
CM-Trio '99Manuela Veloso, James Bruce, Scott Lenser, and Elly WinnerSchool of Computer ScienceCarnegie Mellon UniversityPittsburgh, PA 15213-3891mmv@cs.cmu.edu1 OverviewThe robots used in this competition were generously provided by Sony [3]. Therobots are the same as the commercial AIBO robots except for slight hard-ware changes and programming capabilities. These autonomous robots are about30cm long and have 18 degrees of freedom. The neck pans �90� allowing therobot to scan the �eld with its on board camera. Six uniquely colored landmarksare placed around the �eld (at the corners and center-line) to help the robotslocalize. Each team consists of three robots. Like our team last year, CMTrio-98 [5], we divided our team between two identical attackers and one goalie.We divided our system into three main components: vision processing, local-ization, and behaviors. The vision system is responsible for calculating distance,angle, and con�dence measures for all objects visible by the robot. The localiza-tion is responsible for calculating the position of the robot on the �eld given themovements executed and the landmarks seen (we did not implement goals forlocalization this year). The behaviors are responsible for taking this informationand winning the game.Results from our matches in RoboCup-99 at Stockholm show our algorithmsto be e�ective. Our team won all but one of its games, and the one it lost was lostby only one goal. Our team was the only one in this year's league to score goalsagainst opposing teams and never to score a goal against itself. Our goaltenderwas the only one in this year's league to score a goal itself.2 VisionThe vision system processes images captured by the robot's camera to reportthe locations of the ball, the 6 unique location markers, the two goals, andthe robots. The main steps in vision processing are: 1) capture an image andclassify each pixel's color in hardware using predetermined color thresholds, 2)�nd connected regions of the same color, 3) merge close regions of the samecolor, 4) use geometric �lters to remove false positives, 5) calculate distance andangle of objects in ego-centric coordinates.The on-board camera provides 88x60 images in the YUV space at about15Hz. Hardware Color classi�cation is then performed on these images. Thethresholds for color segmentation are created by a supervised learning methodbased upon hand labelled images captured from the dog's camera. This resultsin a new image indicating color class membership rather than raw camera colors.This image is run length encoded (RLE) for further processing.



The region �nding [1] method employs a tree-based union �nd with pathcompression. The algorithm outputs a forest of disjoint stubby trees correspond-ing to a connected region in the image. We next extract region information. Thebounding box, centroid, and size of each region is calculated incrementally ina single pass over the forest data structure. The regions are separated by colorand sorted by size (putting larger, more important blobs �rst).A problem with connected components is that a single row of pixels incor-rectly classi�ed can seperate an object into two components. We used a densitybased merging scheme to try to overcome this problem. We merge close regionsof the same color if the resulting new region has a su�ciently high density.The next step is to calculate the location of the various objects given thecolored regions. Various top down and geometric object �lters are applied tolimit the occurrence of false positives and serve as the basis for con�dence values.The largest orange blob below the horizon is labelled as the ball. The con�dencevalue and distance is calculated based on image area and a circular object model.The �eld markers are detected as pink regions with green, cyan, or yellow regionsnearby. The con�dence is the ratio between the squared distance between thecenters of the regions and the area of each region. The distance is calculated fromthe distance between the centers of the two regions. The goals are the largestyellow or cyan regions below the horizon. The very course distance approximationis based on the angular height of the goal in the camera image. The con�denceis based on the aspect ratio of the goal in the image. The �nal objects detectedare opponents and teammates. Due to the multiple complicated markers presenton each robot, no distance or con�dence was estimated and the marker regionsare returned in raw form.The system performed well in practice; it had a good detection rate and wasrobust to the unmodeled noise experienced in a competition due to competitorsand crowds. The distance metrics and con�dence values were also useful in thisnoisy environment.3 LocalizationOur localization algorithm is based upon a classical Bayesian approach whichupdates the location of the robot in two stages, one for incorporating robotmovements and one for incorporating sensor readings. This approach representsthe location of the robot as a probability density over possible positions of therobot. Our localization algorithm, called Sensor Resetting Localization (SRL) [4],is based upon a popular approach called Monte Carlo Localization (MCL) whichrepresents the probability density using a sampling approach.MCL [2] represents the probability density for the location of the robot asa set of discrete samples. The density of samples within an area is proportionalto the probability that the robot is in that area. We calculated the robot'sposition from these samples by taking their mean. We estimated the uncertaintyby calculating the standard deviation of the samples. We encountered someproblems implementing MCL for the robot dogs. MCL took more samples to doglobal localization than we could actually run on the hardware. MCL also hasproblems dealing with our large modelling errors.



SRL is motivated by the desire to use fewer samples, handle larger errorsin modelling, and handle unmodeled movements. SRL adds a new step to thesensor update phase of the MCL algorithm. If the sensor reading and locale beliefstate disagree, we replace some of our samples with samples consistent with thecurrent sensor readings. In this way, we e�ectively through out our history andreset. Note that when tracking is working well no resetting is done and SRLbehaves exactly the same as MCL.This resetting step allows SRL to adapt to large systematic errors in move-ment by occasionally resetting itself. SRL is also able to recover from largeunmodeled movements easily by using this same resetting methodology. Unex-pected movements happen frequently in the robotic soccer domain we are work-ing in due to collisions with the walls and other robots. Collisions are di�cult todetect on our robots and thus cannot be modelled. We also incur teleportationdue to application of the rules by the referee.Robot movement was modelled as three Gaussians with hand measured pa-rameters; one Gaussian for distance travelled, one for direction travelled, andone for heading change. Sensor readings were modelled as two Gaussians, onefor distance and one for angle. Standard deviations were estimated by testing.We used 400 samples in actual competition. We weren't quite capable ofkeeping up with real time this way if we saw a lot of markers, so we through outsome sensor readings from time to time to catch up. The localization is accurateto about 10cm and 15� while the robot is looking around for markers and moving.Performance drops somewhat when the robot goes long periods of time withoutlooking around for markers as often happens during play. We observed that thelocalization algorithm quickly resets itself when unmodeled errors such as beingpicked up occur.4 BehaviorsChoosing behaviors for the robot is a di�cult challenge. The robot must actunder uncertainty and varying amounts of localization information. The robotcan a�ect the amount of information available to it by actively localizing. Ac-tively localizing involves stopping the robot and scanning for markers, a processtaking 15{20 seconds. Stopping the robot reduces the computational load on thelocalization system allowing it to operate in real time. The behavior system hasto balance the time spent localizing with time spent acting. Every moment spentlooking around provides an opportunity to the opponent robots.Our solution is structured as a �nite state machine. Each state correspondsto a set of behaviors that all accomplish the same goal. Each behavior expectsa di�erent amount of information to be available. The best behavior that hasall its required information available is chosen to be executed. In this way, therobot takes advantage of all the information that is available to it. We call thisapproach multi-�delity behaviors [6].Switching between action and localization is controlled by timeouts thatswitch the robot between states of the �nite state machine. These timeouts makesure that the robot localizes occasionally and that the robot spends enough timeacting. The robot needs to localize ocassionally to prevent the localization output



from drifting from reality without being detected. The timeout for action ensuresthat the robot doesn't spend all of its time localizing. The localization timeoutis turned o� during behaviors that do not require localization information.Our behavior state machine has 5 main states: score, recover ball, searchfor ball, approach ball, and localize. Search for ball and approach ball do notrequire localization. Search for ball employs a random search method that al-ternates between walking forward/backward random distances and rotating inplace a random number of degrees. Approaching the ball uses the visual input toapproach the ball. If localization information is available, the robot attempts toapproach a point behind the ball to save time. The scoring behavior circles theball (while facing it) to get behind it and then pushes the ball towards the goal.If su�cient localization information is available, the robot: circles in the quickestdirection, avoids circling into the wall, and does not bother visually acquiringthe goal. The recover ball behavior backs up when the robot looses track of theball. This optimizes for the common case of the robot loosing the ball by walkingpast it. The localization mode stops the robot and scans for markers.We have specialized behaviors for kicko� and goal protection. At kicko�, wecharge the ball to ensure the best ball position possible. The outcome of thekicko� often decided who would score next. Our goalie runs a specialized set ofbehaviors. The goalie scans for the ball from its home position in front of its goal.When the goalie sees that the ball is close enough, the goalie clears the ball andthen returns to the home position using the goals as landmarks for navigation.When the goalie is clearing the ball, the goalie uses localization information tohit the ball o�-center such that the ball heads towards the opponents half of the�eld. This tactic was su�cient to allow our goalie to clear a ball all the way intothe opponents goal.Acknowledgments: We thank Sony for providing the robots for our research.This research was sponsored by Grants Nos. DABT63-99-1-0013, F30602-98-2-0135and F30602-97-2-0250, and by an NSF Fellowship. The content of this publication doesnot necessarily re
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