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Introduction toIntroduction to 
voting theoryvoting theory



Voting over alternatives

> >
voting rule 

(mechanism) 
determines winnerdetermines winner 

based on votes

> >> >

• Can vote over other things too
– Where to go for dinner tonight, other joint plans, …g g , j p ,



Voting (rank aggregation)
• Set of m candidates (aka. alternatives, outcomes)
• n voters; each voter ranks all the candidates

– E.g., for set of candidates {a, b, c, d}, one possible vote is b > a > d > c
– Submitted ranking is called a vote

• A voting rule takes as input a vector of votes (submitted by theA voting rule takes as input a vector of votes (submitted by the 
voters), and as output produces either:
– the winning candidate, or

an aggregate ranking of all candidates– an aggregate ranking of all candidates

• Can vote over just about anything
– political representatives, award nominees, where to go for dinner p p g

tonight, joint plans, allocations of tasks/resources, …
– Also can consider other applications: e.g., aggregating search engines’ 

rankings into a single rankingg g g



Example voting rules
• Scoring rules are defined by a vector (a1, a2, …, am); being 

ranked ith in a vote gives the candidate ai points
Plurality is defined by (1 0 0 0) (winner is candidate that is– Plurality is defined by (1, 0, 0, …, 0) (winner is candidate that is 
ranked first most often)

– Veto (or anti-plurality) is defined by (1, 1, …, 1, 0) (winner is candidate 
that is ranked last the least often)that is ranked last the least often)

– Borda is defined by (m-1, m-2, …, 0)

• Plurality with (2-candidate) runoff: top two candidates in 
terms of plurality score proceed to runoff; whichever is 
ranked higher than the other by more voters, wins

• Single Transferable Vote (STV aka Instant Runoff):• Single Transferable Vote (STV, aka. Instant Runoff): 
candidate with lowest plurality score drops out; if you voted 
for that candidate, your vote transfers to the next (live) 
candidate on your list; repeat until one candidate remains

• Similar runoffs can be defined for rules other than plurality



Pairwise elections

> >
>

two votes prefer Obama to McCain

> >

two votes prefer Obama to Nader

> >

>

> >

>

two votes prefer Nader to McCain

> >> >
> >



Condorcet cycles

> >
>

two votes prefer McCain to Obama

> >
two votes prefer Obama to Nader

> >

>

> >

>

two votes prefer Nader to McCain

> > ?> > ?
“weird” preferences



Voting rules based on pairwise elections
• Copeland: candidate gets two points for each pairwise 

election it wins, one point for each pairwise election it ties
M i i ( k Si ) did t h t i i• Maximin (aka. Simpson): candidate whose worst pairwise 
result is the best wins

• Slater: create an overall ranking of the candidates that isSlater: create an overall ranking of the candidates that is 
inconsistent with as few pairwise elections as possible
– NP-hard!

C / i i li i ti i did t l f i i• Cup/pairwise elimination: pair candidates, losers of pairwise 
elections drop out, repeat



Even more voting rules…
K t ll ki f th did t th t h• Kemeny: create an overall ranking of the candidates that has 
as few disagreements as possible (where a disagreement is 
with a vote on a pair of candidates)p )
– NP-hard!

• Bucklin: start with k=1 and increase k gradually until some 
candidate is among the top k candidates in more than halfcandidate is among the top k candidates in more than half 
the votes; that candidate wins

• Approval (not a ranking-based rule): every voter labels each pp ( g ) y
candidate as approved or disapproved, candidate with the 
most approvals wins



Choosing a rule
• How do we choose a rule from all of these 

rules?rules?
• How do we know that there does not exist 

another “perfect” rule?another, perfect  rule?
• Let us look at some criteria that we would like 

ti l t ti four voting rule to satisfy



Condorcet criterion
• A candidate is the Condorcet winner if it wins all of its 

pairwise elections
• Does not always exist• Does not always exist…
• … but the Condorcet criterion says that if it does exist, it 

should win

• Many rules do not satisfy this
• E.g. for plurality:

– b > a > c > d
– c > a > b > dc > a > b > d
– d > a > b > c

• a is the Condorcet winner, but it does not win under plurality



Majority criterion
• If a candidate is ranked first by a majority (> ½) of 

the votes, that candidate should win
– Relationship to Condorcet criterion?

S f• Some rules do not even satisfy this
• E.g. Borda:

– a > b > c > d > e
– a > b > c > d > e

c > b > d > e > a– c > b > d > e > a
• a is the majority winner, but it does not win under 

BordaBorda



Monotonicity criteria
I f ll t i it th t “ ki did t• Informally, monotonicity means that “ranking a candidate 
higher should help that candidate,” but there are multiple 
nonequivalent definitionsq

• A weak monotonicity requirement: if 
– candidate w wins for the current votes, 

th i th iti f i f th t d l– we then improve the position of w in some of the votes and leave 
everything else the same,

then w should still win.
• E.g., STV does not satisfy this:

– 7 votes b > c > a
7 votes a > b > c– 7 votes a > b > c

– 6 votes c > a > b

• c drops out first, its votes transfer to a, a wins
• But if 2 votes b > c > a change to a > b > c, b drops out first, 

its 5 votes transfer to c, and c wins



Monotonicity criteria…
A t t i it i t if• A strong monotonicity requirement: if 
– candidate w wins for the current votes, 
– we then change the votes in such a way that for each vote, if a g y ,

candidate c was ranked below w originally, c is still ranked below w in 
the new vote

then w should still win.then w should still win.
• Note the other candidates can jump around in the vote, as 

long as they don’t jump ahead of w
• None of our rules satisfy this



Independence of irrelevant alternatives

• Independence of irrelevant alternatives criterion: if
– the rule ranks a above b for the current votes,
– we then change the votes but do not change which is 

ahead between a and b in each vote
then a should still be ranked ahead of b.

• None of our rules satisfy this



Arrow’s impossibility theorem [1951]

• Suppose there are at least 3 candidates
• Then there exists no rule that is 

simultaneously:
– Pareto efficient (if all votes rank a above b, then 

the rule ranks a above b),
– nondictatorial (there does not exist a voter such 

that the rule simply always copies that voter’s 
ki ) dranking), and

– independent of irrelevant alternatives



Muller-Satterthwaite impossibility theorem 
[1977][ 9 ]

• Suppose there are at least 3 candidates
• Then there exists no rule that simultaneously:

– satisfies unanimity (if all votes rank a first, then a 
should win),

– is nondictatorial (there does not exist a voter such 
that the rule simply always selects that voter’s first 
candidate as the winner), and
i (i h )– is monotone (in the strong sense).



Manipulability
• Sometimes, a voter is better off revealing her preferences 

insincerely, aka. manipulating
• E.g. plurality

– Suppose a voter prefers a > b > c
– Also suppose she knows that the other votes areAlso suppose she knows that the other votes are

• 2 times b > c > a
• 2 times c > a > b

– Voting truthfully will lead to a tie between b and c– Voting truthfully will lead to a tie between b and c
– She would be better off voting e.g. b > a > c, guaranteeing b wins

• All our rules are (sometimes) manipulable



Gibbard-Satterthwaite impossibility theorem

• Suppose there are at least 3 candidates
• There exists no rule that is simultaneously:

– onto (for every candidate, there are some votes 
that would make that candidate win),

– nondictatorial (there does not exist a voter such 
that the rule simply always selects that voter’s first 
candidate as the winner), and

i l bl– nonmanipulable



Single-peaked preferences
• Suppose candidates are ordered on a line
• Every voter prefers candidates that are closer to 

h t f d did ther most preferred candidate
• Let every voter report only her most preferred 

candidate (“peak”)candidate ( peak )
• Choose the median voter’s peak as the winner

– This will also be the Condorcet winnerThis will also be the Condorcet winner
• Nonmanipulable!

Impossibility results do not necessarily holdImpossibility results do not necessarily hold 
when the space of preferences is restricted

a1 a2 a3 a4 a5

v1v2 v3v4

v5



Hard-to-Hard to
compute rulescompute rules



Pairwise election graphs
P i i l ti b t d b h• Pairwise election between a and b: compare how 
often a is ranked above b vs. how often b is 
ranked above aranked above a

• Graph representation: edge from winner to loser 
(no edge if tie), weight = margin of victory

• E.g., for votes a > b > c > d, c > a > d > b this 
gives

a ba b2
2

d c
2

2
d c



Kemeny on pairwise election graphs
Fi l ki li t t h• Final ranking = acyclic tournament graph
– Edge (a, b) means a ranked above b
– Acyclic = no cycles, tournament = edge between every y y , g y

pair
• Kemeny ranking seeks to minimize the total weight

of the inverted edgesof the inverted edges

2

pairwise election graph Kemeny ranking

b
2

a b2

2 42

a b
2

d c

2
10

4

d c
2

d c4 d c
(b > d > c > a)



Slater on pairwise election graphs
Fi l ki li h• Final ranking = acyclic tournament graph

• Slater ranking seeks to minimize the number
f i t d dof inverted edges

pairwise election graph Slater ranking

a b a b
p g p

a

d c d c
(a > b > d > c)



An integer program for computing 
Kemeny/Slater rankingsKemeny/Slater rankings

y(a b) is 1 if a is ranked below b, 0 otherwisey(a, b) 

w(a, b) is the weight on edge (a, b) (if it exists)
in the case of Slater weights are always 1in the case of Slater, weights are always 1

minimize: ΣeE we ye

subject to: j
for all a, b  V, y(a, b) + y(b, a) = 1
for all a, b, c  V, y(a b) + y(b c) + y(c a) ≥ 1, , , y(a, b) y(b, c) y(c, a) 



Preprocessing trick for Slater
• Set S of similar alternatives: against any g y

alternative x outside of the set, all alternatives 
in S have the same result against x

a b

d c
• There exists a Slater ranking where all 

alternatives in S are adjacent
• A nontrivial set of similar alternatives can be 

found in polynomial time (if one exists)



Preprocessing trick for Slater…
bl t f i il bsolve set of similar 

alternatives 
recursively

a b d
y

d cd c a b>dsolve remainder 
(now with 

c

(
weighted nodes)

c
a > b > d > c



A few references for computing 
Kemeny / Slater rankingsKemeny / Slater rankings

• Betzler et al.  How similarity helps to efficiently y p y
compute Kemeny rankings.  AAMAS’09
• Conitzer.  Computing Slater rankings using p g g g
similarities among candidates.  AAAI’06
• Conitzer et al.  Improved bounds for computing p p g
Kemeny rankings.  AAAI’06
• Davenport and Kalagnanam.  A computational g
study of the Kemeny rule for preference 
aggregation.  AAAI’04gg g
• Meila et al.  Consensus ranking under the 
exponential model.  UAI’07



ComputationalComputational 
hardness as ahardness as a 

barrier tobarrier to 
manipulationmanipulation



Inevitability of manipulability
Id ll h i t t f b t• Ideally, our mechanisms are strategy-proof, but may 
be too much to ask for

• Recall Gibbard-Satterthwaite theorem:• Recall Gibbard-Satterthwaite theorem:
Suppose there are at least 3 alternatives
There exists no rule that is simultaneously:There exists no rule that is simultaneously:
– onto (for every alternative, there are some votes that would 

make that alternative win),
di t t i l d– nondictatorial, and

– strategy-proof
• Typically don’t want a rule that is dictatorial or not onto• Typically don t want a rule that is dictatorial or not onto
• With restricted preferences (e.g., single-peaked preferences), 

we may still be able to get strategy-proofness
• Also if payments are possible and preferences are quasilinear



Computational hardness as a 
barrier to manip lationbarrier to manipulation

• A (successful) manipulation is a way of ( ) p y
misreporting one’s preferences that leads to a 
better result for oneself

• Gibbard-Satterthwaite only tells us that for 
some instances, successful manipulations existsome instances, successful manipulations exist

• It does not say that these manipulations are 
always easy to findalways easy to find

• Do voting rules exist for which manipulations 
are computationally hard to find?are computationally hard to find?



A formal computational problem 
• The simplest version of the manipulation problem:
• CONSTRUCTIVE-MANIPULATION:

We are given a voting rule r the (unweighted) votes of the– We are given a voting rule r,  the (unweighted) votes of the 
other voters, and an alternative p. 

– We are asked if we can cast our (single) vote to make p
iwin.

• E.g., for the Borda rule:
– Voter 1 votes A > B > CVoter 1 votes A  B  C
– Voter 2 votes B > A > C
– Voter 3 votes C > A > B

• Borda scores are now: A: 4, B: 3, C: 2
• Can we make B win?
• Answer: YES Vote B > C > A (Borda scores: A: 4 B: 5 C: 3)• Answer: YES. Vote B > C > A (Borda scores: A: 4, B: 5, C: 3)



Early research
Th CONSTRUCTIVE MANIPULATION• Theorem. CONSTRUCTIVE-MANIPULATION 
is NP-complete for the second-order 
Copeland rule. [Bartholdi, Tovey, Trick 1989]
– Second order Copeland = alternative’s score is 

sum of Copeland scores of alternatives it defeats

• Theorem. CONSTRUCTIVE-MANIPULATION 
is NP-complete for the STV rule. [Bartholdiis NP complete for the STV rule. [Bartholdi, 
Orlin 1991]

• Most other rules are easy to manipulate (in P)



Ranked pairs rule [Tideman 1987]
• Order pairwise elections by decreasing 

strength of victory
• Successively “lock in” results of pairwise 

elections unless it causes a cycle

a b6

12
8

10
412 Final ranking: 

c>a>b>d

d c2

• Theorem. CONSTRUCTIVE-MANIPULATIONTheorem. CONSTRUCTIVE MANIPULATION 
is NP-complete for the ranked pairs rule [Xia 
et al. IJCAI 2009]



“Tweaking” voting rules

• It would be nice to be able to tweak rules:
– Change the rule slightly so that

• Hardness of manipulation is increased (significantly)
M f th i i l l ’ ti till h ld• Many of the original rule’s properties still hold

• It would also be nice to have a single, 
universal tweak for all (or many) rulesuniversal tweak for all (or many) rules

• One such tweak: add a preround [Conitzer & Sandholm 
IJCAI 03]IJCAI 03]



Adding a preround 
[C it & S dh l IJCAI 03][Conitzer & Sandholm IJCAI-03]

A d d f ll• A preround proceeds as follows:
– Pair the alternatives
– Each alternative faces its opponent in a pairwise 

election
Th i d h i i l l– The winners proceed to the original rule

• Makes many rules hard to manipulate



Preround example (with Borda)
Voter 1: A>B>C>D>E>F
Voter 2: D>E>F>A>B>C

Match A with B
Match C with F

STEP 1:
A. Collect votes and 
B M t h lt ti Voter 3: F>D>B>E>C>A

A vs B: A ranked higher by 1,2

Match D with EB. Match alternatives 
(no order required)

g y ,
C vs F: F ranked higher by 2,3
D vs E: D ranked higher by all

STEP 2:
Determine winners of 

preround

Voter 1: A>D>F
Voter 2: D>F>A

STEP 3:
Infer votes on remaining 

lt ti

A gets 2 points

Voter 3: F>D>Aalternatives

STEP 4:
E i i l l F gets 3 points

D gets 4 points and wins!
Execute original rule 

(Borda)



Matching first, or vote 
collection first?collection first?

• Match, then collect,
“A vs C,
B vs D.”

“A vs C,
B vs D.”

“D > C > B > A”

• Collect, then match (randomly)

“A vs C,

, ( y)

B vs D.”
“A > C > D > B”



Could also interleave…
• Elicitor alternates between: 

– (Randomly) announcing part of the matching( y) g p g
– Eliciting part of each voter’s vote

“A vs F” “B E”A vs F
“C > D” “B vs E”

“A > E”

…

“A vs F”“A vs F”

…



How hard is manipulation 
h d i dd d?when a preround is added?

• Manipulation hardness differs depending on the p p g
order/interleaving of preround matching and vote 
collection:

NP h d if d hi i d fi• Theorem. NP-hard if preround matching is done first
• Theorem. #P-hard if vote collection is done first

Th PSPACE h d if th t i t l d (f• Theorem. PSPACE-hard if the two are interleaved (for 
a complicated interleaving protocol)

• In each case the tweak introduces the hardness for• In each case, the tweak introduces the hardness for 
any rule satisfying certain sufficient conditions
– All of Plurality, Borda, Maximin, STV satisfy the conditions 

in all cases, so they are hard to manipulate with the 
preround



What if there are few 
lt tialternatives? [Conitzer et al. JACM 2007]

• The previous results rely on the number of 
alternatives (m) being unbounded

• There is a recursive algorithm for manipulating STV 
with O(1 62m) calls (and usually much fewer)with O(1.62m) calls (and usually much fewer)

• E.g., 20 alternatives: 1.6220 = 15500

• Sometimes the alternative space is much larger
– Voting over allocations of goods/tasksVoting over allocations of goods/tasks
– California governor elections

• But what if it is not?
– A typical election for a representative will only have a few



STV manipulation algorithm
[Conitzer et al. JACM 2007]

Id i l t l ti d i ti f th• Idea: simulate election under various actions for the 
manipulator

nobody eliminated yet

rescue d don’t rescue d

d eliminatedli i d d eliminatedc eliminated
no choice for 
manipulator rescue a don’t rescue a

b eliminated

no choice for 
manipulator no choice for 

i l t

b eliminated a eliminated
manipulator

d eliminated

manipulator
rescue c

don’t rescue c

…

rescue a don’t rescue a

… …

… …



Analysis of algorithm
• Let T(m) be the maximum number of recursive calls ( )

to the algorithm (nodes in the tree) for m
alternatives 
L t T’( ) b th i b f i• Let T’(m) be the maximum number of recursive 
calls to the algorithm (nodes in the tree) for m
alternatives given that the manipulator’s vote isalternatives given that the manipulator s vote is 
currently committed

• T(m) ≤ 1 + T(m-1) + T’(m-1)
• T’(m) ≤ 1 + T(m-1)
• Combining the two: T(m) ≤ 2 + T(m-1) + T(m-2)
• The solution is O(((1+√5)/2)m)
• Note this is only worst-case; in practice manipulator 

b bl ’t k diff i t dprobably won’t make a difference in most rounds
– Walsh [CARE 2009] shows this algorithm is highly 

effective in experiments (simulation)



Manipulation complexity 
with few alternativeswith few alternatives

• Ideally, would like hardness results for constant number of 
alternatives

• But then manipulator can simply evaluate each possible vote
– assuming the others’ votes are known & executing rule is in P

• Even for coalitions of manipulators there are only polynomiallyEven for coalitions of manipulators, there are only polynomially 
many effectively different vote profiles (if rule is anonymous)

• However, if we place weights on votes, complexity may 
returnreturn…

Unweighted Weighted

Constant #alternativesUnbounded #alternatives

Unweighted Weighted
voters voters

Individual
manipulation 

Can be
hard easy easyCan be

hard

voters voters

Coalitional
manipulation easyCan be

hard
Can be

hard
Potentially

hard



Constructive manipulation 
now becomes:now becomes:

• We are given the weighted votes of the others (with 
the weights)the weights)

• And we are given the weights of members of our 
coalition

• Can we make our preferred alternative p win?
• E.g., another Borda example:
• Voter 1 (weight 4): A>B>C, voter 2 (weight 7): B>A>C
• Manipulators: one with weight 4, one with weight 9
• Can we make C win?
• Yes! Solution: weight 4 voter votes C>B>A, weight 9 

t t C>A>Bvoter votes C>A>B
– Borda scores: A: 24, B: 22, C: 26 



A simple example of hardness
• We want: given the other voters’ votes…
• it is NP hard to find votes for the manipulators to• … it is NP-hard to find votes for the manipulators to 

achieve their objective
• Simple example: veto rule, constructiveSimple example: veto rule, constructive 

manipulation, 3 alternatives
• Suppose, from the given votes, p has received 2K-1 

more vetoes than a, and 2K-1 more than b
• The manipulators’ combined weight is 4K

i l t h i ht th t i lti l f 2– every manipulator has a weight that is a multiple of 2
• The only way for p to win is if the manipulators veto 

a with 2K weight and b with 2K weighta with 2K weight, and b with 2K weight
• But this is doing PARTITION => NP-hard!



What does it mean for a rule to 
be easy to manipulate?be easy to manipulate?

• Given the other voters’ votes…
• …there is a polynomial-time algorithm to find votes for the 

manipulators to achieve their objective
• If the rule is computationally easy to run, then it is easy toIf the rule is computationally easy to run, then it is easy to 

check whether a given vector of votes for the manipulators is 
successful

• Lemma: Suppose the rule satisfies (for some number of• Lemma: Suppose the rule satisfies (for some number of 
alternatives):
– If there is a successful manipulation…

th th i f l i l ti h ll i l t t– … then there is a successful manipulation where all manipulators vote 
identically.

• Then the rule is easy to manipulate (for that number of alternatives)
Si l h k ll ibl d i f th lt ti ( t t)– Simply check all possible orderings of the alternatives (constant)



Example: Maximin with 3 alternatives 
is easy to manipulate constructivelyis easy to manipulate constructively

• Recall: alternative’s Maximin score = worst score in any 
pairwise electionpairwise election

• 3 alternatives: p, a, b. Manipulators want p to win
• Suppose there exists a vote vector for the manipulators that pp p

makes p win
• WLOG can assume that all manipulators rank p first

– So they either vote p > a > b or p > b > aSo, they either vote p > a > b or p > b > a
• Case I: a’s worst pairwise is against b, b’s worst against a

– One of them would have a maximin score of at least half the vote 
weight and win (or be tied for first) => cannot happenweight, and win (or be tied for first) => cannot happen

• Case II: one of a and b’s worst pairwise is against p
– Say it is a; then can have all the manipulators vote p > a > b

Will t ff t ’ l d b’• Will not affect p or a’s score, can only decrease b’s score



Results for constructive
manipulationmanipulation



Destructive manipulation

• Exactly the same, except:
• Instead of a preferred alternative
• We now have a hated alternative
• Our goal is to make sure that the hated 

alternative does not win (whoever else wins)alternative does not win (whoever else wins)



Results for destructive
manipulationmanipulation



Hardness is only worst-case…
• Results such as NP-hardness suggest that 

the runtime of any successful manipulationthe runtime of any successful manipulation 
algorithm is going to grow dramatically on 
some instances

• But there may be algorithms that solve most
instances fast

• Can we make most manipulable instances 
hard to solve?



Bad news…
• Increasingly many results suggest that many instances are inIncreasingly many results suggest that many instances are in 

fact easy to manipulate
• Heuristic algorithms and/or experimental (simulation) evaluation 

[Conitzer & Sandholm AAAI-06, Procaccia & Rosenschein JAIR-07, Conitzer et al. JACM-07,[Conitzer & Sandholm AAAI 06, Procaccia & Rosenschein JAIR 07, Conitzer et al. JACM 07, 
Walsh IJCAI-09 / CARE-09]

• Algorithms that only have a small “window of error” of instances 
on which they fail [Zuckerman et al. AIJ-09, Xia et al. EC-10]y [ ]

• Results showing that whether the manipulators can make a 
difference depends primarily on their number
– If n nonmanipulator votes drawn i i d with high probability o(√n)If n nonmanipulator votes drawn i.i.d., with high probability, o(√n)

manipulators cannot make a difference, ω(√n) can make any alternative 
win that the nonmanipulators are not systematically biased against 
[Procaccia & Rosenschein AAMAS-07, Xia & Conitzer EC-08a]
B d f Θ(√ ) h b i i d– Border case of Θ(√n) has been investigated [Walsh IJCAI-09]

• Quantitative versions of Gibbard-Satterthwaite showing that 
under certain conditions, for some voter, even a random 
manipulation on a random instance has significant probability of 
succeeding [Friedgut, Kalai, Nisan FOCS-08; Xia & Conitzer EC-08b; Dobzinski 
& Procaccia WINE-08, Isaksson et al. 09]



Weak monotonicity
i l t

voting rule
alternative set

nonmanipulator 
votes

nonmanipulator 
weights manipulator 

weights

• An instance (R, C, v, kv, kw)
is weakly monotone if for every pair of 
alternatives c1, c2 in C, one of the following 
two conditions holds:

• either: c2 does not win for any manipulator• either: c2 does not win for any manipulator 
votes w,

• or: if all manipulators rank c first and c last• or: if all manipulators rank c2 first and c1 last, 
then c1 does not win. 



A simple manipulation algorithm
[Conitzer & Sandholm AAAI 06]

Find-Two-Winners(R C v k k )Find Two Winners(R, C, v, kv, kw)
• choose arbitrary manipulator votes w1

R(C k k )• c1 ← R(C, v, kv, w1, kw)
• for every c2 in C, c2 ≠ c1

– choose w2 in which every manipulator ranks c2
first and c1 last

– c ← R(C, v, kv, w2, kw)
– if c ≠ c1 return {(w1, c1), (w2, c)}

• return {(w1, c1)}



Correctness of the algorithm
• Theorem.  Find-Two-Winners succeeds on every 

instance that
– (a) is weakly monotone, and
– (b) allows the manipulators to make either of exactly two 

alternatives winalternatives win.
• Proof.

– The algorithm is sound (never returns a wrong (w, c) pair).g ( g ( ) p )
– By (b), all that remains to show is that it will return a 

second pair, that is, that it will terminate early.
Suppose it reaches the round where c is the other– Suppose it reaches the round where c2 is the other 
alternative that can win.  

– If c = c1 then by weak monotonicity (a), c2 can never win 
( t di ti )(contradiction).

– So the algorithm must terminate. 



Experimental evaluation
F h t % f i l bl i t d• For what % of manipulable instances do 
properties (a) and (b) hold?
– Depends on distribution over instances…

• Use Condorcet’s distribution for 
nonmanipulator votes

There exists a correct ranking t of the alternatives– There exists a correct ranking t of the alternatives
– Roughly: a voter ranks a pair of alternatives 

correctly with probability p, incorrectly with 
probability 1-pprobability 1 p

• Independently?  This can cause cycles…
– More precisely: a voter has a given ranking r with 

probability proportional to pa(r, t)(1-p)d(r, t) where a(r t)probability proportional to p (1 p) where a(r, t)
= # pairs of alternatives on which r and t agree, and 
d(r, t) = # pairs on which they disagree

• Manipulators all have weight 1Manipulators all have weight 1
• Nonmanipulable instances are thrown away



p=.6, one manipulator, 3 alternatives



p=.5, one manipulator, 3 alternatives



p=.6, 5 manipulators, 3 alternatives



p=.6, one manipulator, 5 alternatives



Control problems [Bartholdi et al. 1992]
• Imagine that the chairperson of the election controls 

whether some alternatives participate
• Suppose there are 5 alternatives, a, b, c, d, e

Ch i t l h th d ( h• Chair controls whether c, d, e run (can choose any 
subset); chair wants b to win

• Rule is plurality; voters’ preferences are:• Rule is plurality; voters  preferences are:
• a > b > c > d > e (11 votes)
• b > a > c > d > e (10 votes)• b > a > c > d > e (10 votes)
• c > e > b > a > e (2 votes)
• d > b > a > c > e (2 votes) many other types of control, d > b > a > c > e (2 votes)
• c > a > b > d > e (2 votes)
• e > a > b > c > e (2 votes)

y yp ,
e.g., introducing additional 

voters
see also various work bye a b c e ( otes)

• Can the chair make b win?
• NP-hard

see also various work by 
Faliszewksi, Hemaspaandra, 

Hemaspaandra, Rothe



C bi t i lCombinatorial 
alternative 

spaces



Multi-issue domainsMulti issue domains

• Suppose the set of alternatives can beSuppose the set of alternatives can be 
uniquely characterized by multiple issues

• Let I={x1 x } be the set of p issuesLet I {x1,...,xp} be the set of p issues
• Let Di be the set of values that the i-th issue 

can take, then A=D1×... ×Dcan take, then A D1×... ×Dp

• Example:
– I={Main dish Wine}I {Main dish, Wine}
– A={ } ×{                            }



Example: joint plan 
[Brams, Kilgour & Zwicker SCW 98]

• The citizens of LA county vote to directlyThe citizens of LA county vote to directly 
determine a government plan

• Plan composed of multiple sub plans for• Plan composed of multiple sub-plans for 
several issues

E– E.g.,                   



CP-net [Boutilier et al UAI-99/JAIR-04]CP net [Boutilier et al. UAI 99/JAIR 04]

A t t ti f ti l d• A compact representation for partial orders 
(preferences) on multi-issue domains
A CP t i t f• An CP-net consists of
– A set of variables x1,...,xp, taking values on 

D1 DD1,...,Dp
– A directed graph G over x1,...,xp
– Conditional preference tables (CPTs) indicating ( ) g

the conditional preferences over xi, given the 
values of its parents in G



CP-net: an exampleCP net: an example

Variables: { }D { }D { }DVariables: x,y,z. { , },xD x x { , },yD y y { , }.zD z z

DAG, CPTs:

This CP-net 
encodes the 
following partial 
order:order:



Sequential voting rules 
[Lang IJCAI-07/Lang and Xia MSS-09]

• Inputs:Inputs:
– A set of issues x1,...,xp, taking values on A=D1×... ×Dp

– A linear order O over the issues. W.l.o.g. O=x1>...>xpg 1 p

– p local voting rules r1,...,rp

– A profile P=(V1,...,Vn) of O-legal linear orders
• O-legal means that preferences for each issue depend only on 

values of issues earlier in O

• Basic idea: use r1 to decide x1’s value then r2 toBasic idea: use r1 to decide x1 s value, then r2 to 
decide x2’s value (conditioning on x1’s value), etc.

• Let SeqO(r1,...,r ) denote the sequential voting ruleLet SeqO(r1,...,rp) denote the sequential voting rule



Sequential rule: an exampleSequential rule: an example

• Issues: main dish, wine
• Order: main dish > wine
• Local rules are majority rules

V• V1: >            ,               :        >        ,                  :        >  
• V2: >            ,               :        >        ,                  :        > 
• V3: > , : > , : >V3:             ,               :                ,                  :        
• Step 1: 
• Step 2: given            ,         is the winner for wine
• Winner:    (            ,       )

• Xia et al [AAAI’08 AAMAS’10] study rules• Xia et al. [AAAI 08, AAMAS 10] study rules 
that do not require CP-nets to be acyclic



Strategic sequential votingStrategic sequential voting

• Binary issues (two possible values each)Binary issues (two possible values each)
• Voters vote simultaneously on issues, one 

issue after anotherissue after another
• For each issue, the majority rule is used to 

d t i th l f th t idetermine the value of that issue
• Game-theoretic analysis?



Strategic voting in multi-issue 
domainsdomains

S T

• In the first stage, the voters vote simultaneously to determine S; then, in the 
second stage, the voters vote simultaneously to determine T

• If S is built, then in the second step                                    so the winner is
• If S is not built, then in the 2nd step                                    so the winner is
• In the first step, the voters are effectively comparing      and     , so the votes  

are                                       , and the final winner is 

[Xia et al. 2010; see also Farquharson 69, McKelvey & Niemi JET 78, Moulin 
Econometrica 79, Gretlein IJGT 83, Dutta & Sen SCW 93]



Multiple-election paradoxes for 
strategic voting [Xia et al. 2010]strategic voting [Xia et al. 2010]

• Theorem (informally). For any p≥2 and any n≥2p2 + 1,Theorem (informally). For any p≥2 and any n≥2p  1, 
there exists a profile such that the strategic winner 
is 
– ranked almost at the bottom (exponentially low 

positions) in every vote
– Pareto dominated by almost every other alternative
– an almost Condorcet loser

– multiple-election paradoxes [Brams, Kilgour & Zwicker SCW 98], 
[S i i SCW 98] [L & Ni JTP 00] [S i & Si b 01 APSR][Scarsini SCW 98], [Lacy & Niou JTP 00], [Saari & Sieberg 01 APSR], 
[Lang & Xia MSS 09]



PreferencePreference 
elicitation /elicitation / 

communicationcommunication 
complexitycomplexity



Preference elicitation (elections)

> ?”“
“yes”

“no”
“yes”

> center/auctioneer/
organizer/…

?”“
> ?”“ > ?

“most 
f d?”

“ ”
preferred?”

iwins



Elicitation algorithms
• Suppose agents always answer truthfully
• Design elicitation algorithm to minimize queriesDesign elicitation algorithm to minimize queries 

for given rule
• What is a good elicitation algorithm for STV?What is a good elicitation algorithm for STV?
• What about Bucklin?



An elicitation algorithm for the Bucklin 
voting rule based on binary searchvoting rule based on binary search

[Conitzer & Sandholm EC’05]

• Alternatives: A B C D E F G H• Alternatives: A B C D E F G H

• Top 4? {A B C D} {A B F G} {A C E H}Top 4? {A B C D} {A B F G} {A C E H}

• Top 2? {A D} {B F} {C H}

• Top 3? {A C D} {B F G} {C E H}

T t l i ti i /2 /4 ≤ 2 bitTotal communication is nm + nm/2 + nm/4 + … ≤ 2nm bits
(n number of voters, m number of candidates)



Getting involved in this community
• Community mailing list
htt //li t d k d / / b ib /https://lists.duke.edu/sympa/subscribe/comsoc
• Computational Social Choice (COMSOC) 

k h (d dli M 15 )workshop (deadline May 15…)
http://ccc.cs.uni-duesseldorf.de/COMSOC-2010/



A few useful overviews
• Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. A Short Introduction to 
Computational Social Choice. In Proc. 33rd Conference on Current Trends in 
Theory and Practice of Computer Science (SOFSEM-2007), LNCS 4362,Theory and Practice of Computer Science (SOFSEM 2007), LNCS 4362, 
Springer-Verlag, 2007.
• V. Conitzer. Making decisions based on the preferences of multiple agents.  
Communications of the ACM, 53(3):84–94, 2010.
• V. Conitzer. Comparing Multiagent Systems Research in Combinatorial 
Auctions and Voting.  To appear in the Annals of Mathematics and Artificial 
Intelligence.
• P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. A richer 
understanding of the complexity of election systems. In S. Ravi and S. Shukla, 
editors, Fundamental Problems in Computing: Essays in Honor of Professor 
Daniel J Rosenkrantz chapter 14 pages 375 406 Springer 2009Daniel J. Rosenkrantz, chapter 14, pages 375–406. Springer, 2009.
• P. Faliszewski and A. Procaccia. AI's War on Manipulation: Are We Winning?  
To appear in AI Magazine.
• L Xia Computational Social Choice: Strategic and Combinatorial AspectsL. Xia. Computational Social Choice: Strategic and Combinatorial Aspects.  
AAAI’10 Doctoral Consortium.


