tools provides resources for greatly speeding up an simplifying the
task of creating domain specific knowledge sources required for symbolic natural language
processing.

As a proof of concept, the Predicate Language Definitions for WHY-ATLAS and BEETLE
have been entered, and approximately 250 example texts have been annotated. The compiled
knowledge sources replicate work that was done by hand over the course of a year. The
compiled knowledge sources have been informally checked for correctness by testing them
over a regression set as well as on novel input texts similar in content to those that were
annotated. This effort took in total about 3 full-time days. One current direction is extending
the capabilities of our lexical resource specialization code so that it can build lexical entries
for words that are not included in the COMLEX lexicon.

5 Acknowledgments

This research was supported by the Office of Naval Research, Cognitive Science Division un-
der grant number N00014-0-1-0600 and by NSF grant number 9720359 to CIRCLE, Center
for Interdisciplinary Research on Constructive Learning Environments at the University of
Pittsburgh and Carnegie Mellon University.

References

[1] V. Aleven, O. Popescu, and K. Koedinger. Pedagogical content knowledge in a tutorial dialogue system
to support self-explanation. In Papers of the AIED-2001 Workshop on Tutorial Dialogue Systems, pages
59–70, 2001.

[2] K. D. Ashley, R. Desai, and J. M. Levine. Teaching case-based argumentation concepts using didactic
arguments vs. didactic explanations. In Proceedings of the Intelligent Tutoring Systems Conference, pages
585–595, 2002.

[3] M. Chi, N. de Leeuw, M. Chiu, and C. LaVancher. Eliciting self-explanations improves understanding.
Cognitive Science, 18(3), 1981.



[4] C. Conati and K. VanLehn. Teaching meta-cognitive skills: Implementation and evaluation of a tutoring
system to guide self-explanation while learning from examples. In Proceedings of AI in Education, 1999.

[5] M. Evans and J. Michael. One-on-One Tutoring by Humans and Machines. Lawrence Earlbaum and
Associates, in-press.

[6] M. S. Glass. Broadening Input Understanding in an Intelligent Tutoring System. PhD thesis, Illinois
Institute of Technology, 1999.

[7] A. Graesser, K. Wiemer-Hastings, P. Wiemer-Hastings, R. Kreuz, and the Tutoring Research Group. Au-
totutor: A simulation of a human tutor. Journal of Cognitive Systems Research, 1(1):35–51, 1999.

[8] R. Grishman, C. Macleod, and A. Meyers. COMLEX syntax: Building a computational lexicon. In
Proceedings of the 15th International Conference on Computational Linguistics (COLING-94), 1994.

[9] N. T. Heffernan and K. R. Koedinger. An intelligent tutoring system incorporating a model of an experi-
enced tutor. In Proceedings of the Intelligent Tutoring Systems Conference, pages 596–608, 2002.

[10] J. R. Hobbs. Ontological promiscuity. In Proceedings of the 23rd Annual Meeting of the Association for
Computational Linguistics, 1985.

[11] T. K. Landauer, P. W. Foltz, and D. Laham. Introduction to latent semantic analysis. Discourse Processes,
25(2-3):259–284, 1998.

[12] R. MacGregor. The evolving technology of classification-based knowledge representation systems. In
J. Sowa, editor, Principles of Semantic Networks: Explorations in the Representation of Knowledge. Mor-
gan Kaufmann: San Mateo, CA, 1991.

[13] M. Makatchev, P. Jordan, and K. VanLehn. Discourse processing for explanatory essays in tutorial appli-
cations. In Proceedings of the 3rd SIGdial Workshop on Discourse and Dialogue, 2002.

[14] K. Malatesta, P. Wiemer-Hastings, and J. Robertson. Beyond the short answer question with research
methods tutor. In Proceedings of the Intelligent Tutoring Systems Conference, 2002.

[15] M. Pressley, E. Wood, V. E. Woloshyn, V. Martin, A. King, and D. Menke. Encouraging mindful use of
prior knowledge: Attempting to construct explanatory answers facilitates learning. Educational Psychol-
ogist, 27:91–109, 1992.

[16] J. Rickel, N. Lesh, C. Rich, and C. L. Sidner. Collaborative discourse theory as a foundation for tutorial
dialogue. In Proceedings of the Intelligent Tutoring Systems Conference, pages 542–551, 2002.

[17] C. P. Rosé. A framework for robust sentence level interpretation. In Proceedings of the First Meeting of
the North American Chapter of t he Association for Computational Linguistics, pages 1129–1135, 2000.

[18] C. P. Rosé, P. Jordan, M. Ringenberg, S. Siler, K. VanLehn, and A. Weinstein. Interactive conceptual
tutoring in atlas-andes. In Proceedings of Artificial Intelligence in Education, pages 256–266, 2001.

[19] N. J. Slamecka and P. Graf. The generation effect: Delineation of a phenomenon. Journal of Experimental
Psychology: Human Learning and Memory, (4):592–604, 1978.

[20] P. A. Tedesco. Conflicts in group planning: Results from the experimental study of marco. In Proceedings
of the Intelligent Tutoring Systems Conference, pages 619–629, 2002.

[21] K. VanLehn, P. Jordan, C. P. Rosé, and The Natural Language Tutoring Group. The architecture of why2-
atlas: a coach for qualitative physics essay writing. Proceedings of the Intelligent Tutoring Systems Con-
ference, 2002.

[22] C. Zinn, J. D. Moore, and M. G. Core. A 3-tier planning architecture for managing tutorial dialog. In
Proceedings of the Intelligent Tutoring Systems Conference, 2002.


