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Abstract Although the presence of free communication reduces theplexity of multi-
agent POMDPs to that of single-agent POMDPs, in practiceynconication
is not free and reducing the amount of communication is oftesirable. We
present a novel approach for using centralized “singlax€éigmlicies in decen-
tralized multi-agent systems by maintaining and reasooiuag the possiblpint
beliefsof the team. We describe how communication is used to intedoaal
observations into the team belief as needed to improve edgioce. We show
both experimentally and through a detailed example how ppraach reduces
communication while improving the performance of disttémiexecution.
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1. Introduction

Multi-agent systems and multi-robot teams can be used forpetasks that
could not be accomplished by, or would be very difficult wisimgle agents.
Such teams provide additional functionality and robustrmger single-agent
systems, but also create additional challenges. In anyigaiys/stem, robots
must reason over, and act under, uncertainty about theaftite environment.
However, in many multi-agent systems there is additionalettainty about
the collective state of the team. If the agents can maintaficent collective
belief about the state of the world, they can coordinater fo@it actions to
achieve high reward. Conversely, uncoordinated actionslbeaostly.

Just as Partially Observable Markov Decision Problems (B®B) are used
to reason about uncertainty in single-agent systems, tiesdoeen recent in-
terest in using multi-agent POMDPs for coordination of teahagents [15].
Unfortunately, multi-agent POMDPs are known to be highliyaotable [2].
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Communicating (at zero cost) at every time step reduces dhguatational
complexity of a multi-agent POMDP to that of a single ager#][1Although
single-agent POMDPs are also computationally challengirsignificant body
of research exists that addresses the problem of efficintling near-optimal
POMDP policies [6]. However, communication is generally fnee, and forc-
ing agents to communicate at every time step wastes a limgtalirce.

In this paper, we introduce an approach that exploits thepcoational
complexity benefits of free communication at policy-getieratime, while
at run-time maintains agent coordination and chooses taragritate only
when there is a perceived benefit to team performance. 8&e2tad this pa-
per gives an overview of the multi-agent POMDP framework distusses
related work. Sections 3 and 5 introduce our algorithm foluoing the use
of communication resources while maintaining team coatitim. Section 4
illustrates this algorithm in detail with an example andti®ec6 presents ex-
perimental results that demonstrate the effectivenessiradgproach at acting
in coordination while reducing communication.

2. Background and related work

There are several equivalent multi-agent POMDP formutatip.e. DEC-
POMDRP [2], MTDP [13], POIPSG [11]). In general, a multi-aty@OMDP
is an extension of a single-agent POMDP wheragents take individual ac-
tions and receive local observations, but accumulate &team reward. The
multi-agent POMDP model consists of the tugle 4,7,Q, 0, R ,y), where
S is the set ofn world states,{s!...s"} and 4 is the set ofm joint actions
available to the team, where each joint actianjs comprised ofx individual
actions(a) ...a\,). Agents are assumed to take actions simultaneously in each
time step. The transition functiory,, depends on joint actions and gives the
probability associated with starting in a particular sgi@nd ending in a state
sl after the team has executed the joint actn Although the agents can-
not directly observe their current stat, they receive information about the
state of the world througk, a set of possible joint observations. Each joint
observatiortd is comprised ofx individual observationsju ... w}). The ob-
servation functionQ, gives the probability of observing a joint observation
after taking actiorak and ending in statel. The reward functior® maps a
start state and a joint action to a reward. This reward isioéthjointly by all
of the agents on the team, and is discounted by the discoctor fa

Without communication, solving for the optimal policy of auhi-agent
POMDP is known to be NEXP-complete [2], making these prolsléamda-
mentally harder than single-agent POMDPs, which are knowretPSPACE-
complete [10]. A recent approach presents a dynamic pragraghalgorithm
for finding optimal policies for these problems [5]. In son@dhins, dynamic
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programming may provide a substantial speed-up over oute- searches,
but in general, this method remains computationally in#idle. Recent work
focuses on finding heuristic solutions that may speed up ongpatation of
locally optimal multi-agent POMDP policies, but these aitons either place
limitations on the types of policies that can be discoveeed. (limited-memory
finite state controllers [11]), or make strong limiting asgions about the
types of domains that can be solved (e.g. transition-inad@et systems [1]),
or may, in the worst case, still have the same complexity asxdwaustive
search for the optimal policy [8]. Another method addreskesproblem by
approximating the system (in this case, represented asRI&)Iwith a series
of smaller Bayesian games [4]. This approximation is ablnblocally opti-
mal solutions to larger problems than can be solved usingustive methods,
but is unable to address situations in which a guaranteeiof agent coordi-
nation is needed. Additionally, none of these approachdsead the issue of
communication as a means for improving joint team reward.

Although free communication transforms a multi-agent PGM@to a large
single agent POMDP, in the general case where communicetiont free,
adding communication does not reduce the overall complexioptimal pol-
icy generation for a multi-agent POMDP [13]. Unfortunatelyr most sys-
tems, communication is not free, and communicating at etrerg step may
be unnecessary and costly. However, it has been shown eailyithat adding
communication to a multi-agent POMDP may not only improwvameperfor-
mance, but may also shorten the time needed to generatéeepqfit.

In this paper, we introduce an algorithm that takes as inmihgle-agent
POMDP policy, computed as if for a team with free communaatand at run-
time, maintains team coordination and chooses to commignicdy when it is
necessary for improving team performance. This algorithakes two trade-
offs. First, it trades off the need to perform computationsua-time in order
to enable the generation of an infinite-horizon policy fax tham that would
otherwise be highly intractable to compute. Secondly, itsesves communi-
cation resources, with the potential trade-off of some amhotireward.

3. Dec-Comm algorithm

Single-agent POMDP policies are mappings from beliefs toas (1: B —
A), where a beliefp € B, is a probability distribution over world states. An
individual agent in a multi-agent system cannot calculhte lbelief because
it sees only its own local observations. Even if an agent edsio calculate a
belief based only on its own observations, it could not, heeahe transition
and observation functions depend on knowing the joint aaiifcthe team.

A multi-agent POMDP can be transformed into a single-ag&iviPP by
communicating at every time step. A standard POMDP solvetiuen be used



4

to generate a policy that operates over joint observatiodsreturns joint ac-
tions, ignoring the fact that these joint observations artibas are comprised
of individual observations and actions. The belief overalitthis policy oper-
ates, which is calculated identically by each member of¢lhet, is henceforth
referred to as thint belief

Creating and executing a policy over joint beliefs is eqi@rtito creating
a centralized controller for the team and requires agentsrtiamunicate their
observations at each time step. We wish to reduce the usenohaoaication
resources. Therefore, we introduce thedComm algorithm that:

= in a decentralized fashion, selects actions based on th&bpmgoint
beliefs of the team

= chooses to communicate when an agent’s local observahditate that
sharing information would lead to an increase in expectecire

3.1 Q-POMDP: Reasoning over possible joint
beliefs

The Q-MDP method is an approach for finding an approximatetisol to
a large single-agent POMDP by using the value functiorg<) is the value
of taking actiona in statesand henceforth acting optimally) that are easily ob-
tainable for the system’s underlying MDP [7]. In Q-MDP, tresbaction for a
particular beliefp, is chosen according to Q-MOPB) = argmax 5 s 5 b(s) x
Va(s), which averages the values of taking each action in evetg,steeighted
by the likelihood of being in that state as estimated by tHehe

Analogously, we introduce the Q-POMDP method for approxingathe
best joint action for a multi-agent POMDP by reasoning oliervalues of the
possible joint beliefs in the underlying centralized POMDPour approach,
a joint policy is created for the system, as described abbuweing execution,
each agent calculates a tree of possible joint beliefs ofdam. These joint
beliefs represent all of the possible observation histdtiat could have been
observed by the team. We defiu@, the set of leaves of the tree at depth
t, to be the set of possible joint beliefs of the team at tim&Each L! is a
tuple consisting ofbt, pt, &), whered is the joint observation history that
would lead to£{, b' is the joint belief at that observation history, goids the
probability of the team observing that history.

Table 1 presents the algorithm for expanding a single leaftiee of possi-
ble joint beliefs. Each leaf has a child leaf for every padssjbint observation.
For each observatio®r(w|a, b'), the probability of receiving that observation
while in belief stateb' and having taken actioa, is calculated. The resulting
belief, b+, is calculated using a standard Bayesian update [6]. The kefaif
is composed of this new belieb{*?, the probability of reaching that belief,
which is equivalent to the probability of receiving this feular observation
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in the parent leaf times the probability of reaching the paleaf, and the cor-
responding observation history. Note that this algorithwtirely ignores the
actual observations seen by each agent, enabling the agemspute identi-
cal trees in a decentralized fashion.

Table 1. Algorithm to grow the children of one leaf in a tree of possibkliefs

GROWTREE(L], a)
Lt+l —0
for eachw € Q
bt—l—l —0
Pr(cl[ab) « Sees O(S,a,0) Soes T(sas)bi(s)

for eachs € § _
b1 0(s,a,W ys 57T (s,a,9)bl(s)
~ Pr(w'ab)
P p(Lf) x Pr(w/[a,b')
[ (1)([4‘) o(w!)
LU UL L L g
return £i+1

The Q-POMDP heuristic, Q-POMDOR!) = argmax ¥ st .t P(L]) X
Q(b(Li),a), selects a single action that maximizes expected rewardalve
of the possible joint beliefs. Because this reward is a wemjlaverage over
several beliefs, there may exist domains for which an adiien is strictly
dominated in any single belief, and therefore does not apipetine policy,
may be the optimal action when there is uncertainty aboubdtief. We define
the Q function, Q(b',a) = T ¢ R (S,2)0"(S) + Y3 eq Pr(wla, b) (bt 1), in
order to take these actions into account. The value funcfifiib), gives the
maximum attainable value at the belefbut is only defined over those actions
which appear in the single-agent polioy The Q function returns expected
reward for any action and beliefo'*?! is the belief that results from taking
actionain belief stateb' and receiving the joint observatien Pr(w|a,b') and
b1 are calculated as in Table 1.

Since all of the agents on a team generate identical treeessilge joint
beliefs, and because Q-POMDP selects actions based onfysainete, ignor-
ing the actual local observations of the agents, agentsumneagteed to select
the same joint action at each time step. However, this jaitiba is clearly
very conservative, as agents are forced to take into acatiyassible contin-
gencies. The Bc-Comm algorithm utilizes communication to allow agents
to integrate their actual observations into the possibil feeliefs, while still
maintaining team synchronization.
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3.2 Dec-Comm: Using communication to
improve performance

An agent using the Bc-ComMm algorithm chooses to communicate when
it sees that integrating its own observation history in® jiint belief would
cause a change in the joint action that would be selectedediole whether or
not to communicate, the agent compuégg, the joint action selected by the
Q-POMDP heuristic based on its current tree of possiblé Jmétiefs. It then
prunes the tree by removing all beliefs that are incondisteh its own obser-
vation history and computeg, the action selected by Q-POMDP based on
this pruned tree. If the actions are the same, the agent ebhomd to commu-
nicate. If the actions are different, this indicates that¢his a potential gain in
expected reward through communication, and the agent tastglits observa-
tion history to its teammates. When an agent receives a concation from
one of its teammates, it prunes its tree of joint beliefs todmesistent with the
observations communicated to it, and recurses to see ih#visinformation
would lead it to choose to communicate. Because there mayuttipha in-
stances of communication in each time step, agents musavizéd period of
time for the system to quiesce before acting. Table 2 previde details of the
Dec-Comwm algorithm.

Table 2. One time step of the Bc-ComM algorithm for an agerit

DEC-COMM(L‘,G)‘J-)
anc < Q-POMDP(Y)
L' + prune leafs inconsistent wimtj from £t
ac + Q-POMDP({)
if anc # ac
(:ommunicateﬂ)tj to the other agents
return DEc-Comm(L’, 0)
else
if communicatiorm}( was received from another agént
L' + prune leafs inconsistent witk{, from L'
return DEC-Comm(L!, &)
else
take actioranc
receive observa'[iomthr
60?1 « @ o(uh
e
for eachs € £t
L% %10 GROWTREE( LY, anc)
return [£1+1,GHHY]

1
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4. Example

To illustrate the details of our algorithm, we present amaxa in the two-
agent tiger domain introduced by Naat al. [8]. We use the tiger domain
because it is easily understood, and also because it is éeprdbat requires
coordinated behavior between the agents. The tiger probtemists of two
doors, LEFT and RGHT. Behind one door is a tiger, and behind the other is
a treasure.S consists of two states, SL and SR, indicating respectivedy t
the tiger is behind the left door or the right door. The agetast out with a
uniform distribution over these statd¥$R) = 0.5).

Each agent has three individual actions available to HERL., which opens
the left door, @ENR, which opens the right door, anddTEN, an information-
gathering action that provides an observation about thatitmt of the tiger.
Together, the team may perform any combination of theseiohail actions.
A joint action of (LISTEN, LISTEN) keeps the world in its current state. In
order to make this an infinite-horizon problem, if either @igepens a door,
the world is randomly and uniformly reset to a new state. Tdenés receive
two observations, HL and HR, corresponding to hearing tiper tbehind the
left or right door. For the purposes of our example, we motlifyobservation
function from the one given in Na@t al. If a door is opened, the observation is
uniformly chosen and provides no information; the prohghif an individual
agent hearing the correct observation if both agemss N is 0.7. (Observa-
tions are independent, so the joint observation functianbeacomputed as the
cross-product of the individual observation functionshisTchange makes it
such that the optimal policy is to hear two consistent olserus (e.g. HR,
HR) before opening a door.

The reward function for this problem is structured to cremteexplicit co-
ordination problem between the agents. The highest rewa@) (s achieved
when both agents open the same door, and that door does nainctire tiger.

A lower reward (-50) is received when both agents open theriact door.
The worst case is when the agents open opposite doors (-40@fen one
agent opens the incorrect door while the other agent ligtdrid). The cost
of (LISTEN, LISTEN) is -2. We generated a joint policy for this problem with
Cassandra’s POMDP solver [3], using a discount factoy ©10.9. Note that
although there are nine possible joint actions, all actmther than(OPENL,
OPENL), (OPENR, OPENR), and(LISTEN, LISTEN) are strictly dominated,
and we do not need to consider them.

Time Step O: In this example, the agents start out with a synchronized joi
belief of b(SR) = 0.5. According to the policy, the optimal joint actiahthis
belief is (LISTEN, LISTEN). Because their observation histories are empty,
there is no need for the agents to communicate.



Time Step 1: The agents execut@g ISTEN, LISTEN), and both agents ob-
serve HL. Each agent independently execud@®WTREE. Figure 1 shows
the tree of possible joint beliefs calculated by each agdiie Q-POMDP
heuristic, executed over this tree, determines that thiepossible joint action
iS (LISTEN, LISTEN).

- & K 5 MR b

, ,

, ,
/ 0.155 05 L 05 0.845
' p=0.29 p=0.21 s p=0.21 p=0.29

Figure 1. Joint beliefs after a single action

When deciding whether or not to communicate, agent 1 pruthed the
joint beliefs that are not consistent with its having heatd Hhe circled nodes
in Figure 1 indicate those nodes which are not pruned. Rgn@QirPOMDP
on the pruned tree shows that the best joint action is(&tiSTEN, LISTEN),
so agent 1 decides not to communicate. It is important to tie at this
point, a centralized controller would have observed twesEiant observations
of HL and would perform{(OPENR, OPENR). This is an instance in which
our algorithm, because it does not yet have sufficient reésdrelieve that
there will be a gain in reward through communication, perf®mworse than a
centralized controller.

Time Step 2: After performing anothefLISTEN, LISTEN) action, each
agent again observes HL. Figure 2 shows the outp®RWWT REE after the
second action. The Q-POMDP heuristic again indicates tmatbest joint
action is(LISTEN, LISTEN).

0.5 0.845
p=021 <LISTEN, LISTEN>

Figure 2. Joint beliefs after the second action
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Agent 1 reasons about its communication decision by prualiraf the joint
beliefs that are not consistent with its entire observatimtory (hearing HL
twice). This leaves only the nodes that are circled in FigurEor the pruned
tree, Q-POMDP indicates that the best actiofQ®ENR, OPENR). Because
the pre-communication actioayc, differs from the action that would be cho-
sen post-communicatioc, agent 1 chooses to communicate its observation
history to its teammate.

In the meantime, agent 2 has been performing an identicabuatation
(since it too observed two instances of HL) and also decidlesinmunicate.
After both agents communicate, there is only a single ptssielief remain-
ing, b(SR) = 0.033. The optimal action for this belief (©PENR, OPENR),
which is now performed by the agents.

5. Particle filter representation

The above example shows a situation in which both agentslelégicom-
municate their observation histories. It is easy to cogsisiuations in which
one agent would choose to communicate but the other agerdwoy or ex-
amples in which both agents would decide not to communigaassibly for
many time steps (e.g. the agents observe alternating cesari HL and HR).
From the figures, it is clear that the tree of possible joiriefe grows rapidly
when communication is not chosen. To address cases wheagéenés do not
communicate for a long period of time, we present a methodimdeling the
distribution of possible joint beliefs using a particlediit

A particle filter is a sample-based representation that eauskbd to encode
an arbitrary probability distribution using a fixed amoumthtemory. In the
past, particle filters have been used with single-agent P@#(e. for state
estimation during execution [12]). We draw our inspiratfoom an approach
that finds a policy for a continuous state-space POMDP by miakig over a
distribution of possible belief states, represented byragbafilter [14].

In our approach, each particl,' is a tuple ofa observation histories,
(@q...Qy), corresponding to a possible observation history for eagnia
Taken together, these form a possible joint observatiaofyisand along with
the system’s starting belief state®, and the history of joint actions taken by
the team @, uniquely identify a possible joint belief. Every agentrs®two
particle filters, Ljoint, Which represents the joint possible beliefs of the team,
pruned only by communication, ang,,,, those beliefs that are consistent with
the agent’s own observation history. Belief propagatiopeiformed for these
filters as described in [14], with the possible next obséswatfor Ljoin: taken
from all possible joint observations, and the possible nbservations foLown
taken only from those joint observations consistent withdagent’'s own local
observation at that time step.
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The Dec-Comm algorithm proceeds as described in Section 3, Wi
used to generatanc and Lown Used to generate;. The only complication
arises when it comes time to prune the particle filters aswtrescommuni-
cation. Unlike the tree described earlier that represdmtslistribution of pos-
sible joint beliefs exactly, a particle filter only approxates the distribution.
Simply removing those patrticles not consistent with the wamicated obser-
vation history and resampling (to keep the total number dfiggas constant)
may result in a significant loss of information about the fimesobservation
histories of agents that have not yet communicated.

Looking at the example presented in Section 4, it is easy ealsa there
is a correlation between the observation histories of tHerdnt agents. (i.e.

If one agent observeHL ,HL), it is unlikely that the other agent will have
observed(HR,HR).) To capture this correlation when pruning, we define a
similarity metric between two observation histories, Bl When an obser-
vation history&f has been communicated by agend resample the new;gint,

the observation history in each particle correspondinggens is compared

to &. The comparison asks the question, “Suppose an agent hawetba
after starting in belieb® and knowing that the team has taken the joint action
history@'. What is the likelihood that an identical agent would havserbed
the observation history?o‘j?" The value returned by this comparison is used
as a weight for the particle. The particles are then resampbeording to
the calculated weights, and the agenbservation history for each particle is
replaced withy .

Table 3. The heuristic used to determine the similarity between tlseovation histories,
Where(?)} is the true (observed) history

SIMILARITY (6}, &}, &)
sim« 1
b+ b0
fort =1...t
for eachse §
b(s) + O(s ', )b(s)
normalizeb
sim« simx ysc50(s,a", o} )b(s)
for eachse §
b(s) + YgesT(s.a ,9)b(s)
normalizeb
return sim

6. Results and analysis

We demonstrate the performance of our approach experitlyehtacom-
paring the reward achieved by a team that communicates af guee step
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(i.e. a centralized controller) to a team that uses teef@omm algorithm to

select actions and make communication decisions. We ragx@ariment on
the two-agent tiger domain as described in Section 4. In egphriment, the
world state was initialized randomly, and the agents wdmveld to act for

8 time steps. The team using a particle representation W3@@ famples to
represent the possible beliefs. We ran 30000 trials of ttpe@ment. Table 4
summarizes the results of these trials.

Table 4. Experimental results

| HReward | 0Reward| I-bomm| OComm
Full Comm. 17.0 37.9 16 0
DEeEc-CoMmM (tree) 8.9 28.9 29 1.1
Dec-CoMm (particles) 9.4 30.3 2.6 1.0

It may appear at first glance as though the performance of #e Comm
algorithm is substantially worse than the centralized idler. However, as
the high standard deviations indicate, the performanceeri ¢éhe centralized
controller varies widely, and Bc-Comm under-performs the fully communi-
cating system by far less than one standard deviation. iadity, it achieves
this performance by using less than a fifth as much commuaicas the fully
communicating system. Note that the particle represemigierforms compa-
rably to the tree representation (within the error margimgjicating that with
a sufficient number of particles, there is no substantia tdsnformation.

We are currently working on comparing the performance ofapproach
to COMMUNICATIVE JESP, a recent approach that also uses communica-
tion to improve the computational tractability and perfamoe of multi-agent
POMDPs [9]. However, this comparison is difficult for setemasons. First
of all, the CoOMMUNICATIVE JESP approach treats communication as domain-
level action in the policy. Thus, if an agent chooses to compaie in a partic-
ular time step, it cannot take an action. More significartkigjir approach deals
only with synchronized communications, meaning that if agent on a team
chooses to communicate, it also forces all its other teamgritatcommunicate
at that time step.

7. Conclusion

We present in this paper an approach that enables the applice cen-
tralized POMDP policies to distributed multi-agent syssei/e introduce the
novel concept of maintaining a tree of possible joint belief the team, and
describe a heuristic, Q-POMDP, that allows agents to séecbest action
over the possible beliefs in a decentralized fashion. Wevdtwth through a
detailed example and experimentally that ourdComm algorithm makes
communication decisions that improve team performancéewbducing the
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instances of communication. We also provide a fixed-sizénatefor main-
taining a distribution over possible joint team beliefs.

In the future, we are interested in looking at factored repntations that
may reveal structural relationships between state vasalallowing us to ad-
dress the question @fhatto communicate, as well waghento communicate.
Other areas for future work include reasoning about comoatimig onlypart
of the observation history, and exploring the possibilifyagentsaskingtheir
teammates for information instead of onélling what they know.
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