
DECENTRALIZED COMMUNICATIONSTRATEGIES FOR COORDINATEDMULTI-AGENT POLICIESMaayan Roth, Reid Simmons, Manuela VelosoRobotics InstituteCarnegie Mellon UniversityPittsburgh, PA 15213mroth@andrew.cmu.edu, reids@cs.cmu.edu, veloso@cs.cmu.edu
Abstract Although the presence of free communication reduces the complexity of multi-

agent POMDPs to that of single-agent POMDPs, in practice, communication
is not free and reducing the amount of communication is oftendesirable. We
present a novel approach for using centralized “single-agent” policies in decen-
tralized multi-agent systems by maintaining and reasoningover the possiblejoint
beliefsof the team. We describe how communication is used to integrate local
observations into the team belief as needed to improve performance. We show
both experimentally and through a detailed example how our approach reduces
communication while improving the performance of distributed execution.

Keywords: Communication, distributed execution, decentralized POMDP1. Introduction
Multi-agent systems and multi-robot teams can be used to perform tasks that

could not be accomplished by, or would be very difficult with,single agents.
Such teams provide additional functionality and robustness over single-agent
systems, but also create additional challenges. In any physical system, robots
must reason over, and act under, uncertainty about the stateof the environment.
However, in many multi-agent systems there is additional uncertainty about
the collective state of the team. If the agents can maintain sufficient collective
belief about the state of the world, they can coordinate their joint actions to
achieve high reward. Conversely, uncoordinated actions may be costly.

Just as Partially Observable Markov Decision Problems (POMDPs) are used
to reason about uncertainty in single-agent systems, therehas been recent in-
terest in using multi-agent POMDPs for coordination of teams of agents [15].
Unfortunately, multi-agent POMDPs are known to be highly intractable [2].1

2
Communicating (at zero cost) at every time step reduces the computational
complexity of a multi-agent POMDP to that of a single agent [13]. Although
single-agent POMDPs are also computationally challenging, a significant body
of research exists that addresses the problem of efficientlyfinding near-optimal
POMDP policies [6]. However, communication is generally not free, and forc-
ing agents to communicate at every time step wastes a limitedresource.

In this paper, we introduce an approach that exploits the computational
complexity benefits of free communication at policy-generation time, while
at run-time maintains agent coordination and chooses to communicate only
when there is a perceived benefit to team performance. Section 2 of this pa-
per gives an overview of the multi-agent POMDP framework anddiscusses
related work. Sections 3 and 5 introduce our algorithm for reducing the use
of communication resources while maintaining team coordination. Section 4
illustrates this algorithm in detail with an example and Section 6 presents ex-
perimental results that demonstrate the effectiveness of our approach at acting
in coordination while reducing communication.2. Background and related work

There are several equivalent multi-agent POMDP formulations (i.e. DEC-
POMDP [2], MTDP [13], POIPSG [11]). In general, a multi-agent POMDP
is an extension of a single-agent POMDP whereα agents take individual ac-
tions and receive local observations, but accumulate a joint team reward. The
multi-agent POMDP model consists of the tuplehS ;A ;T ;Ω;O;R ;γi, where
S is the set ofn world states,fs1 : : :sng and A is the set ofm joint actions
available to the team, where each joint action,ai , is comprised ofα individual
actionshai

1 : : :ai
αi. Agents are assumed to take actions simultaneously in each

time step. The transition function,T , depends on joint actions and gives the
probability associated with starting in a particular statesi and ending in a state
sj after the team has executed the joint actionak. Although the agents can-
not directly observe their current state,st , they receive information about the
state of the world throughΩ, a set of possible joint observations. Each joint
observationωi is comprised ofα individual observations,hωi

1 : : :ωi
αi. The ob-

servation function,O, gives the probability of observing a joint observationωi

after taking actionak and ending in statesj . The reward functionR maps a
start state and a joint action to a reward. This reward is obtained jointly by all
of the agents on the team, and is discounted by the discount factor γ.

Without communication, solving for the optimal policy of a multi-agent
POMDP is known to be NEXP-complete [2], making these problems funda-
mentally harder than single-agent POMDPs, which are known to be PSPACE-
complete [10]. A recent approach presents a dynamic programming algorithm
for finding optimal policies for these problems [5]. In some domains, dynamic

Decentralized Communication Strategies 3
programming may provide a substantial speed-up over brute-force searches,
but in general, this method remains computationally intractable. Recent work
focuses on finding heuristic solutions that may speed up the computation of
locally optimal multi-agent POMDP policies, but these algorithms either place
limitations on the types of policies that can be discovered (e.g. limited-memory
finite state controllers [11]), or make strong limiting assumptions about the
types of domains that can be solved (e.g. transition-independent systems [1]),
or may, in the worst case, still have the same complexity as anexhaustive
search for the optimal policy [8]. Another method addressesthe problem by
approximating the system (in this case, represented as a POIPSG) with a series
of smaller Bayesian games [4]. This approximation is able tofind locally opti-
mal solutions to larger problems than can be solved using exhaustive methods,
but is unable to address situations in which a guarantee of strict agent coordi-
nation is needed. Additionally, none of these approaches address the issue of
communication as a means for improving joint team reward.

Although free communication transforms a multi-agent POMDP into a large
single agent POMDP, in the general case where communicationis not free,
adding communication does not reduce the overall complexity of optimal pol-
icy generation for a multi-agent POMDP [13]. Unfortunately, for most sys-
tems, communication is not free, and communicating at everytime step may
be unnecessary and costly. However, it has been shown empirically that adding
communication to a multi-agent POMDP may not only improve team perfor-
mance, but may also shorten the time needed to generate policies [9].

In this paper, we introduce an algorithm that takes as input asingle-agent
POMDP policy, computed as if for a team with free communication, and at run-
time, maintains team coordination and chooses to communicate only when it is
necessary for improving team performance. This algorithm makes two trade-
offs. First, it trades off the need to perform computations at run-time in order
to enable the generation of an infinite-horizon policy for the team that would
otherwise be highly intractable to compute. Secondly, it conserves communi-
cation resources, with the potential trade-off of some amount of reward.3. Dec-Comm algorithm

Single-agent POMDP policies are mappings from beliefs to actions (π : B !
A), where a belief,b2 B , is a probability distribution over world states. An
individual agent in a multi-agent system cannot calculate this belief because
it sees only its own local observations. Even if an agent wished to calculate a
belief based only on its own observations, it could not, because the transition
and observation functions depend on knowing the joint action of the team.

A multi-agent POMDP can be transformed into a single-agent POMDP by
communicating at every time step. A standard POMDP solver can then be used

4
to generate a policy that operates over joint observations and returns joint ac-
tions, ignoring the fact that these joint observations and actions are comprised
of individual observations and actions. The belief over which this policy oper-
ates, which is calculated identically by each member of the team, is henceforth
referred to as thejoint belief.

Creating and executing a policy over joint beliefs is equivalent to creating
a centralized controller for the team and requires agents tocommunicate their
observations at each time step. We wish to reduce the use of communication
resources. Therefore, we introduce the DEC-COMM algorithm that:

in a decentralized fashion, selects actions based on the possible joint
beliefs of the team

chooses to communicate when an agent’s local observations indicate that
sharing information would lead to an increase in expected reward3.1 Q-POMDP: Reasoning over possible jointbeliefs

The Q-MDP method is an approach for finding an approximate solution to
a large single-agent POMDP by using the value functions (Va(s) is the value
of taking actiona in statesand henceforth acting optimally) that are easily ob-
tainable for the system’s underlying MDP [7]. In Q-MDP, the best action for a
particular belief,b, is chosen according to Q-MDP(b) = argmaxa ∑s2S b(s)�
Va(s), which averages the values of taking each action in every state, weighted
by the likelihood of being in that state as estimated by the belief.

Analogously, we introduce the Q-POMDP method for approximating the
best joint action for a multi-agent POMDP by reasoning over the values of the
possible joint beliefs in the underlying centralized POMDP. In our approach,
a joint policy is created for the system, as described above.During execution,
each agent calculates a tree of possible joint beliefs of theteam. These joint
beliefs represent all of the possible observation histories that could have been
observed by the team. We defineL t , the set of leaves of the tree at depth
t, to be the set of possible joint beliefs of the team at timet. EachL t

i is a
tuple consisting ofhbt ;pt ;~ωti, where~ωt is the joint observation history that
would lead toL t

i , bt is the joint belief at that observation history, andpt is the
probability of the team observing that history.

Table 1 presents the algorithm for expanding a single leaf ina tree of possi-
ble joint beliefs. Each leaf has a child leaf for every possible joint observation.
For each observation,Pr(ωi ja;bt), the probability of receiving that observation
while in belief statebt and having taken actiona, is calculated. The resulting
belief, bt+1, is calculated using a standard Bayesian update [6]. The child leaf
is composed of this new belief,bt+1, the probability of reaching that belief,
which is equivalent to the probability of receiving this particular observation

Decentralized Communication Strategies 5
in the parent leaf times the probability of reaching the parent leaf, and the cor-
responding observation history. Note that this algorithm entirely ignores the
actual observations seen by each agent, enabling the agentsto compute identi-
cal trees in a decentralized fashion.Table 1. Algorithm to grow the children of one leaf in a tree of possible beliefs

GROWTREE(L t
i , a)

L t+1 /0
for eachω j 2Ω

bt+1 /0
Pr(ω j ja;bt) ∑s02S O(s0;a;ω j)∑s2S T (s;a;s0)bt(s)
for eachs’ 2 S

bt+1(s0) O(s0;a;ω j ∑s2S T (s;a;s0)bt(s)
Pr(ω j ja;bt)

pt+1 p(L t
i)�Pr(ω j ja;bt)~ωt+1 ~ω(L t
i)Æ hω j i

L t+1 L t+1[[bt+1;pt+1;~ωt+1]
return L t+1

The Q-POMDP heuristic, Q-POMDP(L t) = argmaxa∑L t
i 2L t p(L t

i)�
Q (b(Li);a), selects a single action that maximizes expected reward over all
of the possible joint beliefs. Because this reward is a weighted average over
several beliefs, there may exist domains for which an actionthat is strictly
dominated in any single belief, and therefore does not appear in the policy,
may be the optimal action when there is uncertainty about thebelief. We define
theQ function,Q (bt ;a) =∑s2S R (s;a)bt(s)+γ∑ω2Ω Pr(ωja;bt)V π(bt+1), in
order to take these actions into account. The value function, V π(b), gives the
maximum attainable value at the beliefb, but is only defined over those actions
which appear in the single-agent policyπ. TheQ function returns expected
reward for any action and belief.bt+1 is the belief that results from taking
actiona in belief statebt and receiving the joint observationω. Pr(ωja;bt) and
bt+1 are calculated as in Table 1.

Since all of the agents on a team generate identical trees of possible joint
beliefs, and because Q-POMDP selects actions based only on this tree, ignor-
ing the actual local observations of the agents, agents are guaranteed to select
the same joint action at each time step. However, this joint action is clearly
very conservative, as agents are forced to take into accountall possible contin-
gencies. The DEC-COMM algorithm utilizes communication to allow agents
to integrate their actual observations into the possible joint beliefs, while still
maintaining team synchronization.

63.2 Dec-Comm: Using communication toimprove performance
An agent using the DEC-COMM algorithm chooses to communicate when

it sees that integrating its own observation history into the joint belief would
cause a change in the joint action that would be selected. To decide whether or
not to communicate, the agent computesaNC, the joint action selected by the
Q-POMDP heuristic based on its current tree of possible joint beliefs. It then
prunes the tree by removing all beliefs that are inconsistent with its own obser-
vation history and computesaC, the action selected by Q-POMDP based on
this pruned tree. If the actions are the same, the agent chooses not to commu-
nicate. If the actions are different, this indicates that there is a potential gain in
expected reward through communication, and the agent broadcasts its observa-
tion history to its teammates. When an agent receives a communication from
one of its teammates, it prunes its tree of joint beliefs to beconsistent with the
observations communicated to it, and recurses to see if thisnew information
would lead it to choose to communicate. Because there may be multiple in-
stances of communication in each time step, agents must waita fixed period of
time for the system to quiesce before acting. Table 2 provides the details of the
DEC-COMM algorithm.Table 2. One time step of the DEC-COMM algorithm for an agentj

DEC-COMM(L t;~ωt
j)

aNC Q-POMDP(L t)
L 0 prune leafs inconsistent with~ωt

j from L t

aC Q-POMDP(L 0)
if aNC 6= aC

communicate~ωt
j to the other agents

return DEC-COMM(L 0; /0)
else

if communication~ωt
k was received from another agentk

L t prune leafs inconsistent with~ωt
k from L t

return DEC-COMM(L t;~ωt
j)

else
take actionaNC

receive observationωt+1
j~ωt+1

j ~ωt
j Æ hωt+1

j i
L t+1 /0
for eachL t

i 2 L t

L t+1 L t+1[GROWTREE(L t
i ;aNC)

return [L t+1;~ωt+1
j]

Decentralized Communication Strategies 74. Example
To illustrate the details of our algorithm, we present an example in the two-

agent tiger domain introduced by Nairet al. [8]. We use the tiger domain
because it is easily understood, and also because it is a problem that requires
coordinated behavior between the agents. The tiger problemconsists of two
doors, LEFT and RIGHT. Behind one door is a tiger, and behind the other is
a treasure.S consists of two states, SL and SR, indicating respectively that
the tiger is behind the left door or the right door. The agentsstart out with a
uniform distribution over these states (b(SR) = 0.5).

Each agent has three individual actions available to it: OPENL, which opens
the left door, OPENR, which opens the right door, and LISTEN, an information-
gathering action that provides an observation about the location of the tiger.
Together, the team may perform any combination of these individual actions.
A joint action of hL ISTEN, L ISTENi keeps the world in its current state. In
order to make this an infinite-horizon problem, if either agent opens a door,
the world is randomly and uniformly reset to a new state. The agents receive
two observations, HL and HR, corresponding to hearing the tiger behind the
left or right door. For the purposes of our example, we modifythe observation
function from the one given in Nairet al. If a door is opened, the observation is
uniformly chosen and provides no information; the probability of an individual
agent hearing the correct observation if both agents LISTEN is 0.7. (Observa-
tions are independent, so the joint observation function can be computed as the
cross-product of the individual observation functions.) This change makes it
such that the optimal policy is to hear two consistent observations (e.g. HR,
HR) before opening a door.

The reward function for this problem is structured to createan explicit co-
ordination problem between the agents. The highest reward (+20) is achieved
when both agents open the same door, and that door does not contain the tiger.
A lower reward (-50) is received when both agents open the incorrect door.
The worst case is when the agents open opposite doors (-100),or when one
agent opens the incorrect door while the other agent listens(-101). The cost
of hL ISTEN, L ISTENi is -2. We generated a joint policy for this problem with
Cassandra’s POMDP solver [3], using a discount factor ofγ = 0.9. Note that
although there are nine possible joint actions, all actionsother thanhOPENL,
OPENLi, hOPENR, OPENRi, andhL ISTEN, L ISTENi are strictly dominated,
and we do not need to consider them.

Time Step 0: In this example, the agents start out with a synchronized joint
belief of b(SR) = 0.5. According to the policy, the optimal joint actionat this
belief is hL ISTEN, L ISTENi. Because their observation histories are empty,
there is no need for the agents to communicate.

8
Time Step 1: The agents executehL ISTEN, L ISTENi, and both agents ob-

serve HL. Each agent independently executesGROWTREE. Figure 1 shows
the tree of possible joint beliefs calculated by each agent.The Q-POMDP
heuristic, executed over this tree, determines that the best possible joint action
is hL ISTEN, L ISTENi.

0.5
p = 1.0

HL HL

HL H
R HR HL

HR HR

<LISTEN, LISTEN>

p = 0.29
0.5

p = 0.21
0.5

p = 0.21 p = 0.29
0.155 0.845Figure 1. Joint beliefs after a single action

When deciding whether or not to communicate, agent 1 prunes all of the
joint beliefs that are not consistent with its having heard HL. The circled nodes
in Figure 1 indicate those nodes which are not pruned. Running Q-POMDP
on the pruned tree shows that the best joint action is stillhL ISTEN, L ISTENi,
so agent 1 decides not to communicate. It is important to notethat at this
point, a centralized controller would have observed two consistent observations
of HL and would performhOPENR, OPENRi. This is an instance in which
our algorithm, because it does not yet have sufficient reasonto believe that
there will be a gain in reward through communication, performs worse than a
centralized controller.

Time Step 2: After performing anotherhL ISTEN, L ISTENi action, each
agent again observes HL. Figure 2 shows the output ofGROWTREE after the
second action. The Q-POMDP heuristic again indicates that the best joint
action ishL ISTEN, L ISTENi.

p = 0.29
0.155

0.155
p = 0.06 p = 0.4

0.5
p = 0.4

0.845
p = 0.06

0.5

0.5
p = 0.21

0.5

HL H
R HR HL

<LISTEN, LISTEN>

<LISTEN, LISTEN>

HL HL HR HR

0.5
p = 0.21 p = 0.29

0.845

0.155 0.1550.033
p = 0.12 p = 0.06 p = 0.06 p = 0.04

0.5

HL H
L

H
L

H
R HR HL

HR HR

H
L

H
L

HL
HR HR HRHR HL

p = 1.0

.Figure 2. Joint beliefs after the second action

Decentralized Communication Strategies 9
Agent 1 reasons about its communication decision by pruningall of the joint

beliefs that are not consistent with its entire observationhistory (hearing HL
twice). This leaves only the nodes that are circled in Figure2. For the pruned
tree, Q-POMDP indicates that the best action ishOPENR, OPENRi. Because
the pre-communication action,aNC, differs from the action that would be cho-
sen post-communication,aC, agent 1 chooses to communicate its observation
history to its teammate.

In the meantime, agent 2 has been performing an identical computation
(since it too observed two instances of HL) and also decides to communicate.
After both agents communicate, there is only a single possible belief remain-
ing, b(SR) = 0.033. The optimal action for this belief ishOPENR, OPENRi,
which is now performed by the agents.5. Particle �lter representation

The above example shows a situation in which both agents decide to com-
municate their observation histories. It is easy to construct situations in which
one agent would choose to communicate but the other agent would not, or ex-
amples in which both agents would decide not to communicate,possibly for
many time steps (e.g. the agents observe alternating instances of HL and HR).
From the figures, it is clear that the tree of possible joint beliefs grows rapidly
when communication is not chosen. To address cases where theagents do not
communicate for a long period of time, we present a method formodeling the
distribution of possible joint beliefs using a particle filter.

A particle filter is a sample-based representation that can be used to encode
an arbitrary probability distribution using a fixed amount of memory. In the
past, particle filters have been used with single-agent POMDPs (i.e. for state
estimation during execution [12]). We draw our inspirationfrom an approach
that finds a policy for a continuous state-space POMDP by maximizing over a
distribution of possible belief states, represented by a particle filter [14].

In our approach, each particle,L i is a tuple ofα observation histories,h~ωa : : :~ωαi, corresponding to a possible observation history for each agent.
Taken together, these form a possible joint observation history, and along with
the system’s starting belief state,b0, and the history of joint actions taken by
the team,~a, uniquely identify a possible joint belief. Every agent stores two
particle filters,L joint , which represents the joint possible beliefs of the team,
pruned only by communication, andLown, those beliefs that are consistent with
the agent’s own observation history. Belief propagation isperformed for these
filters as described in [14], with the possible next observations forL joint taken
from all possible joint observations, and the possible nextobservations forLown

taken only from those joint observations consistent with the agent’s own local
observation at that time step.

10
The DEC-COMM algorithm proceeds as described in Section 3, withL joint

used to generateaNC and Lown used to generateac. The only complication
arises when it comes time to prune the particle filters as a result of communi-
cation. Unlike the tree described earlier that represents the distribution of pos-
sible joint beliefs exactly, a particle filter only approximates the distribution.
Simply removing those particles not consistent with the communicated obser-
vation history and resampling (to keep the total number of particles constant)
may result in a significant loss of information about the possible observation
histories of agents that have not yet communicated.

Looking at the example presented in Section 4, it is easy to see that there
is a correlation between the observation histories of the different agents. (i.e.
If one agent observeshHL ;HLi, it is unlikely that the other agent will have
observedhHR;HRi.) To capture this correlation when pruning, we define a
similarity metric between two observation histories, Table 3. When an obser-
vation history~ωt

i has been communicated by agenti, to resample the newL joint ,
the observation history in each particle corresponding to agent i is compared
to~ωt

i . The comparison asks the question, “Suppose an agent has observed~ωt
i

after starting in beliefb0 and knowing that the team has taken the joint action
history~at . What is the likelihood that an identical agent would have observed
the observation history~ωt

j?” The value returned by this comparison is used
as a weight for the particle. The particles are then resampled according to
the calculated weights, and the agenti observation history for each particle is
replaced with~ωt

i .Table 3. The heuristic used to determine the similarity between two observation histories,
where~ωt

i is the true (observed) history

SIMILARITY (~ωt
i ;~ωt

j ;~at)
sim 1
b b0

for t0 = 1: : : t
for eachs2 S

b(s) O(s;at 0 ;ωt 0
i)b(s)

normalizeb
sim sim�∑s2S O(s;at 0 ;ωt 0

j)b(s)
for eachs2 S

b(s) ∑s02S T (s0;at 0 ;s)b(s)
normalizeb

return sim6. Results and analysis
We demonstrate the performance of our approach experimentally by com-

paring the reward achieved by a team that communicates at every time step

Decentralized Communication Strategies 11
(i.e. a centralized controller) to a team that uses the DEC-COMM algorithm to
select actions and make communication decisions. We ran ourexperiment on
the two-agent tiger domain as described in Section 4. In eachexperiment, the
world state was initialized randomly, and the agents were allowed to act for
8 time steps. The team using a particle representation used 2000 samples to
represent the possible beliefs. We ran 30000 trials of this experiment. Table 4
summarizes the results of these trials.Table 4. Experimental results

µReward σReward µComm σComm

Full Comm. 17.0 37.9 16 0
DEC-COMM (tree) 8.9 28.9 2.9 1.1

DEC-COMM (particles) 9.4 30.3 2.6 1.0

It may appear at first glance as though the performance of the DEC-COMM

algorithm is substantially worse than the centralized controller. However, as
the high standard deviations indicate, the performance of even the centralized
controller varies widely, and DEC-COMM under-performs the fully communi-
cating system by far less than one standard deviation. Additionally, it achieves
this performance by using less than a fifth as much communication as the fully
communicating system. Note that the particle representation performs compa-
rably to the tree representation (within the error margins), indicating that with
a sufficient number of particles, there is no substantial loss of information.

We are currently working on comparing the performance of ourapproach
to COMMUNICATIVE JESP, a recent approach that also uses communica-
tion to improve the computational tractability and performance of multi-agent
POMDPs [9]. However, this comparison is difficult for several reasons. First
of all, the COMMUNICATIVE JESP approach treats communication as domain-
level action in the policy. Thus, if an agent chooses to communicate in a partic-
ular time step, it cannot take an action. More significantly,their approach deals
only with synchronized communications, meaning that if oneagent on a team
chooses to communicate, it also forces all its other teammates to communicate
at that time step.7. Conclusion

We present in this paper an approach that enables the application of cen-
tralized POMDP policies to distributed multi-agent systems. We introduce the
novel concept of maintaining a tree of possible joint beliefs of the team, and
describe a heuristic, Q-POMDP, that allows agents to selectthe best action
over the possible beliefs in a decentralized fashion. We show both through a
detailed example and experimentally that our DEC-COMM algorithm makes
communication decisions that improve team performance while reducing the

12
instances of communication. We also provide a fixed-size method for main-
taining a distribution over possible joint team beliefs.

In the future, we are interested in looking at factored representations that
may reveal structural relationships between state variables, allowing us to ad-
dress the question ofwhatto communicate, as well waswhento communicate.
Other areas for future work include reasoning about communicating onlypart
of the observation history, and exploring the possibility of agentsaskingtheir
teammates for information instead of onlytelling what they know.References

[1] R. Becker, S. Zilberstein, V. Lesser, and C.V. Goldman. Transition-Independent De-
centralized Markov Decision Processes.International Joint Conference on Autonomous
Agents and Multi-agent Systems, 2003.

[2] D.S. Bernstein, S. Zilberstein, and N. Immerman. The Complexity of Decentralized
Control of Markov Decision Processes.Uncertainty in Artificial Intelligence, 2000.

[3] A.R. Cassandra. POMDP solver software.
http://www.cassandra.org/pomdp/code/index.shtml

[4] R. Emery-Montemerlo, G. Gordon, J. Schneider, and S. Thrun. Approximate Solutions
for Partially Observable Stochastic Games with Common Payoffs. International Joint
Conference on Autonomous Agents and Multi-Agent Systems, 2004.

[5] E.A. Hansen, D.S. Bernstein, and S. Zilberstein. Dynamic Programming for Partially
Observable Stochastic Games.National Conference on Artificial Intelligence, 2004.

[6] L.P. Kaelbling, M.L. Littman, and A.R. Cassandra. Planning and Acting in Partially
Observable Domains.Artificial Intelligence, 1998.

[7] M.L. Littman, A.R. Cassandra, and L.P. Kaelbling. Learning policies for partially observ-
able environments: Scaling up.International Conference on Machine Learning, 1995.

[8] R. Nair, D. Pynadath, M. Yokoo, M. Tambe, and S. Marsella.Taming Decentralized
POMDPs: Towards Efficient Policy Computation for Multiagent Settings.International
Joint Conference on Artificial Intelligence, 2003.

[9] R. Nair, M. Roth, M. Yokoo, and M. Tambe. Communication for Improving Policy
Computation in Distributed POMDPs.International Joint Conference on Autonomous
Agents and Multi-agent Systems, 2004.

[10] C.H. Papadimitriou and J.N. Tsitsiklis. The complexity of Markov Decision Processes.
Mathematics of Operations Research, 1987

[11] L. Peshkin, K.-E. Kim, N. Meuleau, and L.P. Kaelbling. Learning to Cooperate via Policy
Search.Uncertainty in Artificial Intelligence, 2000.

[12] P. Poupart, L.E. Ortiz, and C. Boutilier. Value-directed Sampling Methods for Monitoring
POMDPs.Uncertainty in Artificial Intelligence, 2001.

[13] D.V. Pynadath and M. Tambe. The Communicative Multiagent Team Decision Problem:
Analyzing Teamwork Theories and Models.Journal of AI Research, 2002.

[14] S. Thrun. Monte Carlo POMDPs.Neural Information Processing Systems, 2000.

[15] P. Xuan and V. Lesser. Multi-agent Policies: From Centralized Ones to Decentralized
Ones. International Joint Conference on Autonomous Agents and Multi-agent Systems,
2002.

