
How hard is it to control sequential elections via the agenda?

Vincent Conitzer

Department of Computer Science

Duke University

Durham, NC 27708, USA

conitzer@cs.duke.edu

Jérôme Lang

LAMSADE

Université Paris-Dauphine

75775 Paris Cedex 16, France

lang@lamsade.dauphine.fr

Lirong Xia

Department of Computer Science

Duke University

Durham, NC 27708, USA

lxia@cs.duke.edu

Abstract

Voting on multiple related issues is an important
and difficult problem. The key difficulty is that the
number of alternatives is exponential in the number
of issues, and hence it is infeasible for the agents
to rank all the alternatives. A simple approach is to
vote on the issues one at a time, in sequence; how-
ever, a drawback is that the outcome may depend
on the order in which the issues are voted upon and
decided, which gives the chairperson some control
over the outcome of the election because she can
strategically determine the order. While this is un-
deniably a negative feature of sequential voting, in
this paper we temper this judgment by showing that
the chairperson’s control problem is, in most cases,
computationally hard.

1 Introduction

In many real-life group decision making problems, the space
of alternatives has a multiattribute (or combinatorial) struc-
ture. In one example [Brams et al., 1998], the inhabitants of
a community have to make a common decision over several
related issues of local interest, such as which ones of several
public facilities to build. As another example, the members of
an association may have to elect a steering committee, com-
posed of a president, a vice-president and a treasurer. In both
cases, the space of alternatives has a combinatorial structure:
there are multiple issues (aka. attributes of the alternatives) to
decide on, and voters generally have preferential dependen-
cies among these attributes. For instance, a voter might want
a tennis court to be built only if no swimming pool is built.

In classical voting theory, voters submit their preferences as
linear orders over the set of alternatives, and then a voting rule
is applied to select one alternative to be the winner1. How-
ever, when the set of alternatives has a multiattribute structure,
the number of alternatives is exponential in the number of at-
tributes, and therefore it is not realistic to ask voters to specify
their preferences as explicit linear orders. We can consider the
following three ways to address this:

1. Decompose the vote into a set of parallel, independent
voting problems, one for each attribute. This may lead to

1Alternatively, a voting correspondence can be applied to select
multiple winners. We onl focus on voting rules in this paper.

catastrophic results as soon as some voters have preferential
dependencies among attributes [Lacy and Niou, 2000].
2. Ask voters to report their preferences in some compact
representation language, as in [Xia et al., 2008]. While this
may be practical in some cases, in the general case we are con-
fronted with two problems: the size of the input to be elicited
from the voters (exponentially large in the worst case) and the
generally very high computational complexity of computing
the outcome of the election.

3. Have the voters vote on each of the attributes in sequence
(the approach studied in this paper). That is, we decide the
value of the attributes one after the other, using a local voting
rule for each attribute. This solution has the nice features of
being elicitation-friendly and computationally easy (provided
the local rules are computationally easy to run). However,
sequential voting has two severe drawbacks. First, voters may
feel ill at ease voting when their preferences for the current
attribute depend on values of other attributes that have not
been decided yet. Second, the outcome of the process may
depend on the order in which the attributes are voted on.
Some earlier work [Lang, 2007; Xia et al., 2007] avoids
these two pitfalls of sequential voting by requiring that there
exists some order over the attributes that is consistent with
the preferences—that is, a voter’s preferences for an attribute
never depend on the values of attributes later in the order. In
this case, it is natural to vote over the attributes in this order,
because then each voter will have a clear preference for each
attribute when it is voted on. (While in principle the chair-
person could still attempt to control the election by insisting
on another order without this property, in practice this would
presumably appear very suspect to the voters.) However, as-
suming the existence of such an order is very restrictive in
general: the number of preferences (linear orders over the al-
ternatives) satisfying the restriction is exponentially smaller
than the number of possible preferences [Xia et al., 2008].
In this paper, we do not assume that there is such a natural
order in which to vote. As mentioned above, this leads to
several problems, which we now illustrate with an example.

Example 1 A joint decision has to be made about whether or
not to build a new swimming pool (S or S̄) and a new tennis
court (T or T̄). We suppose that the preferences of voters 1
to 10 are ST̄ ≻ S̄T ≻ S̄T̄ ≻ ST , those of voters 11 to 20
are S̄T ≻ ST̄ ≻ S̄T̄ ≻ ST , and those of voters 21 to 30 are
ST ≻ ST̄ ≻ S̄T ≻ S̄T̄ .

The first problem is that, regardless of the order in which

the issues are decided on, voters 1 to 20 feel ill at ease when
asked to report their preference about the first issue. They
prefer S to S̄ if and only if T̄ is chosen, so they would like
to know about the tennis court before deciding on the swim-
ming pool. However, deciding on the tennis court first leads
to similar issues, because they prefer T to T̄ if and only if S̄
is chosen. Only voters 21 to 30 can safely vote for S over S̄.2

The second problem is that in this type of situation, the out-
come of the election can depend on the order in which the at-
tributes are decided on. For example, suppose that the swim-
ming pool is decided on first, and more than half of the first 10
voters vote (optimistically) for S; then, S will be chosen over
S̄. Subsequently, given that they know that the swimming
pool will be built, 20 voters will vote against the tennis court,
so that the final outcome will be ST̄ . However, if the tennis
court is decided on first, then optimistic voting would result in
a final outcome of S̄T . As a consequence, if the chairperson
(chair) knows enough about the voters’ behavior, she will be
able to predict the outcome for each order and thus she will be
tempted to choose the order S > T if she prefers ST̄ to S̄T ,
and T > S otherwise3.
The fact that the chair has, in some situations, the ability to
influence the outcome of the election by choosing the agenda
(that is, the order in which the issues are decided on) is a
definite drawback of sequential voting. However, we might
wonder how difficult it is for the chair to control the election
in this way. There are various other ways in which a chair
might control an election, and the computational complex-
ity of some of those types of control has been considered in
several places, starting with [Bartholdi et al., 1992] and later
on in [Faliszewski et al., 2007; Hemaspaandra et al., 2007b;
2007a; Meir et al., 2008; Pini et al., 2008]. In the control
problems considered in these papers, the chair may add or re-
move candidates or voters, or fix the competition tree when
applying the “cup” rule. However, the control problem we
study here is unique because of its multiattribute nature, and,
in our opinion, also quite realistic. If we are able to prove
that this control problem is computationally hard, this would
be an argument in favor of sequential voting, because it miti-
gates the downside of agenda control.
Before we can study the complexity of the control problem,
we first need to formulate it. As we saw in the above example,
the behavior of a voter can generally not be determined from
her preferences alone. We assume that the chair knows what
every voter would do in every situation, where a situation con-
sists of a list of decisions made on some of the issues, and
another issue which is currently being voted on. In Section 2,
we formulate the problem precisely and discuss possible ways
of representing this knowledge in a compact way. In Section
3, we prove that in this setting, constructive control (decid-

2Experimental studies suggest that most voters tend to report
their preferences optimistically in such situations [Plott and Levine,
1978]; for instance, voters 1–10 would likely report a preference for
S over S̄.

3Incidentally, if the issues are voted on in parallel rather than
sequentially, then the chair has no influence over the outcome of the
election—but, again under the realistic assumption that voters tend
to vote optimistically, the outcome would be ST , which is the worst
outcome for two thirds of the electorate!

ing whether there exists an order that makes a given candidate
win) is NP-complete, which answers our main question. In
Section 4 we show that destructive control (deciding whether
there exists an order that ensures a given candidate does not
win) is also NP-complete. Lastly, we conclude in Section 5.

2 Formulating the problem

In the rest of this paper, there are a set of voters {1, . . . , n}
and a set of binary issues I = {x1, . . . ,xp}. The notions and
results introduced in this paper would easily extend to non-
binary issues, but we focus on binary issues so that we do not
have to discuss the choice of the local rule for each issue—for
binary issues, the majority rule is the obvious choice.
The input of the problem should contain the following in-
formation (known by the chair): for every voter i, every issue
xj , and every possible tuple ~z of values assigned to a sub-
set of issues not including xj , the behavior of the voter (vote
for/against xj). For instance, in Example 1, we assume that
the chair knows what every voter would say, were she asked
to vote for or against the swimming pool, in each of the fol-
lowing three situations: the swimming pool is the first issue to
be decided; we have already decided to build a tennis court;
we have already decided not to build a tennis court. Similarly,
the chair is assumed to know the voter’s behavior when voting
on the tennis court, in each of the three possible situations.

Formally, let Zi = {⊤,⊥, u}I\{xi} be the set of all pos-
sible situations when asking a voter about xi. An element
s ∈ Zi, called an i-situation (or, for short, a situation), is de-
noted by listing all variables xj in I \ {xi} with their cor-
responding values: xj (meaning that xj has already been
assigned to true (⊤)) xj (xj has already been assigned to
false (⊥)), or u(xj) (xj has not been assigned a value yet).
For instance, if I = {x1,x2,x3,x4} then the 1-situation
x2u(x3)x4 means that x2 has been assigned to ⊥, x4 to ⊤,
and x3 has not been assigned yet. The situation where none
of these issues has been assigned yet is denoted by ∅.
A voter behavior policy is a function π : {(xi, ~z) | ~z ∈

Zi} → {⊤,⊥}. π(xi, ~z) = ⊤ (resp., ⊥) means that in the
i-situation ~z, when asked to vote for or against xi, the voter
votes for xi = ⊤ (resp., xi = ⊥). In Example 1, those
among voters 1 to 10 who behave optimistically would have
the following behavior policy:

π(S, ∅)(= π(S, u(T))) = ⊤ π(S, T) = ⊥ π(S, T̄) = ⊤
π(T, ∅)(= π(T, u(S))) = ⊥ π(T, S) = ⊥ π(T, S̄) = ⊤

We may ask for a consistency condition, which we will de-
scribe shortly. First, we have to introduce the following no-
tion: let xi be an issue and consider two i-situations s, s′ sat-
isfying the following condition: there exists an issue xj such
that (a) s, s′ coincide on all issues except j; (b) s assigns
⊤ to xj and (c) s′ assigns ⊥ to xj . Then, s, s

′ are said to
be xj -conjugate, and s ∨ s′ denotes the i-situation that coin-
cides with s (and s′) for all issues other than xj , and leaves
xj unassigned. Now, a voter behavior policy π is consistent
if the following condition is met: for any issue xi and any
pair of xj -conjugate i-situations s, s′, if π(s) = π(s′) then
π(s ∨ s′) = π(s)(= π(s′)). The intuition behind consistency
is the following. Suppose we know that a voter will vote for
the swimming pool both in the case where it has already been

decided that the tennis court will be built (π(S, T) = ⊤), and
in the case where it has already been decided that it will not
be built (π(S, T̄) = ⊤). Then this voter should also vote for
the swimming pool in the situation where nothing has been
decided about the tennis court (π(S, u(T)) = ⊤). While con-
sistency is intuitively a desirable condition, psychological ex-
periments show that it is sometimes violated by individuals
[Tversky and Shafir, 1992].

Representing a behavior policy explicitly, by listing all el-
ements of Zi for every i, would require exponential space (to
be precise, exactly p · 3p−1 values have to be specified) and is
therefore infeasible for all but the smallest p. In most cases,
however, a voter’s behavior on an issue depends on only a
small subset of the other issues—just as in CP-nets [Boutilier
et al., 2004], a voter’s preference for an issue may depend
on only a small subset of the other issues. We define a con-
ditional behavior net (CB-net) over a set of binary issues
I by a directed graph G over I , and, for every xi ∈ I , a
conditional behavior table (CBT) mapping every element of

{⊤,⊥, u}ParG(xi) (where ParG(xi) denotes the set of par-
ents of xi in G), to ⊤ or ⊥. The main technical difference
between a CB-net and a CP-net over propositional variables
are that in a CB-net, the conditional table for xi specifies a
value even if some of the parents of xi are unassigned. Here
is an example of a CB-net (with I = {x1,x2,x3}):

x1 x2 x3

∅ : x1

∅ : x2

x1 : x2

x1 : x2

∅ : x3

x1u(x2) : x3 x1x2 : x3

x1u(x2) : x3 x1x2 : x3

u(x1)x2 : x3 x1x2 : x3

u(x1)x2 : x3 x1x2 : x3

CBT (x1) CBT (x2) CBT (x3)

Every CB-net Γ induces a behavior policy πΓ, defined as
follows: for every issue xi and every ~z ∈ Zi, π(xi, ~z) = ⊤
(resp., ⊥) if CBT (xi) contains an entry ~t : xi (resp., ~t : xi)

such that ~t ⊆ ~z.
The behavior policy associated with the example CB-net
above is consistent; it would not be if, instead of x1u(x2) :
x3, we had x1u(x2) : x3—because then we would have two
x2-conjugate situations, x1x2 and x1x2, such that the voter
votes for x3 in both, and yet votes for x3 in situation x1u(x2).
Let ~π = 〈π1, . . . , πn〉, where πi is the voter behavior policy
for voter i. Finally, let O be an ordering on I . The outcome
associated with O and ~π, denoted by Seq(O,~π), is defined
as follows. Without loss of generality, assume O = x1 >
. . . > xp. For the sake of simplicity, assume we have an
odd number of voters, and that every local rule is the majority
rule4. Seq(O,~π) = (v1, . . . , vp) where
• v1 = x1 (resp., x1) if for a majority of voters j ∈ {1, . . . , n}
we have πj(x1, ∅) = ⊤ (resp.,⊥);

4Recall that the issues are binary, hence the obvious choice of the
majority rule, with some tie-breaking mechanism; the assumption
that we have an odd number of voters allows us to ignore the tie-
breaking mechanism. If issues were not binary, then we would have
r1, . . . , rp be local voting rules, one for each issue.

• for every 2 ≤ i ≤ p, vi = xi (resp., xi) if for a majority of
voters j ∈ {1, . . . , n} we have πj(xi, ~zi−1) = ⊤ (resp., ⊥),
where ~zi−1 = (v1, . . . , vi−1, u(xi+1), . . . , u(xp)).
We now define the control problems that we study. We dis-
tinguish between local control, where the chair tries to deter-
mine the outcome of a single issue, and global control, where
the chair tries to determine the winning alternative (that is, the
value of all issues). We also distinguish between constructive
control, where the chair tries to ensure that a particular alter-
native or a particular value for an issue wins, and destructive
control, where the chair tries to ensure that a particular alter-
native or a particular value for an issue does not win. Thus, a
local control instance is defined by a CB-net for every voter,
a distinguished issue xi, and a value v ∈ {⊤,⊥}. The chair
can constructively (destructively) control the instance if there
exists an ordering O such that (Seq(O,~π))i = v (such that
(Seq(O,~π))i 6= v). A global control instance is defined by a
CB-net for every voter, and a distinguished alternative ~x ∈ 2I .
The chair can constructively (destructively) control the in-
stance if there exists an ordering O such that Seq(O,~π) = ~x
(such that Seq(O,~π) 6= ~x).
In two of our reductions, we make use of the following re-
sult, which states that we can simulate any (consistent or not)
weighted CB-net (that is, a CB-net with an integer weight on
each entry) whose weights are all even with a collection of
consistent CB-nets – thus the result we give below is a kind of
McGarvey theorem [McGarvey, 1953] (which states that for
every tournament T , there is a profile of which T is the major-
ity graph) for CB-nets. If π is the behavior policy correspond-

ing to CB-net Γ, and ~z ∈ {⊤,⊥, u}ParG(xi) is a valuation for
the parents of xi, then let Γ|xi:~z = π(xi, ~z

′) where ~z′ is any
valuation for all issues other than xi that agrees with ~z. That
is, Γ|

xi:~z is the CBT entry for xi given parent valuations ~z.

Proposition 1 For any CB-net Γ (with binary issues, consis-
tent or not), in which any issue xi and any valuation ~z of the
parents of xi in the dependency graph of Γ is associated with
an even5 w~z,i (which must be positive if Γ|xi:~z = ⊤ and neg-
ative if Γ|

xi:~z = ⊥), there exists a collection of consistent

CB-nets, ~Γ = (Γ1, . . . , ΓK), where K is the maximum sum
of the absolute values of the weights associated with an issue
(summing over the parents’ valuations), such that
• for any j ≤ K , the dependency graph of Γj is the same as
the dependency graph of Γ;
• for any i ≤ p, any ~z ∈ {⊤,⊥, u}ParG(xi), w~z,i = |{j ≤
K : Γj |xi:~z = ⊤}| − |{j ≤ K : Γj |xi:~z = ⊥}|. That is, the
weights in the weighted CB-net Γ correspond exactly to the
weights of the majority relation for (Γ1, . . . , ΓK).

Proof of Proposition 1: For any i ≤ p, we let Wi be the
sum of the absolute values of the weights over all valuations
of the parents of xi in the dependency graph of Γ. Because
the ordering x1, . . . ,xp of the issues is arbitrary (the CB-net
may be cyclic), we can without loss of generality assume that
K = Wp, that is, for any i ≤ p,Wp ≥ Wi. Let x1, . . . ,xk be
the parents of xp. We next show how to construct CBT (xp)

for each Γj in ~Γ. For any 1 ≤ i ≤ p − 1, CBT (xi) for
each Γj can be constructed similarly. We now prove a lemma

5Alternatively, all the weights can be odd.

whose purpose is to construct a CBT such that the consistency
condition does not cause us problems.

Lemma 1 Let x1, . . . ,xk be the parents of xp. There exists a
CBT for xp such that for any i ≤ k, any pair of xi-conjugate
p-situations s, s′, we have that xp is assigned⊤ in exactly one
of {s, s′}, and ⊥ in the other.

Proof of Lemma 1: The “parity CB-net,” which returns ⊤
when an even number of parents are set to⊤, and⊥ otherwise,
satisfies this condition. �

For any valuation s′ of ParG(xp), let fp(s
′) be the value

that the CBT from Lemma 1 returns. For any valuation s of
ParG(xp), we assume ws,p > 0 (the case where ws,p < 0
is similar). Let I(s) be the set of issues that, under s, are as-
signed a value in {⊤,⊥} (that is, not u). We define two CB-
nets for every valuation s of ParG(xp), namely, CBT 1

s (xp)
and CBT 2

s (xp). Let CBT 1
s (xp)(s

′) be ⊤ if I(s′) ⊆ I(s),
and let CBT 1

s (xp)(s
′) be fp(s

′) otherwise. CBT 2
s (xp) is al-

most the opposite: let CBT 2
s (xp)(s

′) be ⊥ if I(s′) ⊆ I(s)
and s′ 6= s, let it be ⊤ if s′ = s, and let it be ¬fp(s

′) oth-
erwise. Next, we show (1) that these CBTs do not violate
consistency, and (2) that, if we aggregate some combination
of these CBTs, then we get Γ’s weighted CBT for xp.
For (1): for any i ≤ k, any pair of i-conjugate valuations

s1, s2 of ParG(xp), if I(s1)(= I(s2)) * I(s), then con-
sistency is maintained in both CBT 1

s (xp) and CBT 2
s (xp),

because {fp(s1), fp(s2)} = {¬fp(s1),¬fp(s2)} = {⊤,⊥},
so consistency does not impose any constraint. If
I(s1)(= I(s2)) ⊆ I(s), and neither s1 nor s2 is
equal to s, then I(s1 ∨ s2) ⊆ I(s). Because of this,
CBT 1

s (xp)(s1) = CBT 1
s (xp)(s2) = CBT 1

s (xp)(s1 ∨ s2)
and CBT 2

s (xp)(s1) = CBT 2
s (xp)(s2) = CBT 2

s (xp)(s1 ∨
s2), so consistency is also maintained in this case. Finally, if
one of s1 and s2 is equal to s, then, for CBT 1

s (xp), the situ-
ation is the same as in the previous case; for CBT 2

s (xp), we
have CBT 2

s (xp)(s1) 6= CBT 2
s (xp)(s2), so consistency does

not impose any constraint.
For (2): we have CBT 1

s (xp)(s) = CBT 2
s (xp)(s) =

⊤, and for every s′ 6= s, we have CBT 1
s (xp)(s

′) 6=
CBT 2

s (xp)(s
′). Thus, they cancel each other out except on

s, where they have a combined weight of 2 on s. Hence, if we
take

ws,p

2 copies of each, we have a weight of ws,p on s (and
0 everywhere else). If we do this for every value s of xp’s
parents, then we obtain the weighted CBT of Γ for xp. The
total number of CBTs that we create in this process is K . We
use the same approach for the issues other than xp, and each
of them requires at most K CBTs. Moreover, we can take a
CBT for each issue and combine them into a single CB-net,
so that the total number of CB-nets we create is K (for the
issues that require fewer than K CBTs, we can create some
pairs of CBTs that cancel out exactly with each other). �

Of course, in Proposition 1, all the weights ws,i may have
the same absolute value, i.e.,ws,i = 2 orws,i = −2, so that Γ
is effectively an unweighted CB-net. Hence, we can simulate
a single inconsistent CB-net by a collection of consistent CB-
nets. In this case, the number of consistent CB-nets needed is
at most 2k+1, where k is the maximum in-degree of vertices in
the dependency graph of Γ. This number is polynomial when
k is bounded, as it will be in our reductions.

3 Constructive control

We now investigate the complexity of constructive control. It
turns out that both the local and global versions of construc-
tive control are computationally hard.

Proposition 2 Local constructive control is NP-complete.

Proposition 3 Global constructive control is NP-complete.

In both cases, NP-hardness holds even if every issue is bi-
nary and the local rules are majority rules, and either of the
following conditions holds: there is only one voter or all the
CB-nets are consistent and have the same dependency graphs.
While neither of these hardness results directly implies the
other, we use a single reduction to prove both results.
Proof sketch of Propositions 2 and 3. In both cases, mem-
bership in NP is straightforward. As for hardness, we use
a reduction from the restriction of HAMILTONIAN CYCLE to
graphs where each node has degree at most 3; this restriction
is still NP-complete [Garey et al., 1976]. Let G = (V, E)
be an undirected graph, where V = {0, . . . , n}. We denote
edges by ij (where i, j ∈ V , i 6= j) rather than {i, j}; ij and
ji represent the same edge. We first define the CB-nets used
in our control problem. Rather than listing the individual CB-
nets explicitly, we give the majority CB-net, which can cor-
respond either to a single not-necessarily-consistent CB-net,
or, by Proposition 1, to a collection of consistent CB-nets. In
the construction we assume the degree of each vertex is 3 for
simplicity; it is simple to adapt the construction to the case
where some vertices have degree less than 3.
1. there is an issue ij for every {i, j} ∈ E (with i < j); an
issue done(i) for every i = 0, . . . , n; and an issue done.
2. let 0i ∈ E; 0j, 0k are the other two edges with 0 as ex-
tremity; and il, im are the other two edges with i as extremity.
Then the parents of 0i in the dependency graph are 0j, 0k, il,
im and done, and the table for issue 0i is:

∅ : 0i 0j u(0k) il u(im) u(done) : 0i
0j u(0k) u(il) im u(done) : 0i u(0j) 0k il u(im) u(done) : 0i
u(0j) 0k u(il) im u(done) : 0i × × × × done : 0i

all other situations : 0i

The × notation refers to any possible status (⊤, ⊥ or unas-
signed) of the issues 0j, 0k, il and im, so, it is a shorthand for
16 conditional behaviors. “All other situations” is an abbre-
viation referring to all tuples not explicitly mentioned in the
table. Using these abbreviations or not does not change any-
thing regarding the polynomial size of the reduction, because
each issue has at most three parents in the dependency graph.
3. let ij ∈ E, i 6= 0, j 6= 0; let ik, il be the other two edges
with i as extremity, and jm, jq the other two edges with j as
extremity. Then the parents of ij in the dependency graph are
ik, il, jm, jq and done, and the table for issue ij is

ik u(il) u(jm) u(jq) u(done) : ij
u(ik) il u(jm) u(jq) u(done) : ij
u(ik) u(il) jm u(jq) u(done) : ij
u(ik) u(il) u(jm) jq u(done) : ij
×××× done : ij

all other situations : ij

4. let 0i, 0j, 0k be the three edges inG with 0 as extremity;
then the parents of done(0) in the dependency graph are 0i,
0j, 0k and the table for done(0) is

0i 0j u(0k) : done(0) 0i u(0j) 0k : done(0)

u(0i) 0j 0k : done(0) all other situations : done(0)

5. for 1 ≤ i ≤ n, let ij, ik, il be the three edges in G with
i as extremity; then, the parents of done(i) in the dependency
graph are ij, ik, il, done(i − 1), and the table for done(i) is

ij ik u(il) done(i − 1) : done(i) ij u(ik) il done(i − 1) : done(i)

u(ij) ik il done(i − 1) : done(i) all other situations : done(i)

6. the only parent of done is done(n), and its table is

done(n) : done all other situations done

Finally, the goal of the chair depends on the version (local
or global) of the constructive control problem. In the global
version (Proposition 3), it is to get the outcome ~x∗ where ev-
ery issue is assigned to ⊤. In the local version (Proposition
2), it is to get the issue done assigned to ⊤.
Note that this CB-net is not consistent. Take issue ij (i, j 6=

0). In situation (ik, il, u(jm), u(jq)), the decision is ij. In

situation (ik, il, u(jm), u(jq)), it is ij too. But, in situation
(ik, u(il), u(jm), u(jq)), the decision is ij. However, we
note that an inconsistent CB can be obtained as the majority
CB-net of a set of consistent CB-nets (Proposition 1).
The proof goes along the following lemmas.

Lemma 2 If there exists a Hamiltonian cycle, then there ex-
ists an order leading to ~x∗.

Lemma 3 For any partial assignment ~z of the issues, let S(~z)
be the following subgraph of G: ij ∈ S(~z) if and only if ij
has been assigned ⊤ under ~z. Then, as long as done has not
been assigned to ⊤, the following properties are true:
1. for every vertex i, S(~z) contains zero, one or two edges
adjacent to i (never three);
2. if S(~z) contains no edge adjacent to 0, then S(~z) is
empty;
3. if S(~z) contains one edge adjacent to 0, then there is
exactly one i 6= 0 such that S(~z) contains one edge adjacent
to i, and S(~z) is a single path going from 0 to i.
4. if S(~z) contains two edges adjacent to 0, then for every

i, S(~z) contains zero or two edges adjacent to i, and S(~z) is a
cycle including exactly the vertices i such that S(~z) contains
two edges adjacent to i.

Lemma 4 done(0) can be assigned to ⊤ if and only if there
are exactly two issues 0j, 0k that have been assigned to ⊤.

Lemma 5 For any 1 ≤ i ≤ n, done(i) can be assigned to ⊤
if and only if done(i − 1) has been assigned to ⊤, and there
are exactly two issues ij, ik that have been assigned to ⊤.

Lemma 6 done can be assigned to ⊤ if and only if there is a
Hamiltonian cycle.

We only sketch the proofs of the lemmas. For
Lemma 2, suppose w.l.o.g. that the Hamiltonian cycle is
(0, 1, 2, . . . , n, 0). Consider the following order on issues: 01,
12, . . . , n − 1 n, 0n, done(0), done(1), . . . , done(n), done,
and then all remaining issues in any order afterwards. The an-
swer given by the majority CB-net at each step is ⊤. The four
points of Lemma 3 follow from the conditional behavior ta-
bles (points 3 and 4 are proven by induction on the number of
issues assigned to ⊤). Lemmas 4 and 5 follow directly from
the behavior tables for done(i), i = 0, . . . , n. For Lemma 6,

done is assigned to ⊤ iff every done(i) has been assigned to
⊤, which, by Lemma 5, implies that for every i, exactly two
issues ij have been assigned to⊤. Let ~z be the current assign-
ment. From point 4 of Lemma 3, S(~z) is a cycle containing
every vertex of G, therefore this subgraph is a Hamiltonian
cycle. Proposition 2 follows from Lemma 6, and Proposition
3 from Lemmas 2 and 6. End of proof of Prop. 2, 3. �

We can also show an inapproximability result for global
control: unless P = NP, there does not exist a polynomial-
time algorithm that, whenever the global control instance has
a solution, returns a solution that disagrees with the desired
outcome on only a small number of issues. This result is eas-
ily obtained by modifying the reduction used in the proof of
Proposition 3 by adding an arbitrary large number of dummy
issues that can be assigned to ⊤ iff done is assigned to ⊤.
We finish this section by giving a subclass of problems
where constructive control (both local and global) is easy.

Proposition 4 If the voters’ CB-nets share the same depen-
dency graph G, and every node in G has at most one parent.
then constructive control, both local and global, is in P.

Proof sketch. For the global version, assumew.l.o.g. that ~x∗ =
x1 . . . xp. Let N be the majority CB-net obtained from the
individual CB-nets. For each issue xi, we create a simple
precedence constraint between xi and its parent xj in G. For
instance, if N contains the entry xj : xi, u(xj) : xi, then the
control of xi will succeed iff xi is decided after xj . It is then
easy to check if there exists an order on the issues such that
all of these p constraints can be satisfied. Local constructive
control can be solved in a similar way. �

4 Destructive control

Finally, we consider destructive control. For the local version,
NP-completeness is a straightforward consequence of Propo-
sition 2: being able to make sure that xi is assigned to ⊤ is
the same thing as being able to avoid that xi is assigned to ⊥.
This trivially gives us:

Proposition 5 Local destructive control is NP-complete.

However, we cannot use such an argument for the global ver-
sion; it requires a separate reduction.6

Proposition 6 Global destructive control is NP-complete.

NP-hardness holds even if every issue is binary and the local
rules are majority rules, and all the CB-nets are consistent.

Proof sketch. Membership in NP is straightforward. Hard-
ness is by reduction from the NP-complete restriction of EX-
ACT COVER BY 3-SETS (X3C) where no element occurs in
more than 3 subsets [Garey and Johnson, 1979]: given X =
{v1, . . . , vq},S = {S1, . . . , St}, where for every i ≤ t, Si ⊆
X and |Si| = 3, and for all j ≤ q, |{Si ∈ S : vj ∈ Si}| ≤ 3,
decide whether there exists S′ ⊆ S such that |S′| = q

3 , and⋃
Si∈S′ Si = X .

6Conversely, Proposition 6 also does not seem to directly im-
ply Proposition 3. In settings with a small number of alternatives,
constructive control cannot be (significantly) easier than destructive
control, because one approach for destructive control is simply to
try constructive control on every other alternative. However, this ar-
gument does not work in multiattribute settings with exponentially
many alternatives.

For any instance of this restricted version of X3C, we con-
struct a global destructive control instance as follows. Let
there be t + 1 issues, x,x1, . . . ,xt, and 2q + 1 voters,
π1, . . . , π2q+1, such that: (1) for any j ≤ t and i ≤ q, xj

is a parent of x in the dependency graph of πi iff vi ∈ Sj ,
and voter i vote for x to be ⊤ iff exactly one of the parents
of x has been assigned to ⊤; (2) for any j ≤ t and any
i ∈ {1, . . . , 2q + 1}, voter i votes for xj to be ⊤; (3) for
any i ∈ {q + 1, . . . , 2q}, voter i unconditionally votes for x
to be ⊥; (4) voter 2q + 1 unconditionally votes for x to be
⊤. Lastly, the chair wants to get an outcome different from
xx1 . . . xt.
We note first that every xi will unavoidably be assigned to

⊤. Moreover, x will be assigned to ⊤ if and only if every
voter i ≤ q votes for x. Suppose there exists an exact 3-cover
S′. Without loss of generality, S′ = {S1, . . . , S q

3

}. Then, use
the order x1 < . . . < x q

3

< x < x q

3
+1 < . . . < xt. For each

i ≤ q, vi is in exactly one element of S′, therefore every voter
i ≤ q will vote for x and x will be assigned to ⊥.
Conversely, suppose the chair can avoid xx1 . . . xt, i.e.,
can ensure that x will be assigned to ⊥, which happens only
if every voter i ≤ q votes for x. Without loss of general-
ity, let the voting order be x1 . . . ,xl,x,xl+1, . . . ,xt. S′ =
{S1, . . . , Sl} is an exact cover of S, because the fact that voter
i votes for x implies that vi is exactly in one of the Sj . �

Interestingly, destructive control becomes easy when all
voters’ CB-nets have the same dependency graphs.

Proposition 7 Assume all CB-nets share the same directed
graphG. Then global destructive control is in P.

Proof sketch. Let ~x = (x1, . . . , xn). The proof is based
on the following fact: if all CB-nets share the same directed
graphG, then there exists an orderO such that Seq(O,~π) 6= ~x
iff there exists an issue xi and a K ⊆ ParG(xi) such that a
majority of voters vote for xi in the situation {xj | xj ∈
K} ∪ {u(xj) | xj ∈ ParG(i) \ K}. Since the size of the
CB-nets is exponential in the maximum indegree of G, the
number of subsets to check is polynomial in the size of the
input, hence the result. �

5 Conclusion

In this paper we have shown that although sequential voting is
susceptible to control via the order in which the issues are de-
cided on, this control problem is NP-complete in most cases
(for all the variants of this type of control – local or global,
constructive or destructive), which is a positive argument for
using sequential voting after all. We note that the sparser the
voters’ dependency graphs, the easier the control problem is,
but also, the less likely it is that a successful control exists
(in the extreme case where voters have separable preferences,
therefore unconditional CB-nets, the chair has no power over
the outcome – therefore the control problem is trivial).
Of course, these results are worst-case results, and it would
be nice to have results about the frequency of easy control,
along the same lines as some recent results in the case of ma-
nipulation. We can also consider various generalizations of
the sequential voting framework, including allowing some is-
sues to be decided in parallel, or allowing for the chair to have
some uncertainty about voters’ preferences.

Acknowledgements

We thank anonymous reviewers for helpful discussions and
comments. Jérôme Lang is supported by the ANR project
ANR-05-BLAN-0384 “Preference Handling and Aggregation
in Combinatorial Domains.” Vincent Conitzer and Lirong
Xia are supported by the National Science Foundation under
award number IIS-0812113. Vincent Conitzer is supported
by an Alfred P. Sloan Research Fellowship, and Lirong Xia is
supported by a James B. Duke Fellowship.

References
[Bartholdi et al., 1992] J.J. Bartholdi, C.A. Tovey, and M.A. Trick.
How hard is it to control an election? Mathematical and Com-
puter Modelling, 16(27–40), 1992.

[Boutilier et al., 2004] C. Boutilier, R. Brafman, C. Domshlak,
H. Hoos, and D. Poole. CP-nets: a tool for representing and rea-
soning with conditional ceteris paribus statements. JAIR, 21:135–
191, 2004.

[Brams et al., 1998] S. Brams, D. Kilgour, and W. Zwicker. The
paradox of multiple elections. Social Choice and Welfare,
15(2):211–236, 1998.

[Faliszewski et al., 2007] P. Faliszewski, E. Hemaspaandra,
L. Hemaspaandra, and J. Rothe. Llull and copeland voting
broadly resist bribery and control. In Proc. AAAI-07, 724–730.

[Garey and Johnson, 1979] M. Garey and D. Johnson. Computers
and Intractability. W. H. Freeman and Company, 1979.

[Garey et al., 1976] M. Garey, D. Johnson, and R. Tarjan. The pla-
nar hamiltonian circuit problem is NP-complete. SIAM J. Com-
put., 5(4):704–714, 1976.

[Hemaspaandra et al., 2007a] E. Hemaspaandra, L. Hemaspaandra,
and J. Rothe. Anyone but him: The complexity of precluding an
alternative. AIJ, 171(5-6):255–285, 2007.

[Hemaspaandra et al., 2007b] E. Hemaspaandra, L. Hemaspaandra,
and J. Rothe. Hybrid elections broaden complexity-theoretic re-
sistance to control. In Proc. IJCAI-07, 1308–1314.

[Lacy and Niou, 2000] D. Lacy and E. Niou. A problem with refer-
enda. Journal of Theoretical Politics, 12(1):5–31, 2000.

[Lang, 2007] J. Lang. Vote and aggregation in combinatorial do-
mains with structured preferences. In Proc. IJCAI-07, 1366–
1371.

[McGarvey, 1953] David C. McGarvey. A theorem on the construc-
tion of voting paradoxes. Econometrica, 21(4):608–610, 1953.

[Meir et al., 2008] R. Meir, A. Procaccia, J. Rosenschein, and
A. Zohar. The complexity of strategic behavior in multi-winner
elections. JAIR, 33:149–178, 2008.

[Pini et al., 2008] M. Pini, F. Rossi, B. Venable, and T. Walsh. Deal-
ing with incomplete agents’ preferences and an uncertain agenda
in group decision making via sequential majority voting. In Proc.
KR-08, 571–578.

[Plott and Levine, 1978] C. Plott and M. Levine. A model of agenda
influence on committee decisions. The American Economic Re-
view, 68(1):146–160, 1978.

[Tversky and Shafir, 1992] A. Tversky and E. Shafir. The disjunc-
tion effect in choice under uncertainty. Psychological Science,
3:305–309, 1992.

[Xia et al., 2007] L. Xia, J. Lang, and M. Ying. Sequential voting
rules and multiple elections paradoxes. In Proc. TARK-07, 279–
288.

[Xia et al., 2008] L. Xia, V. Conitzer, and J. Lang. Voting on multi-
attribute domains with cyclic preferential dependencies. In Proc.
AAAI-08, 202-207.

