chapters Usability Testing

User testing with real users is the most fundamental usability
method and is in some sense irreplaceable, since it provides direct
information about how people use computers and what their exact
problems are with the concrete interface being tested. Even so, the
methods discussed in other chapters of this book can serve as good
supplements to gather additional information or to gain usability
insights at a lower cost.!

There are several methodological pitfalls in usability testing
[Holleran 1991; Landauer 1988b], and as in all kinds of testing one
needs to pay attention to the issues of reliability and validity. Reli-
ability is the question of whether one would get the same result if
the test were to be repeated, and validity is the question of whether
the result actually reflects the usability issues one wants to test.

1. There is an association of usability professionals that publishes a newsletter
on practical issues related to usability testing and meets at regular intervals to
discuss issues related to usability. For further information about the Usability
Professionals’ Association, contact its office: Usability Professionals’ Associa-
tion, 10875 Plano Road, Suite 115, Dallas, TX 75238, USA. Tel. +1-214-349-8841,
fax +1-214-349-7946.

165

.

Usability Engineering

Reliability

Reliability of usability tests is a problem because of the huge indi-
vidual differences between test users. It is not uncommon to find
that the best user is 10 times as fast as the slowest user, and the best
25% of the users are normally about twice as fast as the slowest
25% of the users [Egan 1988]. Because of this well-established
phenomenon, one cannot conclude much from, say, observing that
User A using Interface X could perform a certain task 40% faster
than User B using Interface Y; it could very well be the case that
User B just happened to be slower in general than User A. If the test
was repeated with Users C and D, the result could easily be the
opposite. For usability engineering purposes, one often needs to
make decisions on the basis of fairly unreliable data, and one
should certainly do so since some data is better than no data. For
example, if a company had to choose between Interfaces X and Y as
just discussed, it should obviously choose Interface X since it has at
least a little bit of evidence in its favor. If several users have been
tested, one could use standard statistical tests? to estimate the
significance of the difference between the systems [Brigham 1989].
Assume, for example, that the statistics package states that the
difference between the systems is significant at the level p = .20.
This means that there is a 20% chance that Y was actually the best
interface, but again one should obviously choose X since the odds
are 4 to 1 that it is best.

Standard statistical tests can also be used to estimate the confidence
intervals of test results and thus indicate the reliability of the size of
the effects. For example, a statistical claim that the 95% confidence
interval for the time needed to perform a certain test task is
4.5 + 0.2 minutes means that there is a 95% probability that the true
value is between 4.3 and 4.7 (and thus a 5% probability that it is
really smaller than 4.3 or larger than 4.7). Such confidence intervals
are important if the choice between two options is dependent not

2. Statistics is of course a topic worthy of several full books in its own right.
See, for example, [Pedhazur and Schmelkin 1991] for basic methods, and
[Lehmann and D’Abrera 1975] for more specialized statistical tests. An intro-
duction to the use of statistics in the user interface field is given in Section 42.5
of [Landauer 1988b].

166

Usability Testing

just on which one is best but also on how much better it is [Land-
auer 1988a, 1988b]. For example, a usability problem that is very
expensive to fix should only be fixed if one has a reasonably tight
confidence interval showing that the problem is indeed sufficiently
bothersome to the users to justify the cost.

In a survey of 36 published usability studies, I found that the mean
standard deviation was 33% for measures of expert-user perfor-
mance (measured in 17 studies), 46% for measures of novice-user
learning (measured in 12 studies), and 59% for error rates
(measured in 13 studies). In all cases, the standard deviations are
expressed as percent of the measured mean value of the usability
attribute in question. These numbers can be used to derive early
approximations of the number of test users needed to achieve a
desired confidence interval. Of course, since standard deviations
vary a great deal between studies, any particular usability test
might well have a higher or lower standard deviation than the
values given here, and one should perform further statistical tests
on the actual data measured in the study.

Anyway, the results show that error rates tend to have the highest
variability, meaning that they will generally require more test users
to achieve the same level of confidence as can be achieved with
fewer test users for measures of learnability and even fewer for
measures of expert user performance. Figure 17 shows the confi-
dence intervals for several possible desired levels of confidence
from 50% to 90% in steps of 10%, as well as for 95%, assuming that
the underlying usability measures follow a normal distribution. A
confidence level of 95% is often used for research studies, but for
practical development purposes, it may be enough to aim for an
80% level of confidence (the third curve from the top in each of the
three nomographs).

The values on the y-axis should be interpreted as follows: The
confidence interval (corresponding to the confidence level of one of
the curves) is plus or minus that many percent of the measured
mean value of the usability attribute. For example, assume that we
are interested in measuring expert-user performance well enough
that there is a 90% chance that the true value is no more than 15%

1477

Usability Engineering

IS

S 50%

E . \\ Standard deviation of 33%

g ‘5? 40% _ ‘\\\ (expert-user performance)

= 30%) N

£ 5 209 NNN— 95% Confidence
T R NN e e S S
A R T e

§ o%Confdence | | [T
= 0 5 10 15 20 25
- Number of Test Users

]

S 50%

E >] \\\ ' Standard deviation of 46%
8’5?40% AN (novice-user learning) ~ —
52 1, N |

3= 30% .

A}] N 95% Confidence
£320% \\\&\\E\

Q] . ——
SRS

< onfidence

5 0%t+—t—t—————t———————
= 0 5 10 15 20 25

Number of Test Users

\\\\ Standard deviation of 59%
(user error rates) —

\ 95% Confidence |

\\

\-\\

)
g 3
%
/

Width of Confidence Interval
(£ % of Mea
N
<
S
/

] 50%
10% -—— Confidence

0% +————s
0 5 10 15 20 25
Number of Test Users

Figure 17 Confidence intervals for usability testing from 1 to 25 users.
Graphs for three different typical levels of standard deviations of the mean
measured value. In each graph, the bottom curve is the 50% confidence
level, followed by curves for 60%, 70%, 80%, 90%, and 95% (the top
curve). The stippled lines in the top graph are discussed in the text.

168

Usability Testing

different from the mean value measured in our usability test. To
find the necessary number of test users, we would start at the 15%
mark on the y-axis in the top diagram in Figure 17 (corresponding
to the desired length of the interval) and find the corresponding
point on the 90% confidence level curve. We would then drop a line
from that point to the x-axis to find the necessary number of test
users (about 13). The diagram also shows that 5 test users would
give us only a 70% probability of getting within +15% of the true
mean and that our 90% confidence interval would be +24%. This
level of accuracy might be enough for many projects.

Validity

Validity is a question of whether the usability test in fact measures
something of relevance to usability of real products in real use
outside the laboratory. Whereas reliability can be addressed with
statistical tests, a high level of validity requires methodological
understanding of the test method one is using as well as some
common sense.

Typical validity problems involve using the wrong users or giving
them the wrong tasks or not including time constraints and social
influences. For example, a management information system might
be tested with business school students as test users, but it is likely
that the results would have been somewhat different if it had been
tested with real managers. Even so, at least the business school
students are people who likely will become managers, so they are
probably more valid test users than, say, chemistry students. Simi-
larly, results from testing a' hypertext system with a toy task
involving a few pages of text may not always be relevant for the
use of the system in an application with hundreds of megabytes of
information.

Confounding effects may also lower the validity of a usability test.
For example, assume that you want to investigate whether it
would be worthwhile to move from a character-based user inter-
face to a graphical user interface for a certain application. You test
this by comparing two versions of the system: one running on a
24 x 80 alphanumeric screen and one running on a 1024 x 1024
pixel graphics display. At a first glance, this may seem a reasonable

169

Usability Engineering

test to answer the question, but more careful consideration shows
that the comparison between the two screens is as much a compar-
ison between large and small screens as it is between character-
based and graphical user interfaces.

6.1 Test Goals and Test Plans

Before any testing is conducted, one should clarify the purpose of
the test since it will have significant impact on the kind of testing to
be done. A major distinction is whether the test is intended as a
formative or summative evaluation of the user interface. Formative
evaluation is done in order to help improve the interface as part of
an iterative design process. The main goal of formative evaluation
is thus to learn which detailed aspects of the interface are good and
bad, and how the design can be improved. A typical method to use
for formative evaluation is a thinking-aloud test. In contrast,
summative evaluation aims at assessing the overall quality of an
interface, for example, for use in deciding between two alternatives
or as a part of competitive analysis to learn how good the competi-
tion really is.? A typical method to use for summative evaluation is
a measurement test.

Test Plans

A test plan should be written down before the start of the test and
should address the following issues:

* The goal of the test: What do you want to achieve?

* Where and when will the test take place?

* How long is each test session expected to take?

¢ What computer support will be needed for the test?

¢ What software needs to be ready for the test?

¢ What should the state of the system be at the start of the test?

3. Remember, by the way, that manual or paper-based solutions that do not
involve computers at all are also in the running and should be studied as well.

170

Usability Testing

* What should the system/network load and response times be? If
possible, the system should not be unrealistically slow (see the
discussion of prototyping in Section 4.8), but neither should it be
unrealistically fast because it is run on a system or network with
no other users. One may have to artificially slow down the
system to simulate realistic response times.

¢ Who will serve as experimenters for the test?

* Who are the test users going to be, and how are you going to get
hold of them?

* How many test users are needed?
* What test tasks will the users be asked to perform?

* What criteria will be used to determine when the users have
finished each of the test tasks correctly?

3

‘o What user aids (manuals, online help, etc.) will be made avail-

able to the test users?

¢ To what extent will the experimenter be allowed to help the users
during the test?

* What data is going to be collected, and how will it be analyzed
once it has been collected?

e What will the criterion be for pronouncing the interface a
success? Often, this will be the “planned” level for the previously
specified usability goals (see page 80), but it could also be a
looser criterion such as “no new usability problems found with
severity higher than 3.”

Test Budget

The test plan should also include a budget for the test. Some costs
will be out-of-pocket, meaning that they have to be paid cash.
Other costs are in the nature of using company staff and resources
that are already paid for. Such indirect costs may or may not be
formally charged to the usability budget for the specific project,
depending on how the company’s accounting mechanisms are set
up, but they should be included in the usability manager’s internal
budget for the test in any case. Typical cost elements of a user test
budget are

¢ Usability specialists to plan, run, and analyze the test: out-of-
pocket expense if consultants are used

171

Usability Engineering

e Administrative assistants to schedule test users, enter data, etc.
* Software developers to modify the code to include data collec-
tion or other desired test customization

* The test users’ time: out-of-pocket expense if outside people are
hired for the test

 Computers used during testing and during analysis
¢ The usability laboratory or other room used for the test
¢ Videotapes and other consumables: out-of-pocket expense

The cost estimates for the various staff members should be based
on their loaded salary and not on their nominal salary. A loaded
salary is the total cost to the company of having a person employed
and includes elements like benefits, vacation pay, employment
taxes or fees, and general corporate overhead.

The test budget should be split into fixed and variable costs, where
fixed costs are those required to plan and set up the test no matter
how many test users are run, and variable costs are the additional
costs needed for each test user. Splitting the cost estimates in this
way allows for better planning of the number of test users to
include for each test. Obviously, both fixed and variable costs vary
immensely between projects, depending on multiple factors such
as the size of the interface and the salary level of the intended
users. Based on several published budgets, estimates for a repre-
sentative, medium-sized usability test can be derived, with fixed
costs of $3,000 and variable costs of $1,000 per test user [Nielsen
and Landauer 1993]. Note that any specific project is likely to have
different costs than these estimates.

Given estimates for fixed and variable costs, it then becomes

possible to calculate the optimal number of test users if further -

assumptions are made about the financial impact of finding
usability problems and the probability of finding each problem
with a single test user. Unfortunately, these latter two numbers are
much harder to estimate than the costs of testing, but any given
organization should be able to build up a database of typical values
over time. Again based on values from published studies, a repre-
sentative value of finding a usability problem in a medium-sized
project can be taken as $15,000.

172

Usability Testing

Nielsen and Landauer [1993] showed that the following formula
gives a good approximation of the finding of usability problems:

Usability_Problems_Found(i) = N(1 - (1 - 1)),

where i is the number of test users, N is the total number of
usability problems in the interface, and A is the probability for
finding any single problem with any single test user. The values of
N and A vary considerably between projects and should be esti-
mated by curve-fitting as data becomes available for each project. It
is also recommended that you keep track of these numbers for your
own projects such that you can estimate “common” values of these
parameters for use in the planning of future tests.

For several projects we studied, the mean number of problems in
the interface, N, was 41 and the mean probability for finding any
problem with a single user, A, was 31% [Nielsen and Landauer
1993]. The following discussion uses these mean values to illustrate
the use of the mathematical model in the budgeting of usability
activities. Of course, one should really use the particular N and A
values that have been measured or estimated for the particular
project one wants to analyze.

Given the assumptions mentioned above, Figure 18 shows how the
pay-off ratio between the benefits and the costs changed in our
average example with various numbers of test users. The highest
ratio was achieved with three test users, where the projected bene-
fits were $413,000, and the costs were $6,000. However, in prin-
ciple, one should keep testing as long as the benefit from one
additional test user is greater than the cost of running that user.
Under the above model, this would imply running 15 test users at a
cost of $18,000 to get benefits worth $613,000. If the recommenda-
tion in Section 4.10 to use iterative design is followed, it will be
better to conduct more, smaller, tests (one for each iteration) than to
spend everything on a single test.

172

Usability Engineering

75
§] \
Qo _
RS
&50" ! \
D _
<
1)
@ |
S 25
__g B
T]
o — S S
0 3 6 9 12

Number of Test Users

Figure 18 The pay-off ratio (how much larger the benefits are than the
costs) for user tests with various nimbers of test users under the assump-
tions for a “typical” medium-sized project described in the text.

Pilot Tests

No usability testing should be performed without first having tried
out the test procedure on a few pilot subjects. Often, one or two
pilot subjects will be enough, but more may be needed for large
tests or when the initial pilot tests show severe deficiencies in the
test plan. The first few pilot subjects may be chosen for conve-
nience among people who are easily available to the experimenter
even if they are not representative of the actual users, since some
mistakes in the experimental design can be found even with
subjects such as one’s colleagues. Even so, at least one pilot subject
should be taken from the same pool as the other test users.

During pilot testing, one will typically find that the instructions for
some of the test tasks are incomprehensible to the users or that they
misinterpret them. Similarly, any questionnaires used for subjec-
tive satisfaction rating or other debriefing will often need to be
changed based on pilot testing. Also, one very often finds a
mismatch between the test tasks and the time planned for each test

174

Usability Testing

session. Most commonly, the tasks are more difficult than one
expected, but of course it may also be the case that some tasks are
too easy. Depending on the circumstances of the individual project,
one will either have to revise the tasks or make more time available
for each test session.

Pilot testing can also be used to refine the experimental procedure
and to clarify the definitions of various things that are to be
measured. For example, it is often difficult to decide exactly what
constitutes a user error or exactly when the user can be said to have
completed a given test task, and the pilot test may reveal inconsis-
tencies or weaknesses in the definitions contained in the test plan.

6.2 Getting Test Users

The main rule regarding test users is that they should be as repre-
sentative as possible of the intended users of the system. If the test
plan calls for a “discount usability” approach with very few test
users, one should not choose users from outlier groups but should
take additional care to involve average users. If more test users are
to be used, one should select users from several different subpopu-
lations to cover the main different categories of expected users.

The main exception from the rule that test users should be repre-
sentative of the end users is testing with sales people. For many
products, sales staff is used to give demonstrations to prospective
customers, and the ease with which they can give these demos may
be a major selling point. Often, sales people handle multiple prod-
ucts and do not get extensive experience from actual use of any
individual product. The experience of demonstrating a user inter-
face is very different from that of actually using it for a real task,
and even though most usability efforts should aim at making the
system easier to use for the users, it may increase sales significantly
if “demoability” is also considered as a usability attribute.

Sometimes, the exact individuals who will be using a system can
be identified. This is typically the case for systems that are being
developed internally in a company for use in a given department

175

Usability Engineering

of that company. In this case, representative users are easy to find,
even though it may present some difficulties to get them to spend
time on user testing instead of doing their primary job. Internal test
users are often recruited through the users’ management who
agrees to provide a certain number of people. Unfortunately,
managers often tend to select their most able staff members for
such tests (either to make their department look good or because
these staff members have the most interest in new technology), so
one should explicitly ask managers to choose a broad sample with
respect to salient user characteristics such as experience and
seniority.

In other cases, the system is targeted at a certain type of users, such
as lawyers, the secretaries in a dental clinic, or warehouse
managers in small manufacturing companies. These user groups
can be more or less homogeneous, and it may be desirable to
involve test users from several different customer locations. Some-
times, existing customers are willing to help out with the test since
it will get them an early look at new software as well as improving
the quality of the resulting product, which they will be using. In
other cases, no existing customers are available, and it may be
more difficult to gain access to representative users. Sometimes,
test users can be recruited from temporary employment agencies,
or it may be possible to get students in the domain of interest from
a local university or trade school. It may also be possible to enter a
classified advertisement under job openings in order to recruit
users who are currently unemployed. Of course, it will be neces-
sary to pay all users recruited with these latter methods.

Yet other software is intended for the general population, and one
can in principle use anybody as test users, again using employ-
ment agencies, students, or classified advertising to recruit test
users. Especially when testing students, one should consider
whether the system is also intended to be used by older users, since
they may have somewhat different characteristics [Czaja ef al. 1989;
Nielsen and Schaefer 1993] and may therefore need to be included
as an additional test group. A good source of older test users is
retirees, who may also serve as a pool of talent with specific
domain expertise.

176

Usability Testing

Novice versus Expert Users

One of the main distinctions between categories of users is that
between novice and expert users (see also Section 2.5, Categories of
Users and Individual User Differences, on page 43 for further dimen-
sions of interest). Almost all user interfaces need to be tested with
novice users, and many systems should also be tested with expert
users. Typically, these two groups should be tested in separate tests
with some of the same and some different test tasks.

Sometimes, one will have to train the users with respect to those
aspects of a user interface that are unfamiliar to them but are not
relevant for the main usability test. This is typically necessary
during the transition from one interface generation to the next,
where users will have experience with the old interaction tech-
niques but will be completely baffled by the new ones unless they
are given some training. For example, a company that is moving
from character-based interfaces to graphical user interfaces will
have many users who have never used a mouse before, and these
users will have to be trained in the use of the mouse before it is
relevant to use them as test users of a mouse-based system. Using a
mouse is known to be hard for the first several hours, and it is
almost impossible to use a mouse correctly the first few minutes. If
users are not trained in the use of the mouse and other standard
interaction techniques before they are asked to test a new interface,
the test will be completely dominated by the effects of the users’
struggle with the interaction devices and techniques, and no infor-
mation will be gained as to the usability of the dialogue.

One example of the potentially devastating effect of not training
users before a test was a study of the use of a single window versus
multiple windows for an electronic book [Tombaugh et al. 1987].
When novice users without any specific training were used as test
subjects, the single-window interface was best for reading the elec-
tronic book. The time needed to answer questions about the text
was 85 seconds when using the multiwindow interface and 72
seconds when using the single-window interface. In a second test,
the test users were first given 30 minutes’ training in the use of a
mouse to control multiple windows, and the time to answer the
questions about the text was now 66 seconds for the single-

177

Usability Engineering

window interface and only 56 seconds for the multiwindow inter-
face. Thus, both interfaces benefited from having more experienced
users, but the most interesting result is that the overall conclusion
with respect to determining the “winner” of the test came out the
opposite. The single-window solution would be best for a “walk-
up-and-use” system for users without prior mouse experience. On
the other hand, the multiwindow solution would be best in the
more common case where the electronic book was to be used in an
office or school environment where people would be using the
same computer extensively. For such environments, the wrong
conclusion would have been drawn if a test with untrained users
had been the only one.

Between-Subjects versus Within-Subjects Testing

Often, usability testing is conducted in order to compare the
usability of two or more systems. If so, there are two basic ways of
employing the test users: between-subject testing and within-subject
testing.

Between-subject testing is in some sense the simplest and most
valid since it involves using different test users for the different
systems. Thus, each test user only participates in a single test
session. The problem with between-subject designs is the huge
individual variation in user skills referred to on page 166. There-
fore, it can be necessary to run a very large number of test users in
each condition in order to smooth over random differences
between test users in each of the groups.

Between-subject testing also risks a bias due to the assignment of
test users to the various groups. For example, one might decide to
test 20 users, call for volunteers, and assign the first 10 users to one
system and the next 10 to the other. Even though this approach
may seem reasonable, it in fact introduces a bias, since users who
volunteer early are likely to be different from users who volunteer
late. For example, early volunteers may be more conscientious in
reading announcements, or they may be more interested in new
technology, and thus more likely to be super-users. There are two
methodologically sound ways to assign test users to groups: The
simplest and best is random assignment, which minimizes the risk

178

Usability Testing

of any bias but requires a large number of test users because of
individual variability. The second method is matched assignment,
which involves making sure that each group has equally many
users from each of those categories that have been defined as being
of interest to the test. For example, users from different depart-
ments might be considered different categories, as may old versus
young users, men versus women, and users with different
computer experience or different educational backgrounds.

Alternatively, one may conduct the test as a within-subject design,
meaning that all the test users get to use all the systems that are
being tested. This method automatically controls for individual
variability since any user who is particularly fast or talented will
presumably be about equally superior in each test condition.
Within-subject testing does have the major disadvantage that the
test users cannot be considered as novice users anymore when they
approach the other systems after having learned how to use the
first system. Often, some transfer of skill will take place between
systems, and the users will be better at using the second system
than they were at using the first. In order to control for this effect,
users are normally divided into groups, with one group using one
system first and the other group using the other system first. The
issues discussed above regarding the assignment of users to groups
also apply to this aspect of within-subject testing.

6.3 Choosing Experimenters

No matter what test method is chosen, somebody has to serve as
the experimenter and be in charge of running the test. In general, it
is of course preferable to use good experimenters who have
previous experience in using whatever method is chosen. For
example, a study where 20 different groups of experimenters tested
the same interface, there was a correlation of 7 =.76 between the
rated quality of the methodology used by a group and the number
of usability problems they discovered in the interface [Nielsen
1992a]. When running 3 test subjects, experimenters using very

179

Usability Engineering

good methodology found about 5-6 of the 8 usability problems in
the interface, and experimenters using very poor methodology
only found about 2-3 of the problems.

This result does not mean that one should abandon user testing if
no experienced usability specialist is available to serve as the
experimenter. First, it is obviously better to find a few usability
problems than not to find any, and second, even inexperienced
experimenters can use a decent (if not perfect) methodology if they
are careful. It is possible for computer scientists to learn user test
methods and apply them with good results [Nielsen 1992a; Wright
and Monk 1991]. ,

In addition to knowledge of the test method, the experimenter
must have extensive knowledge of the application and its user
interface. System knowledge is necessary for the experimenter to
understand what the users are doing as they perform tasks with
the system, and to make reasonable inferences about the users’
probable intentions at various stages of the dialogue. Often, users’
actions will go by too fast for experimenters, who are trying to
understand what the system is doing at the same time as they are
analyzing the users.

The experimenter does not necessarily need to know how the
system is implemented, even though such knowledge can come in
handy during tests of preliminary prototypes with a tendency to
crash. If the experimenter does not know how to handle system
crashes, it is a good idea to arrange to have a programmer with the
necessary skills stand by in a nearby office.

One way to get experimenters with a high degree of system knowl-
edge is to use the system’s designers themselves as evaluators
[Wright and Monk 1991]. In addition to the practical advantages,
there are also motivational reasons for doing so, since the experi-
ence of seeing users struggle with their system always has a very
powerful impact on designers [Jergensen 1989]. There are some
problems with having people run tests of their own systems,
though, including a possible lack of objectivity that may lead them
to help the users too much (see also the footnote on page 204). A

Usability Testing

common weakness is the tendency for a designer to explain away
user problems rather than acknowledging them as real issues. To
avoid these problems, developers can serve as one part of the
usability testing team while usability specialists handle relations
with the users [Ehrlich ef al. 1994].

6.4 Ethical Aspects of Tests with
Human Subjects °

Users are human, too. Therefore, one cannot subject them to the
kind of “destructive testing” that is popular in the components
industry. Instead, tests should be conducted with deep respect for
the users” emotions and well-being [Allen 1984; American Psycho-
logical Association 1982].

At first, it might seem that usability testing does not represent the
same potential dangers to the users as would, say, participation in a
test of a new drug. Even though it is true that usability test subjects
are not normally bodily harmed, even by irate developers
resenting the users’ mistreatment of their beloved software, test
participation can still be quite a distressful experience for the users
[Schrier 1992]. Users feel a tremendous pressure to perform, even
when they are told that the purpose of the study is to test the
system and not the user. Also, users will inevitably make errors
and be slow at learning the system (especially during tests of early
designs with many severe usability problems), and they can easily
get to feel inadequate or stupid as they experience these difficul-
ties. Knowing that they are observed, and possibly recorded,

- makes the feeling of performing inadequately even more

unpleasant to the users. Test users have been known to break down
and cry during usability testing, even though this only happens in
a small minority of cases.

At first, one might think that highly educated and intelligent users
would have enough self-confidence to make fear of inadequacy

180

181

Usability Engineering

less of a problem. On the contrary, high-level managers and highly
specialized professionals are often especially concerned about
exhibiting ignorance during a test. Therefore, experimenters
should be especially careful to acknowledge the professional skills
of such users up front and emphasize the need to involve people
with these users’ particular knowledge in the test.

The experimenter has a responsibility to make the users feel as
comfortable as possible during and after the test. Specifically, the
experimenter must never laugh at the users or in any way indicate
that they are slow at discovering how to operate the system.
During the introduction to the test, the experimenter should make
clear that it is the system that is being tested and not the user. To
emphasize this point, test users should never be referred to as
“subjects,” “guinea pigs,” or other such terms. I personally prefer
the term “test user,” but some usability specialists like to use terms
such as “usability evaluator” or “participant,” which emphasize
even more that it is the system that is being tested. Since the term
“evaluator” technically speaking refers to an inspection-oriented
role where usability specialists judge a system instead of using it to
perform a task, I normally do not use this term myself when refer-
ring to test users.

The users should be told that no information about the perfor-
mance of any individual users will be revealed and specifically that
their manager will not be informed about their performance. The
test itself should be conducted in a relaxed atmosphere, and the
experimenter should take the necessary time for small talk to calm
down the user before the start of the experiment, as well as during
any breaks. It might also be a good idea to serve coffee, soft drinks,
or other refreshments—especially if the test takes more than an
hour or so. Furthermore, to bolster the users” confidence and make
them at ease, the very first test task should be so easy that they are
virtually guaranteed an early success experience.

The experimenter should ensure that the test room, test computer,
and test software are ready before the test user arrives in order to
avoid the confusion that would otherwise arise due to last-minute
adjustments. Also, of course, copies of the test tasks, any question-

182

Usability Testing

naires, and other test materials should be checked before the
arrival of the user such that they are ready to be handed out at the
appropriate time. The test session should be conducted without
disruptions: typically, one should place a sign saying, “User test in
progress—Do not disturb” outside the (closed) door and disable any
telephone sets in the test room.

The test results should be kept confidential, and reports from the
test should be written in such a way that individual test users
cannot be identified. For example, users can be referred to by
numbers (Userl, User2, etc.) and not by names or even initials.*
The test should be conducted with as few observers as possible,
since the size of the “audience” also has a detrimental effect on the
test user: It is less embarrassing to make a fool of yourself in front
of 1 person than in front of 10. And remember that users will think
that they are making fools of themselves as they struggle with the
interface and overlook “obvious” options, even if they only make
the same mistakes as everybody else. For similar reasons, video-
tapes of a user test session should not be shown publicly without
explicit permission from the user. Also, the users” manager should
never be allowed to observe the test for any reason and should not
be given performance data for individual users.

During testing, the experimenter should normally not interfere
with the user but should let the user discover the solutions to the
problems on his or her own. Not only does this lead to more valid
and interesting test results,” it also prevents the users from feeling
that they are so stupid that the experimenter had to solve the prob-
lems for them. On the other hand, the experimenter should not let a
user struggle endlessly with a task if the user is clearly bogged
down and getting desperate. In such cases, the experimenter can

4. Ensuring anonymity requires a fair amount of thought. For example, a
report of a test with users drawn from a department with only one female staff
member referred to all users as “he,” even when describing observations of
the woman since her anonymity would otherwise have been compromised.

5. Tt is a common mistake to help users too early. Since users normally do not
get help when they have to learn a computer system on their own, there is
highly relevant information to be gained from seeing what further difficulties
users get into as they try to solve the problem on their own.

1R

-

Usability Engineering

Before the test: ~

Have everything ready before the user shows up.

Emphasize that it is the system that is being tested, not the user.
Acknowledge that the software is new and untested, and may have problems.
Let users know that they can stop at any time.

Explain any recording, keystroke logging, or other monitoring that is used.

Tell the user that the test results will be kept completely confidential.

Make sure that you have answered all the user’s questions before proceeding.

During the test: ‘

Try to give the user an early success experience.

Hand out the test tasks one at a time.

Keep a relaxed atmosphere in the test room, serve coffee and/or have breaks.
Avoid disruptions: Close the door and post a sign on it. Disable telephone.
Never indicate in any way that the user is making mistakes or is too slow.
Minimize the number of observers at the test.

Do not allow the user's management to observe the test.

If necessary, have the experimenter stop the test if it becomes too unpleasant.

After the test:

End by stating that the user has helped you find areas of improvement.
Never report results in such a way that individual users can be identified.
Only show videotapes outside the usability group with the user’s permission.

Table 9 Main ethical considerations for user testing.

gently provide a hint or two to the user in order to get on with the
test. Also, the experimenter may have to terminate the test if the
user is clearly unhappy and unable to do anything with the system.
Such action should be reserved for the most desperate cases only.
Furthermore, test users should be informed before the start of the
test that they can always stop the test at any time, and any such
requests should obviously be honored.

After the test, the user should be debriefed and allowed to make
comments about the system. After the administration of the ques-
tionnaire (if used), any deception employed in the experiment
should be disclosed in order not to have the user leave the test with
an erroneous understanding of the system. An example of a decep-
tion that should be disclosed is the use of the Wizard of Oz method
(see page 96) to simulate nonexisting computer capabilities. Also,
the experimenter can answer any additional user questions that

184

Usability Testing

could not be answered for fear of causing bias until after the user
had filled in the questionnaire. The experimenter should end the
debriefing by thanking the user for participating in the test and
explicitly state that the test helped to identify areas of possible
improvement in the product.® This part of the debriefing helps
users recover their self-respect after the many errors they probably
felt they made during the test itself. Also, the experimenter should
endeavor to end the session on a positive and relaxed note,
repeating that the results are going to be kept confidential and also
engaging in some general conversation anid small talk as the user is
being escorted out of the building or laboratory area.

Table 9 summarizes the most important ethical considerations for
user testing. In addition to following the rules outlined here, it is a
good idea for the experimenters to have tried the role of test
subjects themselves a few times, so that they know from personal
experience how stupid and vulnerable subjects may feel.

6.5 Test Tasks

The basic rule for test tasks is that they should be chosen to be as
representative as possible of the uses to which the system will
eventually be put in the field. Also, the tasks should provide
reasonable coverage of the most important parts of the user inter-
face. The test tasks can be designed based on a task analysis or
based on a product identity statement listing the intended uses for
the product. Information from logging frequencies of use of
commands in running systems (see page 217) and other ways of
learning how users actually use systems, such as field observation,
can also be used to construct more representative sets of test tasks
for user testing of similar systems [Gaylin 1986].

6. However, it may also be necessary to mention that the development team
will not necessarily be able to correct all identified problems. Users can get
very disappointed if they find that the system is released with one of “their”
problems still in the interface in spite of a promise to correct it.

185

Usability Engineering

The tasks need to be small enough to be completed within the time
limits of the user test, but they should not be so small that they
become trivial. The test tasks should specify precisely what result
the user is being asked to produce, since the process of using a
computer to achieve a goal is considerably different from just
playing around. For example, a test task for a spreadsheet could be
to enter sales figures for six regions for each of four quarters, with
some sample numbers given in the task description. A second test
task could then be to obtain totals and percentages, and a third
might be to construct a bar chart showing trends across regions.
Test tasks should normally be given to the users in writing. Not
only does this ensure that all users get the tasks described the same
way, but having written tasks also allows the user to refer to the
task description during the experiment instead of having to
remember all the details of the task. After the user has been given
the task and has had a chance to read it, the experimenter should
allow the user to ask questions about the task description, in order
to minimize the risk that the user has misinterpreted the task.
Normally, task descriptions are handed to the user on a piece of
paper, but they can also be shown in a window on the computer.
This latter approach is usually chosen in computer-paced tests
where users have to perform a very large number of tasks.

Test tasks should never be frivolous, humorous, or offensive, such
as testing a paint program by asking the user to draw a mustache
on a scanned photo of the President. First, there is no guarantee
that everybody will find the same thing funny, and second, the
nonserious nature of such tasks distracts from the test of the system
and may even demean the users. Instead, all test tasks should be
business-oriented (except, of course, for tests of entertainment soft-
ware and such) and as realistic as possible. To increase both the
users’ understanding of the tasks and their sense of being realistic
usage of the software, the tasks can be related to an overall
scenario. For example, the scenario for the spreadsheet example
mentioned above could be that the user had just been hired as sales
manager for a company and had been asked to give a presentation
the next day.

186

Usability Testing

The test tasks can also be used to increase the user’s confidence.
The very first test task should always be extremely simple in order
to guarantee the user an early success experience to boost morale.
Similarly, the last test task should be designed to make users feel
that they have accomplished something. For example, a test of a
word processor could end with having the user print out a docu-
ment. Since users will feel inadequate if they do not complete all
the given tasks, one should never give the users a complete listing
of all the test tasks in advance. Rather, the tasks should be given to
the users one at a time such that it is alway$ possible to stop the test
without letting the user feel incompetent.

6.6 Stages of a Test

A usability test typically has four stages:

1. Preparation
2. Introduction
3. The test itself
4. Debriefing

Preparation

In preparation for the experiment, the experimenter should make
sure that the test room is ready for the experiment, that the
computer system is in the start state that was specified in the test
plan, and that all test materials, instructions, and questionnaires
are available. For example, all files needed for the test tasks should
be restored to their original content, and any files created during
earlier tests should be moved to another computer or at least
another directory. In order to minimize the user’s discomfort and
confusion, this preparation should be completed before the arrival
of the user. Also, any screen savers should be switched off, as
should any other system components, such as email notifiers, that
might otherwise interrupt the experiment.

187

*

Usability Engineering

Introduction

During the introduction, the experimenter welcomes the test user
and gives a brief explanation of the purpose of the test. The experi-
menter may also explain the computer setup to users if it is likely
to be unfamiliar to them. The experimenter then proceeds with
introducing the test procedure. Especially for inexperienced exper-
imenters, it may be a good idea to have a checklist at hand with the
most important points to be covered, but care should be taken not
to make the introduction seem mechanical, as could easily be the
case if the experimenter were to simply read from the checklist.

Typical elements to cover in a test introduction include the
following;:

* The purpose of the test is to evaluate the software and not the
user.

* Unless the experimenter is actually the system designer, the

experimenter should mention that he or she has no personal

stake in the system being evaluated, so that the test user can
speak freely without being afraid of hurting the experimenter’s
feelings. If the experimenter did design the system, this fact is
probably better left unsaid in order to avoid the opposite effect.

* The test results will be used to improve the user interface, so the
system that will eventually be released will likely be different
from the one seen in the test.

* A reminder that the system is confidential and should not be
discussed with others. Even if the system is not confidential, it

~may still be a good idea to ask the test user to refrain from
discussing it with colleagues who may be participating in future
tests, in order not to bias them.

* A statement that participation in the test is voluntary and that
the user may stop at any time.

7. Even though this may not need to be mentioned explicitly in the experi-
menter’s introduction, users who do elect to stop the experiment should still
get whatever payment was promised for the time they have spent, even if they
did not complete the experiment, and even if the data from their participation
cannot be used.

188

Usability Testing

* A reassurance that the results of the test will be kept confidential
and not shown to anybody in a form where the individual test
user can be identified. *

* An explanation of any video or audio recording that may be
taking place. In cases where the video record will not be showing
the user’s face anyway, but only the screen and keyboard and the
user’s back, it is a good idea to mention this explicitly to alleviate
the user’s worries about being recorded.

* An explanation that the user is welcome, to ask questions since
we want to know what they find unclear in the interface, but that

the experimenter will not answer most questions during the test
itself, since the goal of the test is to see whether the system can be
used without outside help.

* Any specific instructions for the kind of experiment that is being
conducted; such as instructions to think out loud or to work as
fast as possible while minimizing mistakes.

e An invitation to the user to ask any clarifying questions before
the start of the experiment.

Many people have the test users sign an informed consent form
that repeats the most important instructions and experimental
conditions and states that they have understood them. I do not like
these forms since they can increase the user’s anxiety level by
making the test seem more foreboding than it really is. Sometimes,
consent forms may be required for legal reasons, and they should
certainly be used in cases where videotapes or other records or
results from the test will be shown to others. In any case, it is
recommended to keep any such forms short, to the point, and
written in everyday language rather than legalese, so that the users

~ do not fear that they are being entrapped to sign away more rights

than they actually are. :

During the introduction phase, the experimenter should also
ensure that the physical set-up of the computer is ergonomically
suited for the individual test user. A common problem is the posi-
tion of the mouse for left-handed users, but it may also be neces-
sary to adjust the chair or other parts of the room such that the user
feels comfortable. If the actual computer model is unfamiliar to the
user, it may be a good idea to let the user practice using some other

1R9

Usability Engineering

Usability Testing

software before the start of the test itself, to avoid contaminating
the test results with the user’s initial adjustments to the hardware.

After the introduction, the user is given any written instructions for
the test, including the first test task, and asked to read them. The
experimenter should explicitly ask the test user whether he or she
has any questions regarding the experimental procedure, the test
instructions, or the tasks before the start of the test.

Running the Test

During the test itself, the experimenter should normally refrain
from interacting with the user, and should certainly not express
any personal opinions or indicate whether the user is doing well or
poorly. The experimenter may make uncommitted sounds like
“uh-huh” to acknowledge comments from the user and to keep the
user going, but again, care should be taken not to let the tone of
such sounds indicate whether the user is on the right track or has
just made a ridiculous comment. Also, the experimenter should
refrain from helping the test user, even if the user gets into quite
severe difficulties.

The main exception from the rule that users should not be helped is
when the user is clearly stuck and is getting unhappy with the situ-
ation. The experimenter may also decide to help a user who is
encountering a problem that has been observed several times
before with previous test users. The experimenter should only do
so if it is clear beyond any doubt from the previous tests what the
problem is and what different kinds of subsequent problems users
may encounter as a result of the problem in question. It is tempting
to help too early and too much, so experimenters should exercise
caution in deciding when to help. Also, of course, no help can be
given during experiments aiming to time users’ performance on a
task.

In case several people are observing the experiment, it is important
to have appointed one of them as the official experimenter in
advance and only have that one person provide instructions and
speak during the experiment. In order not to confuse the user, all
other observers should keep completely quiet, even if they do not

190

agree with the way the experimenter is running the experiment. If
they absolutely need to make comments, they can do so by unob-
trusively passing the experimenter a note or talking with the exper-
imenter during a break.

Debriefing

After the test, the user is debriefed and is asked to fill in any subjec-
tive satisfaction questionnaires. In order to avoid any bias from
comments by the experimenter, questionnajres should be adminis-
tered before any other discussion of the system. During debriefing,
users are asked for any comments they might have about the
system and for any suggestions they may have for improvement.
Such suggestions may not always lead to specific design changes,
and one will often find that different users make completely
contradictory suggestions, but this type of user suggestion can
serve as a rich source of additional ideas to consider in the rede-

sign.

The experimenter can also use the debriefing to ask users for
further comments about events during the test that were hard for
the experimenter to understand. Even though users may not

always remember why they did certain things, they are sometimes
able to clarify some of their presumptions and goals.

Finally, as soon as possible after the user has left, the experimenter
should check that all results from the test have been labelled with
the test user’s number, including any files recorded by the
computer, all questionnaires and other forms, as well as the experi-
menter’s own notes. Also, the experimenter should write up a brief
report on the experiment as soon as possible, while the events are
still fresh in the experimenter’s mind and the notes still make
sense. A full report on the complete sequence of experiments may
be written later, but the work of writing such a report is made
considerably simpler by having well-organized notes and prelimi-
nary reports from the individual tests.

191

Usability Engineering

Usability Testing

Goal:
Usability
Component: Component:
Learnability Efficiency of use
Quantification: Measurement Method:
Average time needed to per- User brought to lab, given
form five specified tasks list of the tasks, and per-
forms them without help

Y

Data-Collection Technique:
Stopwatch
(with rules for when to start
and stop the watch)

Figure 19 Model of usability measurement

6.7 Performance Measurement

Measurement studies form the basis of much traditional research
on human factors and are also important in the usability engi-
neering lifecycle for assessing whether usability goals have been
met (see page 79) and for comparing competing products. User
performance is almost always measured by having a group of test
users perform a predefined set of test tasks while collecting time
and error data.

A major pitfall with respect to measurement is the potential for
measuring something that is poorly related to the property one is
really interested in assessing. Figure 19 shows a simple model
relating the true goal of a measurement study (the usability of the
system) to the actual data-collection activities that may sometimes
erroneously be thought of as the core of measurement. As indicated
by the model, one starts out by making clear the goal of the exer-
cise. Here, we will assume that “usability” as an abstract concept is

192

the goal, but it could also be, e.g., improved customer perceptions
of the quality of a company’s user interfaces.

Goals are typically quite abstract, so one then breaks them down
into components like the usability attributes discussed further in
Section 2.2. Figure 19 shows two such components, learnability and
efficiency of use. As further discussed in Section 4.3, one then
needs to balance the various components of the goal and decide on
their relative importance. Once the components of the goal have
been defined, it becomes necessary to quaﬁtify them precisely. For
example, the component “efficiency of use” can be quantified as
the average time it takes users to perform a certain number of spec-
ified tasks. Even if these tasks are chosen to be representative of the
users’ normal task mix, it is important to keep in mind that the test
tasks are only that: test tasks and not all possible tasks. In inter-
preting the results from the measurement study, it is necessary to
keep in mind the difference between the principled component
that one is aiming for, that is, efficiency of use in general, and the
specific quantification which is used as a proxy for that component
(ie., the test tasks). As an obvious example, an iterative design
process should not aim at improving efficiency of use for a system
just by optimizing the interface for the execution of the five test
tasks and nothing else (unless the tasks truly represent all of what
the user ever will do with the system).

Given the quantification of a component, one needs to define a
method for measuring the users’ performance. Two obvious alter-
natives come to mind for the example in Figure 19: either bring
some test users into the laboratory and give them a list of the test
tasks to perform, or observe a group of users at work in their own
environment and measure them whenever a task like the specified
test tasks occurs. Finally, one needs to define the actual activities
that are to be carried out to collect the data from the study. Some
alternatives for the present example could be to have the computer
measure the time from start to end of each task, to have an experi-
menter measure it by a stopwatch, and to have users report the
time themselves in a diary. In either case it is important to have a
clear definition of when a task starts and when it stops.

193

Usability Engineering

Typical quantifiable usability measurements include

¢ The time users take to complete a specific task.

* The number of tasks (or the proportion of a larger task) of
various kinds that can be completed within a given time limit.

* The ratio between successful interactions and errors.

¢ The time spent recovering from errors.

* The number of user errors.

* The number of immediately subsequent erroneous actions.

¢ The number of commands or other features that were utilized by
the user (either the absolute number of commands issued or the
number of different commands and features used).

¢ The number of commands or other features that were never used
by the user.

¢ The number of system features the user can remember during a
debriefing after the test.

* The frequency of use of the manuals and/or the help system, and
the time spent using these system elements.

¢ How frequently the manual and/or help system solved the
user’s problem.

* The proportion of user statements during the test that were posi-
tive versus critical toward the system.

* The number of times the user expresses clear frustration (or clear
joy)-

* The proportion of users who say that they would prefer using
the system over some specified competitor.

¢ The number of times the user had to work around an unsolvable
problem.

* The proportion of users using efficient working strategies
compared to the users who use inefficient strategies (in case
there are multiple ways of performing the tasks).

* The amount of “dead” time when the user is not interacting with
the system. The system can be instrumented to distinguish
between two kinds of dead time: response-time delays where the
user is waiting for the system, and thinking-time delays where
the system is waiting for the user. These two kinds of dead time
should obviously be approached in different ways.

194

Usability Testing

e The number of times the user is sidetracked from focusing on the
real task.

Of course, only a subset of these measurements would be collected
during any particular measurement study.

6.8 Thinking Aloud

Thinking aloud may be the single most valuable usability engi-
neering method. Basically, a thinking-aloud test involves having a
test subject use the system while continuously thinking out loud
[Lewis 1982]. By verbalizing their thoughts, the test users enable us
to understand how they view the computer system, and this again
makes it easy to identify the users’ major misconceptions. One gets
a very direct understanding of what parts of the dialogue cause the
most problems, because the thinking-aloud method shows how
users interpret each individual interface item.

The thinking-aloud method has traditionally been used as a
psychological research method [Ericsson and Simon 1984], but it is
increasingly being used for the practical evaluation of human-
computer interfaces [Denning et al. 1990]. The main disadvantage
of the method is that is does not lend itself very well to most types
of performance measurement. On the contrary, its strength is the
wealth of qualitative data it can collect from a fairly small number
of users. Also, the users’ comments often contain vivid and explicit
quotes that can be used to make the test report more readable and
memorable.

At the same time, thinking aloud may also give a false impression
of the cause of usability problems if too much weight is given to the
users’ own “theories” of what caused trouble and what would
help. For example, users may be observed to overlook a certain
field in a dialog box during the first part of a test. After they finally
find the field, they may claim that they would have seen it immedi-
ately if it had been in some other part of the dialog box. It is impor-
tant not to rely on such statements. Instead, the experimenter
should make notes of what the users were doing during the part of

195

Usability Engineering

the experiment where they overlooked the critical field. Data
showing where users actually looked has much higher validity
than the users’ claim that they would have seen the field if it had
been somewhere else. The strength of the thinking-aloud method is
to show what the users are doing and why they are doing it while
they are doing it in order to avoid later rationalizations.

Thinking out loud seems very unnatural to most people, and some
test users have great difficulties in keeping up a steady stream of
utterances as they use a system.® Not only can the unnaturalness of
the thinking aloud situation make the test harder to conduct, but it
can also impact the results. First, the need to verbalize can slow
users down, thus making any performance measurements less
representative of the users’ regular working speed. Second, users’
problem solving behavior can be influenced by the very fact that
they are verbalizing their thoughts. The users might notice incon-
sistencies in their own models of the system, or they may concen-
trate more on critical task components [Bainbridge 1979], and these
changes may cause them to learn some user interfaces faster or
differently than they otherwise would have done. For example,
Berry and Broadbent [1990] provided users with written instruc-
tions on how to perform a certain task and found that users
performed 9% faster if they were asked to think aloud while doing
the task. Berry and Broadbent argue that the verbalization rein-
forced those aspects of the instructions which the users needed for
the task, thus helping them become more efficient. In another study
[Wright and Converse 1992], users who were thinking aloud while
performing various file system operations were found to make
only about 20% of the errors made by users who were working
silently. Furthermore, the users in the thinking-aloud study
finished their tasks about twice as fast as the users in the silent
condition.

8. Verbalization seems to come the hardest to expert users who may perform
many operations so quickly that they have nothing to say. They may not even
consciously know what they are doing in cases where they have completely
automated certain common procedures.

196

Usability Testing

The experimenter will often need to continuously prompt the user
to think out loud by asking questions like, “What are you thinking
now?” and “What do you think this message means?” (after the
user has noticed the message and is clearly spending time looking
at it and thinking about it). If the user asks a question like, “Can I
do such-and-such?” the experimenter should not answer, but
instead keep the user talking with a counter-question like, “What
do you think will happen if you do it?” If the user acts surprised
after a system action but does not otherwise say anything, the
experimenter may prompt the user with a question like, “Is that
what you expected would happen?” Of course, following the
general principle of not interfering in the user’s use of the system,
the experimenter should not use prompts like, “What do you think
the message on the bottom of the screen means?” if the user has not
noticed that message yet.

Since thinking aloud seems strange to many people, it may help to
give the test users a role model by letting them observe a short
thinking-aloud test before the start of their own experiment. One
possibility is for the experimenter to enact a small test, where the
experimenter performs some everyday task like looking up a term
in a dictionary while thinking out loud. Alternatively, users can be
shown a short video of a test that was made with the sole purpose
of instructing users. Showing users how a test videotape looks may
also help alleviate their own fears of any videotaping that will be
done during the test. ‘

Users will often make comments regarding aspects of the user
interface which they like or do not like. To some extent, it is one of
the great advantages of the thinking-aloud method that one can
collect such informal comments about small irritants that would
not show up in other forms of testing. They may not impact
measurable usability, but they might as well be fixed. Unfortu-
nately, users will often disagree about such irritants, so one should
take care not to change an interface just because of a comment by a
single user. Also, user comments will often be inappropriate when
seen in a larger interface design perspective, so it is the responsi-
bility of the experimenter to interpret the user’s comments and not
just accept them indiscriminately. For example, users who are

197

-

Usability Engineering

using a mouse for the first time will often direct a large proportion
of their comments toward aspects of moving the mouse and
pointing and clicking, which might be interesting for a designer of
more intuitive input hardware but are of limited use to a software
designer. In such a test, the experimenter would need to abstract
from the users’ mouse problems and try to identify the underlying
usability problems in the dialogue and estimate how the users
would have used the interface if they had been better at using the
pointing device.

Constructive Interaction

A variation of the thinking-aloud method is called constructive
interaction and involves having two test users use a system together
[O’'Malley et al. 1984]. This method is sometimes also called codis-
covery learning [Kennedy 1989]. The main advantage of construc-
tive interaction is that the test situation is much more natural than
standard thinking-aloud tests with single users, since people are
used to verbalizing when they are trying to solve a problem
together. Therefore, users may make more comments when
engaged in constructive interaction than when simply thinking
aloud for the benefit of an experimenter [Hackman and Biers 1992].
The method does have the disadvantage that the users may have
different strategies for learning and using computers. Therefore,
the test session may switch back and forth between disparate ways
of using the interface, and one may also occasionally find that the
two test users simply cannot work together.

Constructive interaction is especially suited for usability testing of
user interfaces for children since it may be difficult to get them to
follow the instructions for a standard thinking-aloud test.

Constructive interaction is most suited for projects where it is easy
to get large numbers of users into the lab, and where these users
are comparatively cheap, since it requires the use of twice as many
test users as single-user thinking aloud.

198

Usability Testing

Retrospective Testing

If a videotape has been made of a user test session, it becomes
possible to collect additional information by having the user
review the recording [Hewett and Scott 1987]. This method is
sometimes called retrospective testing. The user’s comments while
reviewing the tape are sometimes more extensive than comments
made under the (at least perceived) duress of working on the test
task, and it is of course possible for the experimenter to stop the
tape and question the user in more detail without fearing to inter-
fere with the test, which has essentially already been completed.

Retrospective testing is especially valuable in cases where repre-
sentative test users are difficult to get hold of, since it becomes
possible to gain more information from each test user. The obvious
downside is that each test takes at least two times as long, so the
method is not suited if the users are highly paid or perform critical
work from which they cannot be spared for long. Unfortunately,
those users who are difficult to get to participate in user testing are
often exactly those who are also very expensive, but there are still
some cases where retrospective testing is beneficial.

Coaching Method

The coaching method [Mack and Burdett 1992] is somewhat
different from other usability test methods in having an explicit
interaction between the test subject and the experimenter (or
“coach”). In most other methods, the experimenter tries to interfere
as little as possible with the subject’s use of the computer, but the
coaching method actually involves steering the user in the right
direction while using the system.

During a coaching study, the test user is allowed to ask any system-
related question of an expert coach who will answer to the best of
his or her ability.” Usually, the experimenter or a research assistant
serves as the coach. One variant of the method involves a separate
coach chosen from a population of expert users. Having an inde-
pendent coach lets the experimenter study how the coach answers
the user’s questions. This variant can be used to analyze the expert
coach’s model of the interface. Normally, though, coaching focuses

199

Usability Engineering Usability Testing

on the novice user and is aimed at discovering the information
needs of such users in order to provide better training and docu-
mentation, as well as possibly redesigning the interface to avoid
the need for the questions.

Large
monitor
duplicating
user’'s
screen

-

Video
editing
and mixing
controls

The coaching method has proven helpful in getting Japanese users
to externalize their problems while using computers [Kato 1986].
Other, more traditional methods are sometimes difficult to use in
Japan, where cultural norms make some people reluctant to
verbalize disagreement with an interface design.

Observation

Lounge

Event logger’s workstation
Executive

The coaching situation is more natural than the thinking-aloud
situation. It also has an advantage in cases where test users are
hard to come by because the intended user population is small,
specialized, and highly paid. Coaching provides the test users with
tangible benefits in return for participating in the test by giving
them instruction on a one-to-one basis by a highly skilled coach.

~g—|
N o
Monitors showing view

from each camera and

Experimenter’s workstation

the mix being taped

Observa-
tion Room

Finally, the coaching method may be used in cases where one
wants to conduct tests with expert users without having any
experts available. Coaching can bring novice users up to speed
fairly rapidly and can then be followed by more traditional tests of

Sound-proof walls with one-way mirrors

the users’” performance once they have reached the desired level of =2 / g
expertise. [e
QO s
o 7 =
s 3 g ERE
. . oo \.’: C - W
6.9 Usability Laboratories ES D“ g222
85
Many user tests take place in specially equipped usability laborato- ‘ Sacd

ries [Nielsen 1994a]. Figure 20 shows a possible floor plan for such

Figure 20 Floor plan for a hypothetical, but typical, usability laboratory.

a laboratory. I should stress, however, that special laboratories are a _5 /
convenience but not an absolute necessity for usability testing. It is §8

526 \
9. One variant of the coaching method would be to restrict the answers to GEJ @ 5 & = -
certain predetermined information. In an extensive series of experiments, one ° 8 3 == o .
could then vary the rules for the coach’s answers in order to learn what types C<=3 = § 25 s 22
of answers helped users the most. Unfortunately, this variant requires ® 5 3E Sz a
extremely skilled and careful coaches since they need to compose answers on ?SET E3 E
the fly to unpredictable user questions. DQood OLo

201

200

Usability Engineering

possible to convert a regular office temporarily into a usability
laboratory, and it is possible to perform usability testing with no
more equipment than a notepad.

In September 1993, I surveyed thirteen usability laboratories from a
variety of companies [Nlelsen 1994a]. The median floor space of
the laboratories was 63 m (678 square feet), and the median size of
the test rooms was 13 m? (144 square feet). The smallest laboratory
was 35 m? (377 square feet) with only 9 m? (97 square feet) for the
test user. The largest laboratory was 237 m? and had 7 rooms,
allowing a variety of tests to take place snnultaneously [Lund
1994]. The largest single test room was 40 m? (430 square feet) and
was found in a telephone company with a need to test groupware
interfaces with many users.

Having a permanent usability laboratory decreases the overhead of
usability testing (once it is set up, that is!) and may thus encourage
increased usability testing in an organization. Having a special
room and special equipment dedicated to usability testing means
that there will be fewer scheduling problems associated with each
test and also makes it possible to run tests without disturbing other
groups.

Usablhtly laboratories typically have sound-proof, one-way
mirrors'? separating the observation room from the test room to
allow the experimenters, other usability specialists, and the devel-
opers to discuss user actions without disturbing the user. Users are
not so stupid that they do not know that there are observers behind
a wall with a large mirror in a test room, so one might as well
briefly show the users the observation room before the start of the
test. Knowing who and what are behind the mirror is much less
stressful for the users than having to imagine it. People usually
come to ignore unseen observers during the test, even though they
know they are there.

Having an executive observation lounge behind the main observa-
tion room again allows a third group of observers (e.g., the devel-

10. One-way mirrors were found in 92% of the labs in my survey.

202

Usability Testing

opment team) to discuss the test without disturbing the primary
experimenters and the usability specialists in the observation
room.

Typically, a usability laboratory is equipped with several video
cameras under remote control from the observation room.!! These
cameras can be used to show an overview of the test situation and
to focus in on the user’s face, the keyboard, the manual and the
documentation, and the screen. A producer in the observation
room then typically mixes the signal from these cameras to a single
video stream that is recorded, and possibly timestamped for later
synchronization with an observation log entered into a computer
during the experiment. Such synchronization makes it possible to
later find the video segment corresponding to a certain interesting
user event without having to review the entire videotape.

More rarely, usability laboratories include other equipment to
monitor users and study their detailed behavior. For example, an
eyetracker can be used to collect data on what parts of the screens
the user looks at [Benel ef al. 1991].

To Videotape or Not

Having videotapes of a user test is essential for many research
purposes where one needs to study the interaction in minute detail
[Mackay and Tatar 1989]. For practical usability engineering
purposes, however, there is normally no need to review a user test
on videotape since one is mostly interested in finding the major
“usability catastrophes” anyway. These usability problems tend to
be so glaring that they are obvious the first time they are observed
and therefore do not require repeated perusal of a record of the test
session. This is especially true considering estimates that the time
needed to analyze a videotape is between 3 and 10 times the dura-
tion of the original user test. In most cases, this extra time is better
spent running more test subjects or testing more iterations of the
design.

11. The average number of cameras in each test room was 2.2 in my survey,
with 2 cameras being the typical number and a few labs using 1 or 3.

203

®

Usability Engineering

Videotape does have several uses in usability engineering,
however. For example, a complete record of a series of user tests is
a way to perform formal impact analysis of usability problems
[Good et al. 1986]. Impact analysis involves first finding the
usability problems and then going back to the videotapes to inves-
tigate exactly how many users had each usability problem and how
much they were delayed by each problem. Since these estimates
can only be made after one knows what usability problems to look
for, an impact analysis requires a videotape or other detailed record
of the test sessions. Alternatively, one can run more tests and count
the known problems as they occur. Impact analyses can then be
used to prioritize the fixing of the usability problems in a redesign
such that the most effort is spent on those problems that are faced
by many users and impact them severely.

Videotape also serves as an essential communications medium in
many organizations where it may otherwise be difficult for human
factors professionals to persuade developers and managers that a
certain usability problem is in fact a problem. Seeing a video of a
user struggling with the problem often convinces these people.
This goal can also be achieved by simpler means, however, since it
is normally even more effective to have the doubter observe a user
test in person.!?

A final argument in favor of videotaping and equipment-extensive
usability laboratories is the need to impress upper management
and research funding agencies with the unique aspects of usability
work. Some usability specialists feel that simpler techniques may
not be sufficiently impressive to outsiders, whereas having an

12. Doing so requires strict adherence to the “shut-up” rule: The developers
should be advised in advance that they are not supposed to interfere with the
user during the experiment. Doing so can be extremely hard for a person who
normally has quite strong defensive feelings toward the design. Developers
have been known to forcibly interrupt a test user’s “maltreatment” of their
beloved system and shout, “Why don’t you press that function key!” This, of
course, totally destroys the test. Randy Pausch from the University of Virginia
allows developers to be present during user testing but requires them to
preface any interruption with the phrase, “I am sorry that I am such a poor
programmer that I made the system this difficult to use.”

204

Usability Testing

expensive laboratory will result in increased funding and respect
due to its “advertising value” [Lindgaard 1991].

Cameraless Videotaping

The main aspects of a test session can be captured on videotape
without the use of cameras. Many computers provide a video
output that either is directly compatible with video recordmg or
can be made so fairly cheaply by a scan converter This video
signal can be fed directly into the “video in” jack of the video
recorder and will thus allow the recording of the exact image the
user sees on the monitor. This technique will normally result in
better image quality than filming the monitor with a camera, but
the video resolution will still be poorer than that of most computer
monitors. Furthermore, an audio signal can be fed into the video
recorder’s “audio in” jack from a microphone, thus creating a
composite recording of the screen and the user’s comments
[Connally and Tullis 1986].

Cameraless videotaping has the obvious disadvantages of not
including the user in the picture and not making it possible for a
camera operator to zoom in on interesting parts of the screen or the
manual page being studied in vain by the user. Unless a high-defi-
nition television standard is used, one will also suffer a loss of reso-
lution since current television standards use a poorer quality signal
than that used by almost all computer monitors. These limitations
may make the resulting videotape less appealing and convincing in
some cases. At the same time, cameraless videotaping is consider-
ably cheaper because neither cameras nor operators are needed,
and the users are normally less intimidated by a microphone than
by a camera.

Portable Usability Laboratories

In addition to permanent usability laboratories, it is possible to use
portable usability laboratories for more flexible testing and for field
studies. With a portable usability laboratory, any office can be

13. Scan converters were used by 46% of the labs in my survey.

A

Usability Engineering

rapidly converted to a test room, and user testing can be conducted
where the users are rather than having to bring the users to a fixed
location.

A true discount portable usability laboratory need consist of no
more than a notepad and possibly a laptop computer to run the
software that is being tested. Normally, a portable usability labora-
tory will include slightly more equipment, however. Typical equip-
ment includes a camcorder (possibly just home video equipment,
but preferably of professional quality since the filming of user
interfaces requires as high resolution as possible) and a lavaliere
microphone (two microphones are preferred so that the experi-
menter can also get one). The regular directional microphone built
into many camcorders is normally not sufficient because of the
noise of the computer. Also, a tripod helps steady the image and
carry the camera during the hour-long test sessions.

Usability Kiosks

A final approach to the collection of usability data is the usability
kiosk, which really is a self-served usability laboratory for use as
part of a hallway methodology [Gould et al. 1987]. In general, the
hallway method involves putting a user interface on display in a
heavily trafficked area such as outside a company cafeteria in order
to collect comments from users and other passersby. A usability
kiosk can conduct automated usability testing with self-selected
users in such a setting by providing access to a computer running a
test interface, suggesting various test tasks to the users, and
recording their task times and any comments they might have.

206

chapter7 Usability Assessment
Methods beyond Testing

Even though usability testing forms the cornerstone of most recom-
mended usability engineering practice, there are several other
usability methods that can and should be used to gather supple-
mentary data. I have already discussed heuristic evaluation in
Chapter 5 (page 155) as a method where usability specialists, or
even the developers themselves, apply their knowledge of estab-
lished usability principles to find usability problems without the
need to involve users.

7.1 Observation

Simply visiting the users to observe them work is an extremely
important usability method with applications both for task anal-
ysis and for information about the true field usability of installed
systems [Diaper 1989b]. Observation is really the simplest of all
usability methods since it involves visiting one or more users and
then doing as little as possible in order not to interfere with their
work. Of course, the observer can take notes (unobtrusively), and it
may even be possible to use videotaping in some environments,
though most computer customers do not like to have outsiders
come in and videotape their business.

207

