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ABSTRACT
A set of players delegate playing a game to a set of representatives,

one for each player. We imagine that each player trusts their respec-

tive representative’s strategic abilities. Thus, we might imagine that

per default, the original players would simply instruct the represen-

tatives to play the original game as best as they can. In this paper,

we ask: are there safe Pareto improvements on this default way of

giving instructions? That is, we imagine that the original players

can coordinate to tell their representatives to only consider some

subset of the available strategies and to assign utilities to outcomes

differently than the original players. Then can the original players

do this in such a way that the payoff is guaranteed to be weakly

higher than under the default instructions for all the original play-

ers? In particular, can they Pareto-improve without probabilistic

assumptions about how the representatives play games? In this

paper, we give some examples of safe Pareto improvements. We

prove that the notion of safe Pareto improvements is closely re-

lated to a notion of outcome correspondence between games. We

also show that under some specific assumptions about how the

representatives play games, finding safe Pareto improvements is

NP-complete.
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1 INTRODUCTION
Between Aliceland and Bobbesia lies a sparsely populated desert.

Until recently, neither of the two countries had any interest in the

desert. However, geologists have recently discovered that it contains

large oil reserves. Now, both Aliceland and Bobbesia would like

to annex the desert, but they worry about a military conflict that

would ensue if both countries insist on annexing.

Table 1 models this strategic situation as a normal-form game.

The strategy DM (short for “Demand with Military”) denotes a

military invasion of the desert, demanding annexation. If both

countries send their military with such an aggressive mission, the

countries fight a devastating war. The strategy RM (for “Refrain

with Mility”) denotes yielding the territory to the other country, but

building defenses to prevent an invasion of one’s original territories.

Alternatively, the countries can choose to not raise a military force
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at all, while potentially still demanding control of the desert by

sending only its leader (DL, short for “Demand with Leader”). In

this case, if both countries demand the desert, war does not ensue.

Finally, they could neither demand nor build up a mility (RL). If one

of the two countries has their military ready and the other does

not, the militarized country will know and will be able to invade

the other country. In game-theoretical terms, militarizing therefore

strictly dominates not militarizing.

Instead of making the decision directly, the parliaments of Al-

iceland and Bobbesia appoint special commissions for making this

strategic decision, led by Alice and Bob, respectively. The parlia-

ments can instruct these representatives in various ways. They can

explicitly tell them what to do – for example, Aliceland could di-

rectly tell Alice to play DM. However, we imagine that the par-

liaments trust the commissions’ judgments more than they trust

their own and hence they might prefer to give an instruction of the

type, “make whatever demands you think are best for our coun-

try” (perhaps contractually guaranteeing a reward in proportion

to the utility of the final outcome). They might not know what

that will entail, i.e., how the commissions decide what demands

to make given that instruction. However – based on their trust in

their representatives – they might still believe that this leads to

better outcomes than giving an explicit instruction.

We will also imagine these instructions are (or at least can be)

given publicly and that the commissions are bound (as if by a

contract) to follow these instructions. In particular, we imagine

that the two commissions can see each other’s instructions. Thus,

in instructing their commissions, the countries play a game with

bilateral precommitment. When instructed to play a game as best

as they can, we imagine that the commissions play that game in

the usual way, i.e., without further abilities to credibly commit or

to instruct subcommittees and so forth.

It may seem that without having their parliaments ponder equi-

librium selection, Aliceland and Bobbesia cannot do better than

leave the game to their representatives. Unfortunately, in this de-

fault equilibrium, war is still a possibility. Even the brilliant strate-

gists Alice and Bob may not always be able to resolve the difficult

equilibrium selection problem to the same pure Nash equilibrium.

In the literature on commitment devices and in particular the

literature on program equilibrium, important ideas have been pro-

posed for avoiding such bad outcomes. Imagine for a moment that

Alice and Bob will play a Prisoner’s Dilemma (rather than the De-

mand Game of Table 1). Then the default of (Defect, Defect) can be

Pareto-improved upon. Both original players (Aliceland and Bobbe-

sia) can use the following instruction for their representatives: “If

the opponent’s instruction is equal to this instruction, Cooperate;

otherwise Defect.” [11, 15, 25] Then it is a Nash equilibrium for

both players to use this instruction. In this equilibrium, (Cooperate,

Cooperate) is played and it is thus Pareto-optimal and Pareto-better

than the default.
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Player 2

DM RM DL RL

Player 1

DM −5,−5 2, 0 5,−5 5,−5
RM 0, 2 1, 1 5,−5 5,−5
DL −5, 5 −5, 5 1, 1 2, 0

RL −5, 5 −5, 5 0, 2 1, 1

Table 1: The Demand Game

In cases like the Demand Game, it is more difficult to apply this

approach to improve upon the default of simply delegating the

choice. Of course, if one could calculate the expected utility of sub-

mitting the default instructions, then one could similarly commit the

representatives to follow some (joint) mix over the Pareto-optimal

outcomes ((RM,DM), (DM, RM), (RM, RM), (DL,DL), etc.) that
Pareto-improves on the default expected utilities. However, we

will assume that the original players are unable or unwilling to

form probabilistic expectations about how the representatives play

the Demand Game, i.e., about what would happen with the default

instructions. If this is the case, then this type of Pareto-improvement

on the default is unappealing.

The goal of this paper is to show and analyze how even without

forming probabilistic beliefs about the representatives, the original

players can Pareto-improve on the default equilibrium. We will call

such improvements safe Pareto improvements (SPIs). We here briefly

give an example in the Demand Game.

The key idea is for the original players to instruct the repre-

sentatives to select only from {DL, RL}, i.e., to not raise a military.

Further, they tell them to disvalue the conflict outcome (DL,DL) as
they would disvalue the original conflict outcome of war in the de-

fault equilibrium. Overall, this means telling them to play the game

of Table 2. (Again, we could imagine that the instructions specify

Table 2 to be how Aliceland and Bobbesia financially reward Alice

and Bob.) Importantly, Aliceland’s instruction to play that game

must be conditional on Bobbesia also instructing their commission

to play that game, and vice versa. Otherwise, one of the countries

could profit from deviating by instructing their representative to

always play DM or RM (or to play by the original utility function).

The game of Table 2 is isomorphic to theDM-RM part of the orig-

inal Demand Game of Table 1. Of course, the original players know

neither how the original Demand Game nor the game of Table 2 will

be played by the representatives. However, since these games are

isomorphic, one should arguably expect them to be played isomor-

phically. For example, one should expect that (RM,DM) would be

played in the original game if and only if (RL,DL) would be played
in the modified game. However, the conflict outcome (DM,DM) is
replaced in the new gamewith the outcome (DL,DL). This outcome

is harmless (Pareto-optimal) for the original players.

Contributions. Our paper generalizes this idea to arbitrary normal-

form games and is organized as follows. In Section 2, we introduce

some notation for games and multivalued functions that we will

use throughout this paper. In Section 3, we introduce the setting of

delegated game playing for this paper and define and motivate the

concept of safe Pareto improvements in more detail. In Section 4,

Player 2’s rep.

DL RL

Player 1’s rep.

DL −5,−5 2, 0

RL 0, 2 1, 1

Table 2: A safe Pareto improvement for the Demand Game

we briefly review the the concepts of program games and program

equilibrium and show that SPIs can be implemented as program

equilibria. In Section 5, we introduce a notion of outcome corre-

spondence between games. This relation expresses the original

players’ beliefs about similarities between how the representatives

play different games. For example, in our example, the Demand

Game of Table 1 (arguably) corresponds to the game of Table 2 in

that the representatives (arguably) would play (DM,DM) in the

original game if and only if they play (DL,DL) in the new game,

and so forth. We also show some basic results (reflexivity, transitiv-

ity, etc.) about the outcome correspondence relation on games. In

Section 6 we show that the notion of outcome correspondence is

central to deriving SPIs. In particular, we show that a game Γ𝑠 is an
SPI on another game Γ if and only if there is a Pareto-improving

outcome correspondence relation between Γ𝑠 and Γ.
To derive SPIs, we need to make some assumptions about out-

come correspondence, i.e., about which games are played in similar

ways by representatives. We give two very weak assumptions of

this type in Section 7. The first is that the representatives play

isomorphic games isomorphically. The second is that the represen-

tatives’ play is invariant under the removal of strictly dominated

strategies. For example, we assume that in the Demand Game the

representatives only play DM and RM. Moreover we assume that

we could remove DL and RL from the game and the representatives

would still play the same strategies as in the original Demand Game

with certainty. Our SPI for the Demand Game can be proven using

these assumptions. Section 8 shows that determining whether there

exists an SPI based on these assumptions is NP-complete. Section 9

considers a different setting in which we allow the original players

to let the representatives choose from newly constructed strategies

whose corresponding outcomes map arbitrarily onto feasible payoff

vectors from the original game. In this new setting, finding SPIs can

be done in polynomial time. We conclude by discussing the problem

of selecting between different SPIs on a given game (Section 10)

and giving some ideas for directions for future work (Section 11).

2 PRELIMINARIES
2.1 Games
We here recall some basic definitions from game theory. An𝑛-player
game is a tuple (𝐴, u) of a set 𝐴 = 𝐴1 × ... × 𝐴𝑛 of (pure) strategy
profiles (or outcomes) and a function u : 𝐴 → R𝑛 that assigns to

each outcome a utility for each player. Instead of, (𝐴, u) will also
write (𝐴1, ..., 𝐴𝑛, 𝑢1, ..., 𝑢𝑛). We say that 𝑎𝑖 ∈ 𝐴𝑖 strictly dominates
𝑎′
𝑖
∈ 𝐴𝑖 if for all 𝑎−𝑖 ∈ 𝐴−𝑖 , 𝑢𝑖 (𝑎𝑖 , 𝑎−𝑖 ) > 𝑢𝑖 (𝑎′𝑖 , 𝑎−𝑖 ). For any given

game Γ = (𝐴, u), we will call any game Γ′ = (𝐴′, u′) a subset game
of Γ if 𝐴′

𝑖
⊆ 𝐴𝑖 for 𝑖 = 1, ..., 𝑛. Note that a subset game may assign

different utilities to outcomes than the original game. For any set of
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strategies 𝑆 , we denote by Γ − 𝑆 B ((𝐴1 − 𝑆) × ...., (𝐴𝑛 − 𝑆), u) the
game that arises from Γ by removing the strategies 𝑆 for all players.

We say that some utility vector y ∈ R𝑛 is a Pareto-improvement

on (or is Pareto-better than) y′ ∈ R𝑛 if 𝑦𝑖 ≥ 𝑦′
𝑖
for 𝑖 = 1, ..., 𝑛. We

will also denote this by y ≥ y′. Note that, contrary to convention,

we allow y = y′. Whenever we require one of the inequalities to

be strict, we will say that y is a strict Pareto improvement on y′.
In a given game, we will also say that an outcome a is a Pareto-

improvement on another outcome a′ if u(a) ≥ u(a′). We say that

y is Pareto-optimal or Pareto-efficient relative to some 𝑆 ⊂ R𝑛 if

there is no element of 𝑆 that strictly Pareto-dominates y.
The Demand Game of Table 1 is an example of a game that we

will use throughout this paper. As noted earlier,DM and RM strictly

dominate DL and RL. The game of Table 2 is a subset game of the

Demand Game.

2.2 Multivalued functions
For sets𝑀 and 𝑁 , a multi-valued function Φ : 𝑀 ⊸ 𝑁 is a function

which maps each element𝑚 ∈ 𝑀 to a set Φ(𝑚) ⊆ 𝑁 . For a subset

𝑄 ⊆ 𝑀 , we define Φ(𝑄) B ⋃
𝑚∈𝑄 Φ(𝑚). Note that Φ(𝑄) ⊆ 𝑁

and that Φ(∅) = ∅. For any set𝑀 , we define the identity function

id𝑀 : 𝑀 ⊸ 𝑀 : 𝑚 → {𝑚}. Also, for two sets 𝑀, 𝑁 , we define

all𝑀,𝑁 : 𝑀 ⊸ 𝑁 : 𝑚 ↦→ 𝑁 . We define the inverse Φ−1
: 𝑁 ⊸

𝑀 : 𝑛 ↦→ {𝑚 ∈ 𝑀 | 𝑛 ∈ Φ(𝑚)}. Note that Φ−1 (∅) = ∅ for any

multi-valued function Φ. For sets𝑀, 𝑁,𝑄 and functions Φ : 𝑀 ⊸
𝑁 , Ψ : 𝑁 ⊸ 𝑄 , we define the composite Ψ ◦ Φ : 𝑀 ⊸ 𝑄 : 𝑚 ↦→
Ψ(Φ(𝑚)). As with regular functions, composition of multi-valued

functions is associative. We say that Φ : 𝑀 ⊸ 𝑁 is single-valued
if |Φ(𝑚) | = 1 for all𝑚 ∈ 𝑀 . Whenever a multi-valued function is

single-valued, we can apply many of the terms for regular functions.

For example, we will take injectivity, surjectivity, and bijectivity for

single-valued functions to have the usual meaning. We will never

apply these notions to non-single-valued functions.

3 DELEGATION AND SAFE PARETO
IMPROVEMENTS

We consider a setting in which a given game Γ is played through

what we will call representatives. For example, the representatives

could be humans whose behavior is determined or incentivized by

some contract à la the principal–agent literature [14].

We imagine that one way in which the representatives can be

instructed is to in turn play a subset game Γ𝑠 = (𝐴𝑠
1
⊆ 𝐴1, ..., 𝐴

𝑠
𝑛 ⊆

𝐴𝑛, u𝑠 ) of the original game,without necessarily specifying a strategy
or algorithm for solving such a game. We emphasize, again, that u𝑠

is allowed to be a vector of entirely different utility functions. For

any subset game Γ𝑠 , we denote by Π(Γ𝑠 ) the outcome that arises

if the representatives play the subset game Γ𝑠 of Γ. Because in

many games, it is not clear what the right choice is, the original

players might be uncertain about Π(Γ𝑠 ) for many games Γ𝑠 . We

will therefore model each Π(Γ𝑠 ) as a random variable.

The original players trust their representatives to the extent that

we take Π(Γ) to be a default way for the game to played for any Γ.
For example, in the Game of Chicken, it is not clear what the right

action is. Thus, if one can simply delegate the decision to someone

with more relevant expertise, that is the first option one would

consider.

We are interested in whether and how the original players can

jointly Pareto-improve on the default. Of course, one option is to

compute the expected utilities in the default (E [u(Π(Γ))]) and then
let the representatives play a distribution over outcomes whose

expected utility exceeds that default expected utility. However, this

is unrealistic if Γ is a complex game with multiple Nash equilibria.

For one, the precise point of delegation is that the original players

are unable or unwilling to properly evaluate Γ. Second, there is no
widely agreed upon, universal procedure for selecting an action in

the face of equilibrium selection problems.

We address this problem in a typical way. Essentially, we require

of any attempted improvement that it incurs no regret in the worst-

case. That is, we are interested in subset games Γ𝑠 that are Pareto
improvements with certainty under weak and purely qualitative

assumptions about Π.

Definition 3.1. Let Γ𝑠 be a subset game of Γ. We say Γ𝑠 is a

safe Pareto improvement (SPI) on Γ if u(Π(Γ𝑠 )) ≥ u(Π(Γ)) with
certainty. We say that Γ𝑠 is a strict SPI if furthermore, there is a

player 𝑖 s.t. 𝑢𝑖 (Π(Γ𝑠 )) > 𝑢𝑖 (Π(Γ𝑠 )) with positive probability.

4 PROGRAM EQUILIBRIUM
So far, we have been vague about the details of the strategic situation

that the original players face in instructing their representatives.

From what set of actions can they choose? How can they jointly

let the representatives play some new subset game Γ𝑠? Are SPIs
Nash equilibria of the meta game played by the representatives?

In this section, we briefly describe one way to fill this gap by dis-

cussing the concept of program games and program equilibrium

[3, 6, 8, 17, 25]. This section is essential to understanding why

SPIs are relevant. However, the remaining technical content of this

paper does not rely on this section and the main ideas presented

here are straightforward from previous work. For more detail, see

Appendix A.

For any game Γ = (𝐴, u), the program equilibrium literature

considers the following meta game. First, each player 𝑖 chooses

from a set of computer programs. Each program then receives as

input a vector containing everyone else’s chosen program. Each

player 𝑖’s program then returns an action from 𝐴𝑖 , player 𝑖’s set of

actions in Γ. Together these actions then form an outcome a ∈ 𝐴 of

the original game. Finally, the utilities u(a) are realized according

to the utility function of Γ. The meta game can be analyzed like

any other game. Its Nash equilibria are called program equilibria.
Importantly, the program equilibria can implement payoffs not

implemented by any Nash equilibria of Γ itself. For example, in

the Prisoner’s Dilemma, both players can submit a program that

says: “If the opponent’s chosen computer program is equal to this

computer program, Cooperate; otherwise Defect.” [11, 15, 25] This

is a program equilibrium which implements mutual cooperation.

In the setting for our paper, we similarly imagine that each player

𝑖 can choose from a set of programs that in turn choose from 𝐴𝑖 .

However, the types of program that we have in mind here are more

sophisticated than those typically considered in the program equi-

librium literature. Specifically we imagine that the programs are

executed by intelligent representatives who are themselves able to

competently choose an action for player 𝑖 in any given game Γ𝑠 ,
without the original player having to describe how this choice is



AAMAS ’21, May 3–7, 2021, Online Caspar Oesterheld and Vincent Conitzer

to be made. The original player may not even understand much

about this program other than that it generally plays well. Thus, in

addition to the elementary instructions used in a typical computer

program (branches, comparisons, arithmetic operations, etc.), we

allow player 𝑖 to use an instruction “Play Π𝑖 (Γ𝑠 )” in the program

she submits. To jointly let the representatives play, e.g., the SPI Γ𝑠

of Table 2 on the Demand Game of Table 1, the representatives

can both use an instruction that says, “If the opponent’s chosen

program is analogous to this one, play Π𝑖 (Γ𝑠 ); otherwise play DM”.

Assuming some minimal rationality requirements on the represen-

tatives (i.e., on how “play Π𝑖 (Γ𝑠 )” is implemented), this is a Nash

equilibrium. More generally, we can prove the following result (see

Appendix A for a proof).

Theorem 4.1. Let Γ be a game and Γ𝑠 be an SPI of Γ. Now consider
a program game on Γ, where each player 𝑖 can choose from a set of
computer programs that output actions for Γ. In addition to the normal
kind of instructions, we allow the use of the command “play Π𝑖 (Γ′)”
for any subset game Γ′ of Γ. Finally, assume that Π(Γ) guarantees
each player 𝑖 at least that player’s minimax utility (a.k.a. threat point)
in the base game Γ. Then Π(Γ𝑠 ) is played in a program equilibrium,
i.e., in a Nash equilibrium of the program game.

As an alternative to having the original players choose contracts

separately, we could imagine the use of jointly signed contracts

which only come into effect once signed by all players [cf. 12, 16].

Also compare earlier work by Sen [24] and [21], which we discuss

in Appendix B.

5 OUTCOME CORRESPONDENCE BETWEEN
GAMES

In this section, we introduce a notion of outcome correspondence,

which we will see is essential to constructing SPIs.

Definition 5.1. Consider two games Γ = (𝐴1, ..., 𝐴𝑛, u) and Γ′ =
(𝐴′

1
, ..., 𝐴′

𝑛, u′). We write Γ ∼Φ Γ′ for Φ : 𝐴 ⊸ 𝐴′
if Π(Γ′) ∈

Φ(Π(Γ)) with certainty.

Note that Γ ∼Φ Γ′ is a statement about Π, i.e., about how the

representatives choose. Whether such a statement holds generally

depends on the specific representatives being used. In Section 7, we

describe two general circumstances under which it seems plausible

that Γ ∼Φ Γ′. For example, if two games Γ and Γ′ are isomorphic,

then one might expect Γ ∼Φ Γ′, where Φ is constructed from the 𝑛

isomorphisms of the particular action spaces.

We now state some basic facts about the relation ∼, many of

which we will use throughout this paper.

Lemma 5.2. Let Γ = (𝐴, u), Γ′ = (𝐴′, u′), Γ̂ = (𝐴, û) andΦ,Ξ : 𝐴⊸
𝐴′, Ψ : 𝐴′⊸ 𝐴.

(1) Reflexivity: Γ ∼
id𝐴

Γ, where id𝐴 : 𝐴⊸ 𝐴 : a ↦→ {a}.
(2) Symmetry: If Γ ∼Φ Γ′, then Γ′ ∼Φ−1 Γ.
(3) Transitivity: If Γ ∼Φ Γ′ and Γ′ ∼Ψ Γ̂, then Γ ∼Ψ◦Φ Γ̂.
(4) If Γ ∼Φ Γ′ and Φ(a) ⊆ Ξ(a) for all a ∈ 𝐴, then Γ ∼Ξ Γ′.
(5) Γ ∼

all𝐴,𝐴′ Γ
′, where all𝐴,𝐴′ : 𝐴⊸ 𝐴′

: a ↦→ 𝐴′.
(6) If Γ ∼Φ Γ′ and Φ(a) = ∅, then Π(Γ) ≠ a with certainty.

For completness, we prove these in Appendix C. Items 1–3 show

that ∼ has properties resembling those of an equivalence relation.

Note, however, that since ∼ is not a binary relationship, ∼ itself

cannot be an equivalence relation in the usual sense. Item 4 states

that we can make an outcome correspondence claim less precise

and it will still hold true. Item 5 states that in the extreme, it is

always Γ ∼
all𝐴,𝐴′ Γ

′
, where all𝐴,𝐴′ is the trivial, maximally impre-

cise outcome correspondence function that confers no information.

Item 6 shows that ∼ can be used to express the elimination of out-

comes, i.e., the belief that a particular outcome (or strategy) will

never occur.

6 SAFE PARETO IMPROVEMENTS THROUGH
OUTCOME CORRESPONDENCE

We now show that as advertised, outcome correspondence is closely

tied to SPIs. The following theorem shows not only how outcome

correspondences can be used to find (and prove) SPIs. It also shows

that any SPI requires an outcome correspondence relation with

what we will call a Pareto-improving correspondence function.

Theorem 6.1. Let Γ = (𝐴, u) be a game and Γ𝑠 = (𝐴𝑠 , u𝑠 ) be a
subset game of Γ. Then Γ𝑠 is an SPI on Γ if and only if there is Φ such
that Γ ∼Φ Γ𝑠 and for all a ∈ 𝐴 it is for all a𝑠 ∈ Φ(a) the case that
u(a𝑠 ) ≥ u(a).

Proof. ⇐: By definition,Π(Γ𝑠 ) ∈ Φ(Π(Γ))with certainty. Hence,
for 𝑖 = 1, 2, 𝑢𝑖 (Π(Γ𝑠 )) ∈ 𝑢𝑖 (Φ(Π(Γ))) with certainty. Hence, by as-

sumption about Φ, with certainty, 𝑢𝑖 (Π(Γ𝑠 )) ≥ 𝑢𝑖 (Π(Γ)).
⇒: Assume that 𝑢𝑖 (Π(Γ)) ≥ 𝑢𝑖 (Π(Γ𝑠 )) with certainty for 𝑖 =

1, 2. We define Φ : 𝐴 → 𝐴𝑠
: a ↦→ {a𝑠 ∈ 𝐴𝑠 | u(a𝑠 ) ≥ u(a)}. It is

immediately obvious that Φ is Pareto-improving as required. Also,

whenever Π(Γ) = a and Π(Γ𝑠 ) = a𝑠 for any a ∈ 𝐴 and a𝑠 ∈ 𝐴𝑠
, it is

(by assumption) with certainty u(a𝑠 ) ≥ u(a). Thus, by definition of

Φ, it holds that a𝑠 ∈ Φ(a). We conclude that Γ ∼Φ Γ𝑠 as claimed. □

Note that the theorem concerns weak SPIs and therefore allows

the case where with certainty u(Π(Γ)) = u(Π(Γ𝑠 )). To show that

some Γ𝑠 is a strict SPI, we need additional information about which

outcomes occur with positive probability.

We now illustrate how outcome correspondences can be used

to derive the SPI for the Demand Game from the introduction

as per Theorem 6.1. Of course, at this point we do not have any

assumptions about when games are equivalent. We will introduce

some in the following section. Nevertheless, we can already sketch

the argument. Let Γ be the Demand Game of Table 1. First, it seems

plausible that Γ is in some sense equivalent to Γ′, where Γ′ =

Γ − {DL, RL} is the game that results from removing DL and RL

for both players from Γ. Again, strict dominance could be given as

an argument. We can formalize this as Γ ∼Φ Γ′, where Φ(𝑎1, 𝑎2) =
{(𝑎1, 𝑎2)} if 𝑎1, 𝑎2 ∈ {DM, RM} and Φ(𝑎1, 𝑎2) = ∅ otherwise. In a

second step, it seems plausible that Γ′ ∼Ψ Γ𝑠 , where Γ𝑠 is the game

of Table 2 and Ψ is the isomorphism between Γ′ and Γ𝑠 . Finally, we
can use transitivity to obtain Γ ∼Ψ◦Φ Γ𝑠 . To see that Ψ ◦Φ is Pareto-

improving for the original utility functions of Γ, notice that Φ does

not change utilities at all. Ψ maps the conflict outcome (DM,DM)
onto the outcome (DL,DL), which is better for both original players.
Other than that, Ψ, too, does not change the utilities. Hence, Ψ ◦ Φ
is Pareto-improving. By Theorem 6.1, Γ𝑠 is therefore an SPI on Γ.

In principle, Theorem 6.1 does not hinge on Π(Γ) and Π(Γ𝑠 )
resulting from playing games. An analogous result holds for any
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random variables over 𝐴 and 𝐴𝑠
. In particular, this means that

Theorem 6.1 applies also if the representatives receive other kinds of

instructions (cf. Section 4). However, it seems hard to establish non-

trivial outcome correspondences between Π(Γ) and other types

of instructions. Still, the use of more complicated instructions can

be used to derive different kinds of SPIs. For example, if there

are different game SPIs, then the original players could tell their

representatives to randomize between them in a coordinated way.

7 ASSUMPTIONS ABOUT OUTCOME
CORRESPONDENCE

To make any claims about how the original players should play the

meta-game, i.e., about what instructions they should submit, we

have to make assumptions about how the representatives choose

and (by Theorem 6.1) about outcome correspondence in particular.

We here make two fairly weak assumptions. The first is that the

representatives play two isomorphic games isomorphically.

Assumption 7.1. Let Γ = (𝐴, u) and Γ′ = (𝐴′, u′) be two games
for which there are single-valued bijections Φ𝑖 : 𝐴𝑖 → 𝐴′

𝑖
for 𝑖 =

1, ..., 𝑛 such that u(𝑎1, ..., 𝑎𝑛) = u′(Φ1 (𝑎1), ...,Φ𝑛 (𝑎𝑛)) for all a ∈ 𝐴.
Then for one tuple Φ of such bijections, Γ ∼Φ Γ′.

Similar desiderata have been discussed in the context of equi-

librium selection, e.g., by Harsanyi and Selten [10, Chapter 3.4].

In fact, they consider a generalization in which the utilities are

allowed to be linear transformations of each other. Although this

generalization is extremely plausible, we omit it here for simplicity.

One could criticize Assumption 7.1 by referring to focal points

(introduced by Schelling [22, pp. 54–58]) as an example where con-

text and labels of strategies matter. A possible response might be

that in games where context plays a role, that context should be

included as additional information and not be considered part of

(𝐴, u). Assumption 7.1 would then either not apply to such games

with (relevant) context or would require one to, in some way, trans-

late the context along with the strategies. However, in this paper

we will not formalize context, and assume that there is no decision-

relevant context.

Assumption 7.2. Let Γ = (𝐴, u) be an arbitrary 𝑛-player game
where 𝐴1, ..., 𝐴𝑛 are pairwise disjoint, and 𝑎𝑖 ∈ 𝐴𝑖 be strictly domi-
nated by some other strategy 𝑎𝑖 ∈ 𝐴𝑖 . Then Γ ∼Φ Γ − {𝑎𝑖 }, where for
all 𝑎−𝑖 ∈ 𝐴−𝑖 , Φ(𝑎𝑖 , 𝑎−𝑖 ) = ∅ and Φ(𝑎𝑖 , 𝑎−𝑖 ) = {(𝑎𝑖 , 𝑎−𝑖 )} whenever
𝑎𝑖 ≠ 𝑎𝑖 .

Assumption 7.2 expresses that representatives should never play

strictly dominated strategies. Moreover, it states that we can re-

move strictly dominated strategies from a game and the resulting

game will be played in the same way by the representatives. For

example, this implies that when evaluating a strategy 𝑎𝑖 , the repre-

sentatives do not take into account how many other strategies 𝑎𝑖
strictly dominates. Assumption 7.2 also allows (via Transitivity of

∼ as per Lemma 5.2.3) the iterated removal of strictly dominated

strategies. The notion that we can (iteratively) remove strictly dom-

inated strategies is common in game theory [13, 18, 19, Section 2.9,

Chapter 12] and has rarely been questioned. It is also implicit in

the solution concept of Nash equilibrium – if a strategy is removed

by iterated strict dominance, that strategy is played in no Nash

equilibrium. However, like the concept of Nash equilibrium, the

elimination of strictly dominated strategies becomes implausible if

the game is not played in the usual way. In particular, for Assump-

tion 7.2 to hold, we will in most games Γ have to assume that the

representatives cannot in turn make credible precommitments (or

delegate to further subrepresentatives) or play the game iteratively

[2].

With Assumptions 7.1 and 7.2 we can finally state our example

SPIs formally: Our proofs are in Appendix D.

Proposition (Example) 7.1. Let Γ be the Prisoner’s Dilemma
and Γ𝑠 = (𝐴𝑠

1
, 𝐴𝑠

2
, 𝑢𝑠

1
, 𝑢𝑠

2
) be any subset game of Γ with 𝐴𝑠

1
= 𝐴𝑠

2
=

{Cooperate}. Then under Assumption 7.2, Γ𝑠 is a strict SPI on Γ.

Proposition (Example) 7.2. Let Γ be the DemandGame of Table 1
and Γ𝑠 be the subset game described in Table 2. Under Assumptions 7.1
and 7.2, Γ𝑠 is an SPI on Γ. Further, if 𝑃 (Π(Γ)=(DM,DM)) > 0, Γ𝑠 is
a strict SPI.

8 COMPUTING SAFE PARETO
IMPROVEMENTS

In this section, we ask how computationally costly it is for the

original players to identify for a given game Γ a non-trivial SPI Γ𝑠 .
In particular, we ask whether a given game Γ has a non-trivial SPI

that can be proved using only Assumptions 7.1 and 7.2, Transitivity

(Lemma 5.2.3) and Theorem 6.1. Formally:

Definition 8.1. The SPI decision problem consists in deciding for

any given Γ, whether there is a sequence of outcome correspon-

dences Φ1, ...,Φ𝑘 and a sequence of subset games Γ0 = Γ, Γ1, ..., Γ𝑘

of Γ s.t.:

(1) (Non-triviality:) If we fully reduce Γ𝑘 and Γ using iterated

strict dominance (Assumption 7.2), the two resulting games

are not equal. (Of course, they are allowed to be isomorphic.)

(2) For 𝑖 = 1, ..., 𝑘 , Γ𝑖−1 ∼Φ𝑖 Γ𝑖 is valid by a single application of

either Assumption 7.1 or Assumption 7.2.

(3) For all a ∈ 𝐴, and whenever a𝑠 ∈ (Φ𝑘 ◦ Φ𝑘−1 ◦ ... ◦ Φ1) (a),
it is the case that 𝑢 (a𝑠 ) ≥ u(a).

For the strict SPI decision problem, we further require:

(4.) There is a player 𝑖 and an outcome a that survives iter-

ated elimination of strictly dominated strategies from Γ s.t.

𝑢𝑖 ((Φ𝑘 ◦ Φ𝑘−1 ◦ ... ◦ Φ1) (a)) > 𝑢𝑖 (a).
Many variants of this problem may be considered. For example,

we might generalize it to allow imposing additional properties on

the SPI. This will generally not change the computational complex-

ity of the problem. One may also wish to compute all SPIs, or – in

line with multi-criteria optimization [7, 27] – all SPIs that cannot in

turn be safely improved upon. However, in general there may exist

exponentially many such SPIs. To retain any hope of developing

an efficient algorithm, one would therefore have to first develop a

more efficient representation scheme [cf. 20, Sect. 16.4].

Theorem 8.2. The (strict) SPI decision problem is NP-complete,
even for 2-player games.

Proposition 8.3. For games Γ with |𝐴1 | + ... + |𝐴𝑛 | =𝑚 that can
be reduced (via iterative application of Assumption 7.2) to a game
Γ′ with |𝐴′

1
| + ... + |𝐴′

𝑛 | = 𝑙 , the (strict) SPI decision problem can be
solved in 𝑂 (𝑚𝑙 ).



AAMAS ’21, May 3–7, 2021, Online Caspar Oesterheld and Vincent Conitzer

The full proof is tedious (see Appendix E), but the main idea

is simple. To find an SPI on Γ based on Assumptions 7.1 and 7.2,

one has to first iteratively remove all strictly dominated actions to

obtain a reduced game Γ′, which the representatives would play

the same as the original game. This can be done in polynomial time.

One then has to map the actions Γ′ onto the original Γ in such a

way that each outcome in Γ′ is mapped onto a weakly Pareto-better

outcome in Γ. Our proof of NP-hardness works by reducing from

the subgraph isomorphism problem, where the payoff matrices of

Γ′, Γ represent the adjacency matrices of the graphs.

Besides being about a specific set of assumptions about ∼, note
that Theorem 8.2 and Proposition 8.3 also assume that the utility

function of the game is represented explicitly in normal form as

a payoff matrix. If we changed the game representation (e.g., to

boolean circuits, extensive form game trees, quantified boolean

formulas, or even Turing machines), this can affect the complexity

of the SPI problem [cf. 9]. In fact, even reducing a game using strict

dominance by pure strategies – which contributes only insignifi-

cantly to the complexity of the SPI problem for normal-form games

– is difficult in some game representations [4, Section 6].

9 SAFE PARETO IMPROVEMENTS UNDER
IMPROVED COORDINATION

In this section, we imagine that the players are able to simply

invent new token strategies with new payoffs that arise frommixing

existing feasible payoffs. To define this formally, we first define for

any game Γ = (𝐴, u),

C(Γ) B u(Δ(𝐴)) =
{∑
a∈𝐴

𝑝au(a)
����� ∀a∈𝐴:𝑝a∈[0, 1], ∑

a∈𝐴
𝑝a = 1

}
to be the set of feasible coordinated payoff vectors of Γ, which is

exactly the convex closure of u(𝐴), i.e., of the deterministically

achievable utilities of the original game.

For any game Γ, we then imagine that in addition to subset games,

the players can let the representatives play a perfect-coordination
token game (𝐴𝑠 , u𝑠 , u𝑒 ), where for all 𝑖 ,𝐴𝑠

𝑖
∩𝐴𝑖 = ∅ and𝑢𝑠

𝑖
: 𝐴𝑠 → R

are arbitrary utility functions to be used by the representatives and

u𝑒 : 𝐴𝑠 → C(Γ) are the utilities that the original players assign to

the token strategies.

The instruction (𝐴𝑠 , u𝑠 , u𝑒 ) lets the representatives play the

game (𝐴𝑠 , u𝑠 ) as usual. However, the strategies 𝐴𝑠
are imagined

to be meaningless token strategies which do not resolve the given

game Γ. Once some token strategies a𝑠 are selected, these are

translated into some probability distribution over 𝐴, i.e., over out-

comes of the original game, thus giving rise to (expected) utilities

u𝑒 (a𝑠 ) ∈ C(Γ). These distributions and thus utilities are specified

by the original players. We here imagine in our definition of C(Γ)
that these distributions over 𝐴 could require the representatives to

correlate their choices for the original game for any given a𝑠 .

Definition 9.1. Let Γ be a game. A perfect-coordination SPI
for Γ is a perfect-coordination token game (𝐴𝑠 , u𝑠 , u𝑒 ) for Γ s.t.

u𝑒 (Π(𝐴𝑠 , 𝑢𝑠 )) ≥ u(Π(Γ)) with certainty. We call (𝐴𝑠 , u𝑠 , u𝑒 ) a
strict perfect-coordination SPI if there furthermore is a player 𝑖

for whom 𝑢𝑒
𝑖
(Π(𝐴𝑠 , 𝑢𝑠 )) > 𝑢𝑖 (Π(Γ)) with positive probability.

As an example, imagine that Γ is just the DM-RM subset game

of the Demand Game of Table 1. Then, intuitively, an SPI under

improved coordination could consist of the original players telling

the representatives, “Play as if you were playing the DM-RM subset

game of the Demand Game, but whenever you find yourself play-

ing (DM,DM), randomize [according to some given distribution]

between the other (Pareto-optimal) outcomes instead”. Formally,

𝐴𝑠
1
= {�̂�, 𝑅}, 𝐴𝑠

2
= {�̂�, 𝑅} would then consist of tokenized versions

of the original strategies. The utility functions 𝑢𝑠
1
, 𝑢𝑠

2
are then sim-

ply the same as in the original Demand Game except that they are

applied to the token strategies. E.g., u𝑠 (�̂�, 𝑅) = (2, 0). The utilities
for the original players remove the conflict outcome. For example,

the original players might specify u𝑒 (�̂�, �̂�) = (1, 1), represent-
ing that the representatives are supposed to play (RM, RM) in the

(�̂�, �̂�) case. For all other outcomes (𝑎1, 𝑎2), it must be the case

that u𝑒 (𝑎1, 𝑎2) = u𝑠 (𝑎1, 𝑎2) because the other outcomes cannot be

Pareto-improved upon. As with our earlier SPIs for the Demand

Game, Assumption 7.1 implies that Γ ∼Φ Γ𝑠 , where Φ maps the

original conflict outcome (DM,DM) onto the Pareto-optimal (�̂� ,�̂�).

Relative to the SPIs considered up until now, these new types

of instructions put significant additional requirements on how the

representatives interact. They now have to engage in a two-round

process of first choosing and observing one another’s token strate-

gies and then playing the corresponding distribution over outcomes

from the original game. Further, it must be the case that this ad-

ditional coordination does not affect the payoffs of the original

outcomes. The latter may not be the case in, e.g., the Game of

Chicken. That is, we could imagine a Game of Chicken in which

coordination is possible but that the rewards of the game change

if the players do coordinate. After all, the underlying story in the

Game of Chicken is that the positive reward (admiration from peers)

is attained precisely for accepting a grave risk.

With these more powerful ways to instruct representatives, we

can now replace individual outcomes of the default game ad libi-
tum. For example, in the reduced Demand Game, we singled out

the outcome (DM,DM) as Pareto-suboptimal and replaced it by

a Pareto-optimal outcome, while keeping all other outcomes the

same. This allows us to construct SPIs in many more games then

before.

Definition 9.2. The strict full-coordination SPI decision problem
consists in deciding for any given Γ whether under Assumption 7.1

there is a perfect-coordination SPI Γ𝑠 for Γ.

Lemma 9.3. For a given 𝑛-player game Γ and payoff vector y ∈ R𝑛 ,
it can be decided by linear programming and thus in polynomial time
whether y is Pareto-optimal in C(Γ).

For completeness the linear program is given in Appendix F.

Based on Lemma 9.3, Algorithm 1 decides whether there is a strict

perfect-coordination SPI for a given game Γ.
It is easy to see that this algorithm runs in polynomial time (in

the size of, e.g., the normal form representation of the game). It is

also correct: if it returns True, simply replace the Pareto-suboptimal

outcome while keeping all other outcomes the same; if it returns

False, then all outcomes are Pareto-optimal within C(Γ) and so

there can be no strict SPI. We summarize this result in the following

proposition.
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Algorithm 1: An algorithm for deciding the strict perfect-

coordination SPI problem.

Data: Game Γ, set supp(Π(Γ)
1 for a ∈ supp(Π(Γ)) do
2 if u(a) is Pareto-suboptimal within C(Γ) then
3 Return True;

4 Return False;

Proposition 9.4. Assuming supp(Π(Γ)) is known and that As-
sumption 7.1 holds, it can be decided in polynomial time whether
there is a strict perfect-coordination SPI.

From the problem of deciding whether there are strict SPIs un-

der improved coordination at all, we move on to the question of

what different perfect-coordination SPIs there are. In particular, one

might ask what the cost is of only considering safe Pareto improve-

ments relative to acting on a probability distribution over Π(Γ) and
the resulting expected utilities E [u(Π(Γ))]. We start with a lemma

that directly provides a characterization. So far, all the considered

perfect-coordination SPIs (𝐴𝑠 , u𝑠 , u𝑒 ) for a game (𝐴, u) have con-
sisted in letting the representatives play a game (𝐴𝑠 , u𝑠 ) that is
isomorphic to the original game, but Pareto-improves (from the

original players’ perspectives, i.e., u𝑒 ) at least one of the outcomes.

It turns out that we can restrict attention to this very simple type

of SPI under improved coordination.

Lemma 9.5. Let Γ = ({𝑎1
1
, ..., 𝑎

𝑙1
1
}, ..., {𝑎1𝑛, ..., 𝑎

𝑙𝑛
𝑛 }, u) be any game.

Let Γ′ be a perfect-coordination SPI on Γ. Then we can define u𝑒 with
values in C(Γ) such that under Assumption 7.1 the game

Γ𝑠 =

(
𝐴1 B {𝑎1

1
, ..., 𝑎

𝑙1
1
}, ..., 𝐴𝑛 B {𝑎1𝑛, ..., 𝑎

𝑙𝑛
𝑛 },

û : (𝑎𝑖1
1
, ..., 𝑎

𝑖𝑛
𝑛 ) ↦→ u(𝑎𝑖1

1
, ..., 𝑎

𝑖𝑛
𝑛 ), u𝑒

)
is also an SPI on Γ, with

E
[
u(Π(Γ𝑠 ))

�� Π(Γ)=a] = E [
u(Π(Γ′))

�� Π(Γ)=a]
for all a ∈ 𝐴 and consequently E [u(Π(Γ𝑠 ))] = E [u(Π(Γ′))].

We prove this in Appendix G. Because of this result, we will

focus on these particular types of SPIs, which simply create an

isomorphic game with different (Pareto-better) utilities. Note, how-

ever, that without assigning exact probabilities to the distributions

of Π(Γ),Π(Γ′), the original players will in general not be able to

construct a Γ𝑠 that satisfies the expected payoff equalities. For this

reason, one could still conceive of situations in which a different

type of SPI would be chosen by the original players and the original

players are unable to instead choose an SPI of the type described

in Lemma 9.5.

Lemma 9.5 directly implies a characterization of the expected

utilities that can be achieved with perfect-coordination SPIs. Of

course, this characterization depends on the exact distribution of

Π(Γ). We omit the statement of this result. However, we state the

following implication.

Corollary 9.6. Under Assumption 7.1, the set of Pareto improve-
ments that are safely achievable with perfect coordination {E[u(Γ′)] |
Γ′ is perfect-coordination SPI on Γ} is a convex polygon.

Because of this result, one can also efficiently optimize convex

functions over the set of perfect-coordination SPIs. Even without

referring to the distribution Π(Γ), many interesting questions can

be answered efficiently. For example, we can efficiently identify the

perfect-coordination SPI that maximizes the minimum improve-

ments across players and outcomes a ∈ 𝐴.

In the following, we aim to use Lemma 9.5 and Corollary 9.6 to

give maximally strong positive results about what Pareto improve-

ments can be safely achieved, without referring to exact probabili-

ties over Π(Γ). To keep things simple, we will do this only for the

case of two players. To state our results, we first need some notation:

We use PF(C) B
{
y ∈ C

�� ∄y′∈C, 𝑖 ∈ {1, ..., 𝑛} : y′ ≥ y, 𝑦′
𝑖
> 𝑦

}
to

denote the Pareto frontier of a convex polygon C (or more generally

convex, closed set). For any real number 𝑥 ∈ R, we use 𝜋𝑖 (𝑥, C(Γ))
to denote the y′ ∈ C(Γ) which maximizes 𝑦′−𝑖 under the constraint
𝑦′
𝑖
= 𝑥 . (Recall that we consider 2-player games, so 𝑦′−𝑖 is a single

real number.) Note that such a y′ exists if and only if 𝑥 is 𝑖’s utility

in some feasible payoff vector. We first state our result formally. Af-

terwards, we will give a graphical explanation of the result, which

we believe is easier to understand.

Theorem 9.7. Make Assumption 7.1. Let Γ be a two-player game.
Let y ∈ R2 be some potentially unsafe Pareto improvement on
E [u(Π(Γ))]. For 𝑖 = 1, 2, let 𝑥min/max

𝑖
= min/max𝑢𝑖 (supp(Π(Γ))).

Then:
A) If there is some element in C(Γ) which Pareto-dominates all of
supp(Π(Γ)) and if y is Pareto-dominated by an element of at least
one of the following three sets:

• 𝐿1 B the line segment between 𝜋1 (𝑥min

1
, PF(C(Γ)) and

𝜋1 (𝑥max

1
, PF(C(Γ));

• 𝐿2 B the segment of the curve PF(C(Γ)) between
𝜋1 (𝑥max

1
, PF(C(Γ)))) and 𝜋2 (𝑥max

2
, PF(C(Γ))));

• 𝐿3 B the line segment between 𝜋2 (𝑥max

2
, PF(C(Γ)) and

𝜋2 (𝑥min

2
, PF(C(Γ)).

Then there is an SPI under improved coordination Γ𝑠 such that
E [u(Π(Γ𝑠 ))] = y.
B) If there is no element in C(Γ) which Pareto-dominates all of
supp(Π(Γ)) and if y is Pareto-dominated by an element each of 𝐿1
and 𝐿3 as defined above, then there is a perfect-coordination SPI Γ𝑠

such that E [u(Π(Γ𝑠 ))] = y.

We now illustrate the result graphically. We start with Case A,

which is illustrated in Figure 1. The Pareto-frontier is the solid

line in the north and east. The points marked x indicate outcomes

in supp(Π(Γ)). The point marked by a filled circle indicates the

expected value of the default equilibrium E [u(Π(Γ))]. For some

y ∈ R2 to be a Pareto-improvement, it must be to the north-east of

the filled circle. The vertical dashed lines starting at the two extreme

x marks illustrate the application of 𝜋1 to project 𝑥
min/max

1
onto

the Pareto frontier. The dotted line between these two points is 𝐿1.

Similarly, the horizontal dashed lines starting at x marks illustrate

the application of 𝜋2 to project 𝑥
min/max

2
onto the Pareto frontier.

The line segment between these two points is 𝐿3. In this case, this

line segments lies on the Pareto frontier. The set 𝐿2 is simply that

part of the Pareto frontier, which Pareto-dominates all elements of

supp(Π(Γ)), i.e., the part of the Pareto frontier to the north-east
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E [𝑢1 (Π(Γ𝑠 ))]
E [𝑢1 (Π(Γ)))]

E [𝑢2 (Π(Γ)))]

E [𝑢2 (Π(Γ𝑠 ))]

Figure 1: This figure illustrates Theorem 9.7, Case A.

E [𝑢1 (Π(Γ𝑠 ))]
E [𝑢1 (Π(Γ))]

E [𝑢2 (Π(Γ))])

E [𝑢2 (Π(Γ))]

Figure 2: This figure illustrates Theorem 9.7, Case B.

between the two intersections with the northern horizontal dashed

line and eastern vertical dashed line.

Case B of Theorem 9.7 is depicted in Figure 2. Note that here

the two line segments 𝐿1 and 𝐿3 intersect. To ensure that a Pareto

improvement is safely achievable, the theorem requires that it is

below both of these lines.

Theorem 9.7 is proven by re-mapping each of the outcomes of

the original game as per Lemma 9.5. For example, the projection

of the default equilibrium E [u(Π(Γ))] (i.e., the filled circle) onto

𝐿1 is obtained as an SPI by projecting all the outcomes (i.e., all the

x marks) onto 𝐿1. In Case A, any utility vector y ∈ 𝐿2 that Pareto-

improves on all outcomes of the original game can be obtained

by re-mapping all outcomes onto y. Other kinds of y are handled

similarly. For a full proof, see Appendix H.

As a corollary of Theorem 9.7, we can see that all (potentially

unsafe) Pareto improvements in the DM-RM subset game of the De-

mand Game of Table 1 are equivalent to some perfect-coordination

SPI. However, this is not always the case:

Proposition 9.8. There is a game Γ = (𝐴, u), representatives
Π that satisfy Assumptions 7.1 and 7.2, and an outcome a ∈ 𝐴

s.t. 𝑢𝑖 (a) > E [𝑢𝑖 (Π(Γ))] for all players 𝑖 , but there is no perfect-
coordination SPI (𝐴𝑠 , u𝑠 , u𝑒 ) s.t. for all players 𝑖 , E

[
𝑢𝑒
𝑖
(Π(𝐴𝑠 , u𝑠 ))

]
=

𝑢𝑖 (a).

We prove this in Appendix I.

10 THE SPI SELECTION PROBLEM
In the Demand Game, there happens to be a single non-trivial

SPI. However, in general (even without the type of coordination

assumed in Section 9) there may be multiple incomparable SPIs

that result in different payoffs for the players. If multiple SPIs

are available, the original players would be left with the difficult

decision of which SPI to demand in their instruction.

This difficulty of choosing what SPI to demand cannot be denied.

However, we would here like to emphasize that players can profit

from the use of SPIs even without addressing this SPI selection

problem. To do so, a player picks an instruction that is very compli-

ant (“dove-ish”) w.r.t. what SPI is chosen, e.g., one that simply goes

with whatever SPI the other players demand as long as that SPI

cannot further be safely Pareto-improved upon. In many cases, all

such SPIs benefit both players. For example, SPIs in bargaining sce-

narios like the Demand Game remove the conflict outcome, which

benefits all parties. Thus, a player can expect a safe improvement

even under such maximally compliant demands on the selected

SPI.

11 CONCLUSION AND FUTURE DIRECTIONS
Safe Pareto improvements are a promising new idea for delegating

strategic decision making. To conclude this paper, we discuss some

ideas for further research on SPIs.

Straightforward technical questions arise in the context of the

complexity results of Section 8. First, what impact on the complexity

does varying the assumptions have? Our NP-completeness proof is

easy to generalize at least to some other types of assumptions. It

would be interesting to give a generic version of the result. We also

wonder whether there are plausible assumptions under which the

complexity changes in interesting ways. Second, one could ask how

the complexity changes if we use more sophisticated game repre-

sentations (see the remarks at the end of that section). Third, one

could impose additional restrictions on the sought SPI. For example,

some of the players may be unable to have their representative

maximize arbitrary utility functions. We could then ask whether

there is an SPI in which only a given subset of the players adopt

different utility functions and restrictions on the set of available

strategies. Fourth, we could restrict the games under consideration.

Are there games in which it becomes easy to decide whether there

is an SPI?

It would also be interesting to see what real-world situations can

already be interpreted as utilizing SPIs, or could be Pareto-improved

upon using SPIs.
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A PROOF OF THEOREM 4.1 – PROGRAM
EQUILIBRIUM IMPLEMENTATIONS OF
SAFE PARETO IMPROVEMENTS

This paper considers the meta-game of delegation. SPIs are a pro-

posed way of playing these games. However, throughout most of

this paper, we do not analyze the meta-game directly as a game

using the typical tools of game theory. We here fill that gap and

in particular prove Theorem 4.1, which shows that SPIs are played

in Nash equilibria of the meta game, assuming sufficiently strong

contracting abilities. As noted, this result is essential. However,

since it is mostly an application of existing ideas from the literature

on program equilibrium, we left a detailed treatment out of the

main text.

A program game for Γ = (𝐴, u) is defined via a set PROG =

PROG1×...×PROG𝑛 and a non-deterministicmapping exec : PROG1×
... × PROG𝑛 ⇝ 𝐴. We obtain a new game with action sets PROG

and utility function

𝑈 : PROG → R𝑛 : c ↦→ E [u(exec(c))] . (1)

Though this definition is generic, one generally imagines in

the program equilibrium literature that for all 𝑖 , PROG𝑖 consists

of computer programs in some programming language, such as

Lisp, that take as input vectors in PROG and return an action 𝑎𝑖 .

The function exec on input c ∈ PROG then executes each player

𝑖’s program 𝑐𝑖 on c to assign 𝑖 an action. The definition implicitly

assumes that PROG only contains programs that halt when fed

one another as input. A program equilibrium is then simply a Nash

equilibrium of the program game.

For the present paper, we add the following feature to the un-

derlying programming language. A program can call a “black box

subroutine” Π𝑖 (Γ′) for any subset game Γ′ of Γ, where Π𝑖 (Γ′) is a
random variable over 𝐴′

𝑖
and Π(Γ′) = (Π1 (Γ′), ...,Π𝑛 (Γ′)).

We need one more definition. For any game Γ and player 𝑖 , we

define Player 𝑖’s threat point (a.k.a. minimax utility) 𝑣Γ
𝑖
as

𝑣Γ𝑖 = min

𝝈−𝑖 ∈
>

𝑗≠𝑖 Δ(𝐴 𝑗 )
max

𝜎𝑖 ∈Δ(𝐴𝑖 )
𝑢𝑖 (𝜎𝑖 ,𝝈−𝑖 ). (2)

In words, 𝑣Γ
𝑖
is the minimum utility that the players other than 𝑖

can force onto 𝑖 , under the assumption that 𝑖 reacts optimally to

their strategy. We further will useminimax (𝑖, 𝑗) ∈ Δ(𝐴 𝑗 ) to denote
the strategy for Player 𝑗 that is played in the minimizer 𝜎−𝑖 of the
above. Of course, in general, there might be multiple minimizers

𝜎−𝑖 . In the following, we will assume that the function minimax
breaks such ties in some consistent way, such that for all 𝑖 ,

(minimax (𝑖, 𝑗))𝑗 ∈{1,...,𝑛}−{𝑖 } ∈ argmin

𝝈−𝑖 ∈
>

𝑗≠𝑖 Δ(𝐴 𝑗 )
max

𝜎𝑖 ∈Δ(𝐴𝑖 )
𝑢𝑖 (𝜎𝑖 ,𝝈−𝑖 ).

(3)

Note that for 𝑛 = 2, each player’s threat point is computable in

polynomial time via linear programming; and that by the minimax

theorem [28], the threat point is equal to the maximin utility, i.e.,

𝑣Γ𝑖 = max

𝜎𝑖 ∈Δ(𝐴𝑖 )
min

𝜎−𝑖 ∈Δ(𝐴−𝑖 )
𝑢𝑖 (𝜎𝑖 , 𝜎−𝑖 ), (4)

so 𝑣Γ
𝑖
is also the minimum utility that Player 𝑖 can guarantee for

herself under the assumption that the opponent sees her mixed

strategy and reacts in order to minimize Player 𝑖’s utility.

Tennenholtz’ [25] main result on program games is the following:

Theorem A.1 (Tennenholtz 2004 [25]). Let Γ = (𝐴, u) be a
game and let x ∈ u

(>𝑛
𝑖=1 Δ(𝐴𝑖 )

)
be a (feasible) payoff vector. If 𝑥𝑖 ≥

𝑣Γ
𝑖
for 𝑖 = 1, ..., 𝑛, then x is the utility of some program equilibrium of

a program game on Γ.

Throughout the rest of this section, our goal is to use similar

ideas as Tennenholtz did for Theorem A.1 to construct for any SPI

Γ𝑠 on Γ, a program equilibrium that results in the play of Π(Γ𝑠 ).
As noted in the main text, the Player 𝑖’s instruction to her represen-

tative to play the game Γ𝑠 will usually be conditional on the other

player telling her representative to also play her part of Γ𝑠 and and
vice versa. After all, if Player 𝑖 simply tells her representative to

maximize 𝑢𝑠
𝑖
from 𝐴𝑠

𝑖
regardless of Player −𝑖’s instruction, then

Player −𝑖 will often be able to profit from deviating from the Γ𝑠

instruction. For example, in the safe Pareto improvement on the

Demand Game, each player would only want their representative to

choose from {DL, RL} rather than {DM,DM} if the other player’s
representative does the same. It would then seem that in a program

equilibrium in which Π(Γ𝑠 ) is played, each program 𝑐𝑖 would have

to contain a condition of the type, “if the opponent code plays as in

Π(Γ𝑠 ) against me, I also play as I would in Π(Γ𝑠 ).” But in a naive

implementation of this, each of the programs would have to call

the other, leading to an infinite recursion.

In the literature on program equilibrium, various solutions to

this problem have been discovered. We here use the general scheme

proposed by Tennenholtz [25], because it is the simplest. We could

similarly use the variant proposed by Fortnow [8], techniques based

on Löb’s theorem [3, 6], or 𝜖-grounded mutual simulation [17] or

even (meta) Assurance Game preferences (see Appendix B).

In our equilibrium, we let each player submit code as sketched

in Algorithm 2. Roughly, each player uses a program that says, “if

everyone else submitted the same source code as this one, then

play Π(Γ𝑠 ). Otherwise, if there is a player 𝑗 who submits a different

source code, punish player 𝑗 by playing her minimax strategy”.

Note that for convenience, Algorithm 2 receives the player number

𝑖 as input. This way, every player can use the exact same source

code. Otherwise the original players would have to provide slightly

different programs and in line 2 of the algorithm, we would have

to use a more complicated comparison, roughly: “if 𝑐 𝑗 ≠ 𝑐𝑖 are the

same, except for the player index used”.

Algorithm 2: A program equilibrium implementation of

an SPI Γ𝑠 of Γ.
Data: Everybody’s source code c, my index 𝑖

1 for 𝑗 ∈ {1, ..., 𝑛} − {𝑖} do
2 if 𝑐 𝑗 ≠ 𝑐𝑖 then
3 Play minimax (𝑖, 𝑗);

4 Play Π𝑖 (Γ𝑠 );

Proposition A.2. Let Γ be a game and let Γ𝑠 be an SPI on Γ. Let c
be the program profile consisting only of Algorithm 2 for each player.
Assume that Π(Γ) guarantees each player at least threat point utility
in expectation. Then c is a program equilibrium and apply(c) =

Π(Γ𝑠 ).
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Player 2

Cooperate Defect

Player 1

Cooperate 4, 4 1, 3

Defect 3, 1 2, 2

Table 3: Assurance Game preferences for the Prisoner’s
Dilemma

Proof. By inspection of Algorithm 2, we see that exec(c) =

Π(Γ𝑠 ). It is left to show that c is a Nash equilibrium. So let 𝑖

be any player and 𝑐 ′
𝑖

∈ PROG𝑖 − {𝑐𝑖 }. We need to show that

E
[
𝑢𝑖 (exec(c−𝑖 , 𝑐 ′𝑖 ))

]
≤ E [𝑢𝑖 (exec(c))]. Again, by inspection of c,

exec(c−𝑖 , 𝑐 ′𝑖 ) is the threat point of Player 𝑖 . Hence,
E

[
𝑢𝑖 (exec(c−𝑖 , 𝑐 ′𝑖 ))

]
= 𝑣𝑖

≤ E [𝑢𝑖 (Π(Γ))]
≤ E

[
𝑢𝑖 (Π(Γ𝑠 ))

]
= E [𝑢𝑖 (exec(c))]

as required. □

Theorem 4.1 follows immediately.

B A DISCUSSION OF WORK BY SEN (1974)
AND RAUB (1990) ON PREFERENCE
ADAPTATION GAMES

We here discuss Raub’s [21] paper in some detail, which in turn

elaborates on an idea by Sen [24]. Superficially, Raub’s setting

seems somewhat similar to ours, but we here argue that it should

be thought of as closer to the work on program equilibrium and

bilateral precommitment.

In Sections 1, 3 and 4, we briefly discuss multilateral commit-

ment games, which have been discussed before in various forms

in the game-theoretic literature. Our paper extends this setting

by allowing instructions that let the representatives play a game

without specifying an algorithm for solving that game. On first

sight, it appears that Raub pursues a very similar idea. Translated

to our setting, Raub allows that as an instruction, each player 𝑖

chooses a new utility function 𝑢𝑠
𝑖
: 𝐴 → R, where 𝐴 is the set of

outcomes of the original game Γ. Given instructions 𝑢𝑠
1
, ..., 𝑢𝑠𝑛 , the

representatives then play the game (𝐴, u𝑠 ). In particular, each repre-
sentative can see what utility functions all the other representatives

have been instructed to maximize. However, what utility function

representative 𝑖 maximizes is not conditional on any of the instruc-

tions by other players. In other words, the instructions in Raub’s

paper are raw utility functions without any surrounding control

structures, etc. Raub then asks for equilibria u𝑠 of the meta-game

that Pareto-improve on the default outcome.

To better understand how Raub’s approach relates to ours, we

here give an example of the kind of instructions Raub has in mind.

(Raub uses the same example in his paper.) As the underlying game

Γ, we take the Prisoner’s Dilemma. Now the main idea of his pa-

per is that the original players can instruct their representatives

to adopt so-called Assurance Game preferences. In the Prisoner’s

Dilemma, this means that the representatives prefer to cooperate

if the other representative cooperates, and prefer to defect if the

other player defects. Further, they prefer mutual cooperation over

mutual defection. An example of such Assurance Game preferences

is given in Table 3. (Note that this payoff matrix resembles the

classic Stag Hunt studied in game theory.)

The Assurance Game preferences have two important properties.

(1) If both players tell their representatives to adopt Assurance

Game preferences, (Cooperate, Cooperate) is a Nash equilib-

rium. (Defect, Defect) is a Nash equilibrium as well. However,

since (Cooperate, Cooperate) is Pareto-better than (Defect,

Defect), the original players could reasonably expect that

the representatives play (Cooperate, Cooperate).

(2) Under reasonable assumptions about the rationality of the

representatives, it is a Nash equilibrium of the meta-game for

both players to adopt Assurance Game preferences. If Player

1 tells her representative to adopt Assurance Game prefer-

ences, then Player 2 maximizes his utility by telling his rep-

resentative to also maximize Assurance Game preferences.

After all, representative 1 prefers defecting if representative

2 defects. Hence, if Player 2 instructs his representative to

adopt preferences that suggest defecting, then he should

expect representative to defect as well.

The first important difference between Raub’s approach and

ours is related to item 2. We have ignored the issue of making

SPIs Γ𝑠 Nash equilibria of our meta game. As we have explained in

Section 4 and Appendix A, we imagine that this is taken care of by

additional bilateral commitment mechanisms that are not the focus

of this paper. For Raub’s paper, on the other hand, ensuring mutual

cooperation to be stable in the new game Γ𝑠 is arguably the key

idea. Still, we could pursue the approach of the present paper even

when we limit assumptions to those that consist only of a utility

function.

The second difference is even more important. Raub assumes

that – as in the PD – the default outcome of the game (Π(Γ) in
the formalism of this paper) is known. (Less significantly, he also

assumes that it is known how the representatives play under assur-

ance game preferences.) Of course, the key feature of the setting of

this paper is that the underlying game Γ might be difficult (through

equilibrium selection problems) and thus that the original players

might be unable to predict Π(Γ).
These are the reasonswhywe cite Raub in our section on bilateral

commitment mechanisms. Arguably, Raub’s paper could be seen as

very early work on program equilibrium, except that he uses utility

functions as a programming language for representative. In this

sense, Raub’s Assurance Game preferences are analogous to the

program equilibrium schemes of Tennenholtz [25], Oesterheld [25],

Barasz et al. [3] and van der Hoek et al. [26], ordered in increasing

order of similarity of the main idea of the scheme.

C PROOF OF PROPOSITION 5.2
Lemma 5.2. Let Γ = (𝐴, u), Γ′ = (𝐴′, u′), Γ̂ = (𝐴, û) andΦ,Ξ : 𝐴⊸

𝐴′, Ψ : 𝐴′⊸ 𝐴.
(1) Reflexivity: Γ ∼

id𝐴
Γ, where id𝐴 : 𝐴⊸ 𝐴 : a ↦→ {a}.

(2) Symmetry: If Γ ∼Φ Γ′, then Γ′ ∼Φ−1 Γ.
(3) Transitivity: If Γ ∼Φ Γ′ and Γ′ ∼Ψ Γ̂, then Γ ∼Ψ◦Φ Γ̂.
(4) If Γ ∼Φ Γ′ and Φ(a) ⊆ Ξ(a) for all a ∈ 𝐴, then Γ ∼Ξ Γ′.
(5) Γ ∼

all𝐴,𝐴′ Γ
′, where all𝐴,𝐴′ : 𝐴⊸ 𝐴′

: a ↦→ 𝐴′.
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(6) If Γ ∼Φ Γ′ and Φ(a) = ∅, then Π(Γ) ≠ a with certainty.

Proof. 1. By reflexivity of equality, Π(Γ) = Π(Γ) with cer-

tainty. Hence, Π(Γ) ∈ id𝐴 (Π(Γ)) by definition of id𝐴 . There-

fore, Γ ∼
id𝐴

Γ by definition of ∼, as claimed.

2. Γ ∼Φ Γ′ means that Π(Γ′) ∈ Φ(Π(Γ)) with certainty. Thus,

Π(Γ) ∈ {a∈𝐴 | Π(Γ′)∈Φ(a)} = Φ−1 (Π(Γ′)),
where equality is by the definition of the inverse of multi-

valued functions.We conclude (by definition of∼) that Γ′ ∼Φ−1

Γ as claimed.

3. If Γ ∼Φ Γ′, Γ′ ∼Ψ Γ̂, then by definition of ∼, (i) Π(Γ′) ∈
Φ(Π(Γ)) and (ii) Π(Γ̂) ∈ Ψ(Π(Γ′)), both with certainty. The

former (i) implies {Π(Γ′)} ⊆ Φ(Π(Γ)). Hence,
Ψ(Π(Γ′)) = Ψ({Π(Γ′)}) ⊆ Ψ(Φ(Π(Γ))) .

With ii, it follows that Π(Γ̂) ∈ Ψ(Φ(Π(Γ))) with certainty.

By definition, Γ ∼Ψ◦Φ Γ̂ as claimed.

4. It is

Π(Γ′) ∈ Φ(Π(Γ)) ⊆ Ξ(Π(Γ))
with certainty. Thus, by definition Γ ∼Ξ Γ′.

5. By definition of Π, it is Π(Γ′) ∈ 𝐴′
with certainty. By def-

inition of all𝐴,𝐴′ , it is all𝐴,𝐴′ (Π(Γ)) = 𝐴′
with certainty.

Hence, Π(Γ′) ∈ all𝐴,𝐴′ (Π(Γ)) with certainty. We conclude

that Γ ∼
all𝐴,𝐴′ Γ

′
as claimed.

6. With certainty, Π(Γ′) ∈ Φ(Π(Γ)) (by assumption). Also,

with certainty Π(Γ′) ∉ ∅. Hence, Φ(Π(Γ)) ≠ ∅ with cer-

tainty. We conclude that Π(Γ) ≠ a with certainty.

□

D EXAMPLES
D.1 Proof of Proposition (Example) 7.1

Proposition (Example) 7.1. Let Γ be the Prisoner’s Dilemma
and Γ𝑠 = (𝐴𝑠

1
, 𝐴𝑠

2
, 𝑢𝑠

1
, 𝑢𝑠

2
) be any subset game of Γ with 𝐴𝑠

1
= 𝐴𝑠

2
=

{Cooperate}. Then under Assumption 7.2, Γ𝑠 is a strict SPI on Γ.

Proof. By applying Assumption 7.2 twice and Transitivity once,

Γ ∼Φ Γ−{Cooperate}, whereΦ(Defect,Defect) = {(Defect,Defect)}
andΦ(𝑎1, 𝑎2) = ∅ for all (𝑎1, 𝑎2) ≠ (Defect,Defect). By Lemma 5.2.5,

we further obtain Γ− {Cooperate} ∼
all

Γ𝑠 , where Γ𝑠 is as described
in the proposition. Hence, by transitivity, Γ ∼

all◦Φ Γ𝑠 . It is easy to

verify that the function all ◦ Φ is Pareto-improving. □

D.2 Proof of Proposition (Example) 7.2
Proposition (Example) 7.2. Let Γ be the DemandGame of Table 1

and Γ𝑠 be the subset game described in Table 2. Under Assumptions 7.1
and 7.2, Γ𝑠 is an SPI on Γ. Further, if 𝑃 (Π(Γ)=(DM,DM)) > 0, Γ𝑠 is
a strict SPI.

Proof. Let (𝐴1, 𝐴2, 𝑢1, 𝑢2) = Γ. We can repeatedly apply As-

sumption 7.2 to eliminate from Γ the strategies DL and RL for both

players. We can then apply Lemma 5.2.3 (Transitivity) to obtain

𝐺 ∼Φ 𝐺 = ({DM, RM}, {DM, RM}, 𝑢1, 𝑢2), where

Φ(𝑎1, 𝑎2) =
{

{(𝑎1, 𝑎2)} if 𝑎1, 𝑎2 ∈ {DM, RM}
∅ otherwise

. (5)

Next, by Assumption 7.1, Γ̂ ∼Ψ Γ𝑠 , where Ψ𝑖 (DM) = DL and

Ψ𝑖 (RM) = RL for 𝑖 = 1, 2. We can then apply Lemma 5.2.3 (Tran-

sitivity) again, to infer Γ ∼Ψ◦Φ Γ𝑠 . It is easy to verify that for all

(𝑎1, 𝑎2) ∈ 𝐴1 × 𝐴2, it is for all (𝑎𝑠
1
, 𝑎𝑠

2
) ∈ Ψ(Φ(Γ𝑠 )) the case that

u(𝑎𝑠
1
, 𝑎𝑠

2
) ≥ u(𝑎1, 𝑎2). □

E PROOF OF THEOREM 8.2
We here prove Theorem 8.2.

Throughout this section, we use the following lemma.

Lemma E.1. LetΦ,Ψ be isomorphisms between Γ,Γ′. IfΦ is (strictly)
Pareto-improving, then so is Ψ.

This will allow us to conclude from the existence of a Pareto-

improving isomorphism Φ that there is Pareto-improving Ψ s.t.

Γ ∼Ψ Γ′ by Assumption 7.1, even if there are multiple isomorphisms

between Γ, Γ′.

Proof. Let Γ = (𝐴, u), Γ′ = (𝐴′, u′). Then for all a ∈ 𝐴,

u(a) = u′(Ψ(a))
= u(Φ−1 (Ψ(a))
≤ u(Φ(Φ−1 (Ψ(a))))
= u(Ψ(a)).

Furthermore, if Φ is strictly Pareto-improving for some ã ∈ 𝐴, then

by bijectivity of Φ,Ψ, there is a ∈ 𝐴 s.t. Φ−1 (Ψ(a)) = ã. For this a,
the inequality above is strict and therefore u(a) < u(Ψ(a)). □

We start by showing that the SPI problem is in NP at all. The

following algorithm can be used to determine whether there is a

safe Pareto improvement: Reduce the given game Γ until it can

be reduced no further to obtain some subset game Γ′ = (𝐴′, u).
Then non-deterministically select injections Φ𝑖 : 𝐴

′
𝑖
→ 𝐴𝑖 . If Φ =

(Φ1, ...,Φ𝑛) is (strictly) Pareto-improving (as required in Theorem

6.1), return True with the solution Γ𝑠 defined as follows: The set of

action profiles is defined as 𝐴𝑠 =
>

𝑖 Φ𝑖 (𝐴′
𝑖
). The utility functions

are

𝑢𝑠𝑖 : 𝐴
𝑠 → R : a𝑠 ↦→ (𝑢𝑖 (Φ−1

1
(𝑎𝑠

1
), ...,Φ−1

𝑛 (𝑎𝑠𝑛)))𝑖=1,...,𝑛 . (6)

Otherwise, return False.

It is easy to see that this algorithm runs in non-deterministic

polynomial time. Furthermore, with Lemma E.1 it is easy to see that

if this algorithm finds a solution Γ𝑠 , that solution is indeed a safe

Pareto improvement. It is left to show that if there is a safe Pareto

improvement via a sequence of Assumption 7.1 and 7.2 outcome

correspondences, then the algorithm indeed finds a safe Pareto

improvement. To prove this fact, we prove a few simple lemmata.

First, one might worry that the algorithm only ever finds se-

quences of outcome correspondences that start with a number of

reductions and end with a single isomorphism step. Perhaps some

safe Pareto improvements can only be found by considering very

different sequences? The following two lemmata show that this is

not an issue, i.e., that it is sufficient to consider sequences that start

with a number of reductions and end in a single isomorphism step.

Lemma E.2. Let Γ ∼Φiso Γ̂ by Assumption 7.1 and Γ̂ ∼Φred Γ̃

by Assumption 7.2. Then there are Γ′,Ψred,Ψiso s.t. Γ ∼Ψred Γ′ by
Assumption 7.2, Γ′ ∼Ψiso Γ̃ by Assumption 7.1 and Ψiso ◦ Ψred =

Φred ◦ Φiso.



Safe Pareto Improvements for Delegated Game Playing AAMAS ’21, May 3–7, 2021, Online

Intuitively, this means that isomorphism steps as per Assump-

tion 7.1 and reduction steps as per Assumption 7.2 commute. Instead

of first applying Assumption 7.1 and then Assumption 7.2 to a game,

we can also apply Assumption 7.2 first and then Assumption 7.1 to

obtain the same game Γ̃ in both cases.

Proof. We construct Γ′, Ψred
, Ψiso

as follows. First, Γ′ =

(𝐴′
1
, ..., 𝐴′

𝑛, u′), where 𝐴′
𝑖
= (Φiso

𝑖
)−1 (�̃�𝑖 ) and 𝑢 ′𝑖 = 𝑢𝑖 |𝐴′ . Next, we

define

Ψred = (Φiso)−1 ◦ Φred ◦ Φiso
(7)

and

Ψiso = Φiso |𝐴′
1
×𝐴′

2

. (8)

We now need to show that these satisfy the consequents of the

lemma.

First, it is

Ψiso ◦ Ψred = Φiso |𝐴′
1
×𝐴′

2

◦
(
(Φiso)−1 ◦ Φred ◦ Φiso

)
=

(
Φiso |𝐴′

1
×𝐴′

2

◦ (Φiso)−1
)
◦ Φred ◦ Φiso

= Φred ◦ Φiso

as claimed. Note that the second step uses the associativity of ◦ on

multivalued functions. The third step uses the fact that Φiso
is a

single-valued bijection, which means that Φiso ◦
(
Φiso

)−1
= id. Of

course, Φiso
is here restricted to 𝐴′

1
×𝐴′

2
, but this is not a problem,

because 𝐴′
𝑖
= (Φiso

𝑖
)−1 (�̃�𝑖 ) and �̃� is the codomain of Φred ◦ Φiso

.

Hence, the restriction is inconsequential.

Second, we need to show that it is indeed Γ′ ∼Ψiso Γ̃ by Assump-

tion 7.1. (Note that because Ψiso ◦ Ψred = Φred ◦ Φiso
, it really must

be Γ′ ∼Ψiso Γ̃ rather than Γ′ ∼Ψ̃iso
Γ̃ for some different isomorphism

Ψ̃iso ≠ Ψiso
.) First, it is easy to show that Ψiso

decomposes into

Ψiso

1
, ...,Ψiso

𝑛 as required because Φiso
decomposes. Further, Ψiso

is

a single-valued injection because Φiso
is a single-valued bijection.

It is surjective because its codomain is defined as the image of its

domain.

Now let (𝑎′
1
, 𝑎′

2
) ∈ 𝐴′

1
×𝐴′

2
. It is

u′(a′) = u(a′)
= û(Φiso (a′))
= ũ(Φiso (a′))
= ũ(Ψiso (a′)),

as required.

Finally, we have to show that Γ ∼Ψred Γ′ by Assumption 7.2. We

leave this as an exercise to the reader. □

Lemma E.3. Let

Γ1 ∼Φ1 ... ∼Φ𝑘−1 Γ𝑘 , (9)

where each outcome correspondence is due to a single application
of Assumption 7.1 or 7.2. Then there is a sequence Γ′2, ..., Γ′𝑚 with
𝑚 ≤ 𝑘 − 1 such that

Γ1 ∼Ψ1 Γ′2 ∼Ψ2 Γ′3 ∼Ψ3 ... ∼Ψ𝑚−1 Γ′𝑚 (10)

all by single applications of Assumption 7.2, Γ′𝑚 ∼Ξ Γ𝑘 by a single
application of Assumption 7.1, and

Φ𝑘−1 ◦ Φ𝑘−2 ◦ ... ◦ Φ1 = Ξ ◦ Ψ𝑚−1 ◦ ... ◦ Ψ1 . (11)

Proof. Start with the initial sequence of line 9. We can iter-

atively apply Lemma E.2 to obtain a new sequence of the same

length in which one first applies only Assumption 7.2 and then

only Assumption 7.1 while obtaining the same composite outcome

correspondence function. We can summarize all the applications of

Assumption 7.1 into a single step applying that assumption. □

A second potential worry about our algorithm is that it reduces

the game completely and only then looks for a Pareto-improving

isomorphism step. Perhaps in some cases one has to only partially
reduce and then look for a Pareto-improving isomorphism step?

The next lemma shows that the answer to this is no and that one

can restrict oneself to sequences that fully reduce.

Lemma E.4. Let Γ = (𝐴, u), Γ̂𝑎 = (𝐴𝑎, u), Γ̂𝑏 = (𝐴𝑏 , u) such that
𝐴𝑏
𝑖
⊆ 𝐴𝑎

𝑖
⊆ 𝐴𝑖 for 𝑖 = 1, ..., 𝑛. If there is a subset game Γ̃𝑎 = (�̃�𝑎, ũ𝑎)

of Γ such that Γ̂𝑎 ∼Φ Γ̃𝑎 by Assumption 7.1, then Γ̂𝑏 ∼Φ |
�̂�𝑏

Γ̃𝑏 ,

where Γ̃𝑏 = (Φ1 (𝐴𝑏
1
), ...,Φ𝑛 (𝐴𝑏

𝑛), ũ𝑎). Note that if the correspondence
function Φ is Pareto-improving, so is Φ|

�̂�𝑏 .

Lemma E.4 shows that it is enough to consider isomorphism

steps from fully reduced versions of Γ. A third worry might be that

even so, elimination via Assumption 7.2 might be path-dependent

and therefore we have to consider the resulting games frommultiple

paths. However, iterated elimination of strictly dominated strategies

is known to be path-independent [1, 19].

Proposition E.5. If there is a safe Pareto improvement for a given
game, then the above algorithm applied to that game returns True.

Proof. Let us say there is a sequence of outcome correspon-

dences as per Assumptions 7.1 and 7.2 that show Γ ∼Φ Γ𝑠 for

Pareto-improving Φ. Then by Lemma E.3, there is Γ′ such that

Γ ∼Ψred Γ′ via an arbitrary number of applications of Assump-

tion 7.2 and Γ′ ∼Ψiso Γ𝑠 via a single application of Assumption 7.1.

Because of the path-independence of iterated removal of strictly

dominated strategies, Γ′ contains (as a subset game with equal util-

ity functions) the unique Γ𝑟 arising from full iterated removal as

per Assumption 7.2. By Lemma E.4, there is a Pareto-improving

outcome correspondence Γ𝑟 ∼Ψ̃iso
Γ𝑠𝑟 as per Assumption 7.2. By

construction, our algorithm finds (guesses) this Pareto-improving

outcome correspondence. □

Overall, we have now shown that our non-deterministic

polynomial-time algorithm is correct and therefore that the SPI

problem is in NP. Note that the correctness of other algorithms

can be proven using very similar ideas. For example, instead of

first reducing and then finding an isomorphism, one could first find

an isomorphism, then reduce and then (only after reducing) test

whether the overall outcome correspondence function is Pareto-

improving. One advantage of reducing first is that there are fewer

isomorphisms to test if the game is smaller. In particular, the number

of possible isomorphisms is exponential in the number of strategies

in the reduced game Γ′ but polynomial in everything else. Hence,

by implementing our algorithm deterministically, we obtain the

following positive result.
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Proposition 8.3. For games Γ with |𝐴1 | + ... + |𝐴𝑛 | =𝑚 that can
be reduced (via iterative application of Assumption 7.2) to a game
Γ′ with |𝐴′

1
| + ... + |𝐴′

𝑛 | = 𝑙 , the (strict) SPI decision problem can be
solved in 𝑂 (𝑚𝑙 ).

We now proceed to showing that the safe Pareto improvement

problem is NP-hard. We will do this by reducing the subgraph

isomorphism problem to the (two-player) safe Pareto improvement

problem. We start by briefly describing one version of that problem

here.

A (simple, directed) graph is a tuple (𝑛, 𝑎 : {1, ..., 𝑛} × {1, ..., 𝑛} →
B), where 𝑛 ∈ N and B B {0, 1}. We call 𝑎 the adjacency function

of the graph. Since the graph is supposed to be simple and therefore

free of self-loops (edges from one vertex to itself), we take the

values 𝑎( 𝑗, 𝑗) for 𝑗 ∈ {1, ..., 𝑛} to be meaningless.

For given graphs 𝐺 = (𝑛, 𝑎),𝐺 ′ = (𝑛′, 𝑎′) a subgraph isomor-

phism from 𝐺 to 𝐺 ′
is an injection 𝜙 : {1, ..., 𝑛} → {1, ...𝑛′} such

that for all 𝑗 ≠ 𝑙

𝑎( 𝑗, 𝑙) ≤ 𝑎′(𝜙 ( 𝑗), 𝜙 (𝑙)) . (12)

In words, a subgraph isomorphism from 𝐺 to 𝐺 ′
identifies for each

node in𝐺 a node in𝐺 ′
s.t. if there is an edge from node 𝑗 to node 𝑙

in 𝐺 , there must also be an edge in the same direction between the

corresponding nodes 𝜙 ( 𝑗), 𝜙 (𝑙) in 𝐺 ′
. Another way to say this is

that we can remove some set of (𝑛′−𝑛) nodes and some edges from

𝐺 ′
to get a graph that is just a relabeled (isomorphic) version of𝐺 .

Given two graphs 𝐺,𝐺 ′
, the subgraph isomorphism problem

consists in deciding whether there is a subgraph isomorphism 𝜙

between𝐺,𝐺 ′
. The problem is well-known to be NP-complete [5,

Theorem 2].

Lemma E.6. The subgraph isomorphism problem is reducible in lin-
ear time with linear increase in problem instance size to the safe Pareto
improvement problem. As a consequence, the safe Pareto improvement
problem is NP-hard.

Proof. We conduct our proof only for the strict safe Pareto

improvement problem. Reducing to the non-strict safe Pareto im-

provement problem is a little easier and can be done using a subset

of the ideas in this proof.

So take graphs 𝐺 = (𝑛, 𝑎) and 𝐺 = (�̂�, 𝑎). We will transform

these step-wise into a single game.

First, we define the games Γ𝑎 = (𝐴1, 𝐴2, 𝑢1, 𝑢2) and Γ̂𝑎 =

(𝐴1, 𝐴2, 𝑢1, 𝑢2), where 𝐴1 = 𝐴2 = {1, ..., 𝑛},𝐴1 = 𝐴2 = {1, ..., �̂�},
𝑢1 ( 𝑗, 𝑙) = 𝑢2 ( 𝑗, 𝑙) = 𝑎( 𝑗, 𝑙) for all 𝑗, 𝑙 ∈ {1, ..., 𝑛} with 𝑗 ≠ 𝑙 and

𝑢1 ( 𝑗, 𝑗) = 𝑢2 ( 𝑗, 𝑗) = 2. We analogously define 𝑢1 = 𝑢2 based

on 𝑎. Setting the utility functions is the main idea of the entire

proof, of course, and will become clearer below. Setting the utilities

𝑢1 ( 𝑗, 𝑗) = 𝑢2 ( 𝑗, 𝑗) = 2 is to ensure that Pareto-improving mappings

Φ between Γ𝑎 and Γ̂𝑎 satisfy Φ1 ( 𝑗) = Φ2 ( 𝑗) for all 𝑗 , and thus

directly relate to subgraph isomorphisms.

Next, we add dummy strategies to Γ𝑎 ,Γ̂𝑎 , to obtain two purposes.

We want to remove exact equivalences and allow only strict Pareto
improvements; and we want to remove the possibility of reducing

either of these games via Assumption 7.2. In particular, we consider

Γ𝑏 as follows: 𝐴𝑏
𝑖
= {1, ..., 2𝑛}; u𝑏 ( 𝑗, 𝑙) = u𝑎 ( 𝑗, 𝑙) if 𝑗, 𝑙 ∈ {1, ..., 𝑛},

u𝑏 ( 𝑗, 𝑛+ 𝑗) = u𝑏 (𝑛+ 𝑗, 𝑛) = (3, 3) for 𝑗 ∈ {1, .., 𝑛}, u𝑏 ( 𝑗, 𝑙) = (−1,−1)
otherwise. We define Γ̂𝑏 analogously, except that utilities of (3, 3)
are to be replaced by (4, 4).

Finally, we construct from Γ𝑏 , Γ̂𝑏 a single game Γ𝑐 . Roughly,

the idea is for Γ𝑐 to contain as subset games both Γ𝑏 and Γ̂𝑏 , but

to reduce to Γ𝑏 via Assumption 7.2. We construct Γ𝑐 thus: 𝐴𝑐
𝑖
=

({𝐷} ×𝐴𝑏
𝑖
) ∪ ({𝐶} ×𝐴𝑏

𝑖
) and

u𝑐 ((𝐶, 𝑎1), (𝐶, 𝑎2)) = û𝑏 (𝑎1, 𝑎2) for all 𝑎1 ∈ 𝐴𝑏
1
, 𝑎2 ∈ 𝐴𝑏

2

u𝑐 ((𝐷, 𝑎1), (𝐷, 𝑎2)) = u𝑏 (𝑎1, 𝑎2) for all 𝑎1 ∈ 𝐴𝑏
1
, 𝑎2 ∈ 𝐴𝑏

2

𝑢𝑐𝑖 ((𝐷, 𝑎𝑖 ), (𝐶, 𝑎−𝑖 )) = 5 for all 𝑎𝑖 ∈ 𝐴𝑏
𝑖 , 𝑎−𝑖 ∈ 𝐴𝑏

2

𝑢𝑐−𝑖 ((𝐷, 𝑎𝑖 ), (𝐶, 𝑎−𝑖 )) = −5 for all 𝑎𝑖 ∈ 𝐴𝑏
𝑖 , 𝑎−𝑖 ∈ 𝐴𝑏

2
.

It is easy to show that this reduction can be computed in linear

time and that it also increases the problem instance size only linearly.

It is left to prove the correctness of the reduction.

We start by showing that if there is a subgraph isomorphism

from𝐺 to𝐺 , then there is also a safe (strict) Pareto improvement via

a sequence of outcome correspondence as per Assumptions 7.1 and

7.2. So let 𝜙 be that subgraph isomorphism. Then we need to con-

struct a series of outcome correspondences as per Assumptions 7.1

and 7.2.

First notice that Γ𝑐 ∼Ξ Γ𝑐,𝐷 by Assumption 7.2, where Γ𝑐,𝐷 is

the subset game of Γ𝑐 that contains only the strategies of type (𝐷, 𝑗)
for both players. We now show that Ψ is a Pareto-improving iso-

morphism between Γ𝑐,𝐷 and Γ̃ = (�̃�1, �̃�2, �̃�1, �̃�2), where we define
�̃�1 = �̃�2 = {𝐶} × (𝜙 ({1, ..., 𝑛}) ∪ {�̂� + 𝜙 ( 𝑗) | 𝑗 = 1, ..., 𝑛}), (13)

for 𝑖 = 1, 2 as Ψ𝑖 (𝐷, 𝑗) = (𝐶,𝜙 ( 𝑗)) if 𝑗 ∈ {1, ..., 𝑛} and Ψ𝑖 (𝐷, 𝑗) =
(𝐶, �̂�+𝜙 ( 𝑗−𝑛)) otherwise, and the utility function is simply defined

as �̃�𝑖 (𝑎1, 𝑎2) = 𝑢𝑖 (Ψ−1
𝑖

(𝑎1, 𝑎2)). Again, it will then follow from

Lemma E.1 that in particular it is Γ𝑐,𝐷 ∼Ψ′ Γ̃ via Assumption 7.1

for some potentially different, but still Pareto-improving Ψ′
. It is

easy to see that Ψ𝑖 is surjective for 𝑖 = 1, 2. From the fact that 𝜙 is

injective and that 𝜙 never returns values greater than �̂�, it follows

that Ψ𝑖 is also injective for 𝑖 = 1, 2. Finally, Ψ maintains utilities by

definition:

�̃�𝑖 (Ψ(𝑎1, 𝑎2)) = 𝑢𝑖 (Ψ−1 (Ψ(𝑎1, 𝑎2))) = 𝑢𝑖 (𝑎1, 𝑎2) . (14)

With Transitivity, it is left to show that Ψ is Pareto-improving

for the original players, i.e., for u𝑐 . For this we distinguish a number

of different cases. If 𝑗, 𝑙 ∈ {1, ..., 𝑛} and 𝑗 ≠ 𝑙 , then for 𝑖 = 1, 2

𝑢𝑐𝑖 ((𝐷, 𝑗), (𝐷, 𝑙)) = 𝑎( 𝑗, 𝑙)
≤ 𝑎(𝜙 ( 𝑗), 𝜙 (𝑙))
= 𝑢𝑐𝑖 ((𝐶,𝜙 ( 𝑗)), (𝐶,𝜙 (𝑙)))
= 𝑢𝑐𝑖 (Ψ1 (𝐷, 𝑗),Ψ2 (𝐷, 𝑙)) .

For 𝑗 ∈ {1, ..., 𝑛}, it is
u𝑐 ((𝐷, 𝑗), (𝐷, 𝑗)) = (2, 2)

= û𝑐 ((𝐶,𝜙 ( 𝑗)), (𝐶,𝜙 ( 𝑗)))
= û𝑐 (Ψ1 (𝐷, 𝑗),Ψ2 (𝐷, 𝑗)).

For 𝑗, 𝑙 ∈ {𝑛 + 1, ..., 2𝑛}, it is
u𝑐 ((𝐷, 𝑗), (𝐷, 𝑙)) = u𝑏 ( 𝑗, 𝑙)

= (−1,−1)
= û𝑏 (�̂� + 𝜙 ( 𝑗 − 𝑛), �̂� + 𝜙 (𝑙 − 𝑛))
= u𝑐 (Ψ1 (𝐷, 𝑗),Ψ2 (𝐷, 𝑙)) .
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If ( 𝑗, 𝑙) ∈ {1, ..., 𝑛} × {𝑛 + 1, ..., 2𝑛} and 𝑙 = 𝑗 + 𝑛, then
u𝑐 ((𝐷, 𝑗), (𝐷, 𝑙)) = (2, 2)

< (3, 3)
= u𝑐 ((𝐶,Φ( 𝑗)), (𝐶,Φ( 𝑗) + �̂�))
= u𝑐 (Ψ1 (𝐷, 𝑗),Ψ2 (𝐷, 𝑙)) .

If ( 𝑗, 𝑙) ∈ {1, ..., 𝑛} × {𝑛 + 1, ..., 2𝑛} but 𝑙 ≠ 𝑗 + 𝑛, then
u𝑐 ((𝐷, 𝑗), (𝐷, 𝑙)) = u𝑏 ( 𝑗, 𝑙)

= (−1,−1)
= û𝑏 (𝜙 ( 𝑗), �̂� + 𝜙 (𝑙 − 𝑛))
= u𝑐 (Ψ1 (𝐷, 𝑗),Ψ2 (𝐷, 𝑙)).

The cases ( 𝑗, 𝑙) ∈ {𝑛 + 1, ..., 2𝑛} × {1, ..., 𝑛} work analogously.

This concludes our proof that if a graph isomorphism exists,

there also exists a strict SPI as per Assumptions 7.1 and 7.2.

It is left to prove that if there is a safe Pareto improvement for Γ𝑐 ,
then there also exists a graph isomorphism. So let Γ𝑐 ∼Ξ Γ̃ for some

Γ̃, via some Pareto-improving outcome correspondence function Ξ.
By our earlier results (Proposition E.5), this means that there is a

sequence of outcome correspondences that first fully reduces Γ to

Γ𝑐,𝐷 and then applies Assumption 7.1 to get Γ𝑐,𝐷 ∼Ψ Γ̃ via some

Pareto-improving Ψ.
To construct a subgraph isomorphism, we must now realize

some facts about the structure of Ψ that all follow from Ψ being

utility-increasing:

(1) Ψ
(
({𝐷} × {1, ..., 2𝑛})2

)
⊆

(
({𝐶} × {1, ..., 2�̂�})2

)
: For Ψ to

be strict, there has to be some overlap, i.e., there has to be

(𝐷, 𝑗) s.t. Ψ𝑖 (𝐷, 𝑗) ∈ {𝐶} × {1, ..., 2�̂�}. But for Ψ to be Pareto-

improving for 𝑖 , it has to be for all (𝐷, 𝑙) with 𝑙 = 1, ..., 2𝑛

the case that Ψ−𝑖 (𝐷, 𝑙) ∈ {𝐶} × {1, ..., 2�̂�} since otherwise it
would be

𝑢𝑖 (Ψ𝑖 (𝐷, 𝑗),Ψ−𝑖 (𝐷, 𝑙)) = −5
< 𝑢𝑖 ((𝐷, 𝑗), (𝐷, 𝑙)) .

By an analogous argument it can further be shown that

Ψ𝑖 (𝐷, 𝑗) ∈ {𝐶} × {1, ..., 2�̂�} for all 𝑗 = 1, ..., 2𝑛.

(2) For every 𝑗 ∈ {1, ..., 𝑛}, it is Ψ𝑖 (𝐷, 𝑗) ∈ {𝐶} × {1, ..., �̂�}
for 𝑖 = 1, 2. That is, Ψ𝑖 maps the “non-dummy” strategies

(which correspond to nodes in the original graph) onto “non-

dummy” strategies. We will show this by showing the con-

trapositive, i.e., that if this were not the case, then Ψ would

not be Pareto-improving.

So assume there is 𝑗 ∈ {1, ..., 𝑛} and 𝑖 ∈ {1, 2}withΨ𝑖 (𝐷, 𝑗) ∈
{𝐶} × {�̂� + 1, ..., 2�̂�}. Because Ψ−𝑖 is injective, there is an

𝑙 ∈ {1, ..., 𝑛} s.t. Ψ−𝑖 (𝐷, 𝑙) ≠ Ψ𝑖 (𝐷, 𝑗) − �̂�, where we define

(𝐷,𝑘) − �̂� B (𝐷,𝑘 − �̂�). Then for that 𝑙 it is

u(Ψ𝑖 (𝐷, 𝑗),Ψ−𝑖 (𝐷, 𝑙)) = (−1,−1)
< (0, 0)
≤ u𝑐 ((𝐷, 𝑗), (𝐷, 𝑙)) .

(3) For all 𝑗 ∈ {1, ..., 𝑛} and 𝑖 ∈ {1, ..., 𝑛} it is Ψ𝑖 (𝐷, 𝑗 + 𝑛) =

Ψ−𝑖 (𝐷, 𝑗) + �̂�, where addition is defined to operate only on

the second entry like the subtraction defined above.We again

prove the contrapositive, i.e., if this is not true then Ψ is not

Pareto-improving. So let us assume that there is 𝑗 ∈ {1, ..., 𝑛}
and 𝑖 ∈ {1, ..., 𝑛} s.t. Ψ𝑖 (𝐷, 𝑗 + 𝑛) ≠ Ψ−𝑖 (𝐷, 𝑗). Then it would

be

u𝑐 (Ψ𝑖 (𝐷, 𝑗 + 𝑛),Ψ−𝑖 (𝐷, 𝑗)) ≤ (2, 2)
< (3, 3)
= u𝑐 ((𝐶, 𝑗 + 𝑛), (𝐶, 𝑗)).

(4) Finally, we prove that Ψ1 = Ψ2. We first show that for

𝑗 ∈ {1, ..., 𝑛} it is Ψ1 (𝐷, 𝑗) = Ψ2 (𝐷, 𝑗). We do this again by

showing the contrapositive. So assume Ψ1 (𝐷, 𝑗) ≠ Ψ2 (𝐷, 𝑗).
Recall that by item 2, it is Ψ1 (𝐷, 𝑗),Ψ2 (𝐷, 𝑗) ∈ {𝐶}×{1, ..., �̂�}.
Hence,

u(Ψ1 (𝐷, 𝑗),Ψ2 (𝐷, 𝑗)) ≤ (1, 1)
< (3, 3)
= u((𝐷, 𝑗), (𝐷, 𝑗)),

contradicting the assumption that Ψ is Pareto-improving.

Finally, for 𝑗 ∈ {1, ..., 𝑛} it is
Ψ1 (𝐷,𝑛 + 𝑗) =

Item 3

�̂� + Ψ2 (𝐷, 𝑗)

= �̂� + Ψ1 (𝐷, 𝑗)
=

Item 3

Ψ2 (𝐷,𝑛 + 𝑗),

where the middle equality is due to the equality we have

already proven.

Given these, we can define our graph isomorphism as

𝜙 : {1, ..., 𝑛} → {1, ..., �̂�} : 𝑗 ↦→ 𝜋2 (Ψ1 (𝐷, 𝑗)), (15)

where 𝜋2 just maps pairs (𝐶, 𝑗) onto the second entry 𝑗 . This is

well-defined because of item 2. Note that because Ψ is an injection,

so is 𝜙 .

For all 𝑗, 𝑙 ∈ {1, ..., 𝑛} with 𝑗 ≠ 𝑙 it is

𝑎(𝜙 ( 𝑗), 𝜙 (𝑙)) = 𝑢𝑎
1
(𝜙 ( 𝑗), 𝜙 (𝑙))

= 𝑢𝑐
1
((𝐶,𝜙 ( 𝑗)), (𝐶, (𝜙 (𝑙))))

=
Item 1

𝑢𝑐
1
(Ψ1 (𝐷, 𝑗),Ψ1 (𝐷, 𝑙))

=
Item 4

𝑢𝑐
1
(Ψ1 (𝐷, 𝑗),Ψ2 (𝐷, 𝑙))

≥ 𝑢𝑐
1
((𝐷, 𝑗), (𝐷, 𝑙))

= 𝑢𝑎
1
( 𝑗, 𝑙)

= 𝑎( 𝑗, 𝑙) .
Hence, 𝜙 is a subgraph isomorphism as desired. □

F PROOF OF LEMMA 9.3
Lemma 9.3. For a given 𝑛-player game Γ and payoff vector y ∈ R𝑛 ,

it can be decided by linear programming and thus in polynomial time
whether y is Pareto-optimal in C(Γ).

For an introduction to linear programming, see, e.g., Schrijver

[23]. In short, a linear program is a specific type of constrained

optimization problem that can be solved efficiently.
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Proof. Finding a Pareto-improvement on a given y ∈ R𝑛 can

be formulated as the following linear program:

Variables: 𝑝a ∈ [0, 1] for all a ∈ 𝐴

Maximize

𝑛∑
𝑖=1

(∑
a∈𝐴

𝑝a𝑢𝑖 (a)
)
− 𝑦𝑖

s.t.

∑
a∈𝐴

𝑝a = 1∑
a∈𝐴

𝑝a𝑢𝑖 (a) ≥ 𝑦𝑖 for 𝑖 = 1, ..., 𝑛

□

G PROOF OF LEMMA 9.5
Lemma 9.5. Let Γ = ({𝑎1

1
, ..., 𝑎

𝑙1
1
}, ..., {𝑎1𝑛, ..., 𝑎

𝑙𝑛
𝑛 }, u) be any game.

Let Γ′ be a perfect-coordination SPI on Γ. Then we can define u𝑒 with
values in C(Γ) such that under Assumption 7.1 the game

Γ𝑠 =

(
𝐴1 B {𝑎1

1
, ..., 𝑎

𝑙1
1
}, ..., 𝐴𝑛 B {𝑎1𝑛, ..., 𝑎

𝑙𝑛
𝑛 },

û : (𝑎𝑖1
1
, ..., 𝑎

𝑖𝑛
𝑛 ) ↦→ u(𝑎𝑖1

1
, ..., 𝑎

𝑖𝑛
𝑛 ), u𝑒

)
is also an SPI on Γ, with

E
[
u(Π(Γ𝑠 ))

�� Π(Γ)=a] = E [
u(Π(Γ′))

�� Π(Γ)=a]
for all a ∈ 𝐴 and consequently E [u(Π(Γ𝑠 ))] = E [u(Π(Γ′))].

Proof. First note that (𝐴, û) is isomorphic to Γ. Thus byAssump-

tion 7.1, there is isomorphismΦ s.t. Γ ∼Φ (𝐴, û). WLOG assume that

Φ simply maps 𝑎
𝑖1
1
, ..., 𝑎

𝑖𝑛
𝑛 ↦→ 𝑎

𝑖1
1
, ..., 𝑎

𝑖𝑛
𝑛 . Then define u𝑒 as follows:

u𝑒 (𝑎𝑖1
1
, ..., 𝑎

𝑖𝑛
𝑛 ) = E

[
u′(Π(Γ′)) | Π(Γ) = (𝑎𝑖1

1
, ..., 𝑎

𝑖𝑛
𝑛 )

]
. (16)

Here u′ describes the utilities that the original players assign to

the outcomes of Γ′. Since u′ maps onto C(Γ) and C(Γ) is con-
vex, u𝑒 as defined also maps into C(Γ) as required. Note that for
all 𝑎

𝑖1
1
, ..., 𝑎

𝑖𝑛
𝑛 it is by assumption u′(Π(Γ′)) ≥ u(𝑎𝑖1

1
, ..., 𝑎

𝑖𝑛
𝑛 ) with

certainty. Hence,

𝑢𝑒 (𝑎𝑖1
1
, ..., 𝑎

𝑖𝑛
𝑛 )) = E

[
u′(Π(Γ′)) | Π(Γ) = (𝑎𝑖1

1
, ..., 𝑎

𝑖𝑛
𝑛 )

]
≥ u(𝑎𝑖1

1
, ..., 𝑎

𝑖𝑛
𝑛 ),

as required. □

H PROOF OF THEOREM 9.7
Proof. We will give the proof based on the graphs as well, with-

out giving all formal details. Further we assume in the following

that neither 𝐿1 nor 𝐿3 consist of just a single point, since these cases

are easy.

Case A: Note first that by Corollary 9.6 it is enough to show that

if y is in any of the listed sets 𝐿1, 𝐿2, 𝐿3, it can be made safe.

It’s easy to see that all payoff vectors on the curve segment of

the Pareto frontier 𝐿2 are safely achievable. After all, all payoff

vectors in this set Pareto-improve on all outcomes in supp(Π(Γ)).
Hence, for each y on the line segment, one could select the Γ𝑠 where
u𝑒 = y.

It is left to show that all elements of 𝐿
1/2 are safely achievable.

Remember that not all payoff vectors on the line segments are Pareto

improvements, only those that are to the north-east of (Pareto-

better than) the default utility. In the following, we will use 𝐿′
1
and

𝐿′
3
to denote those elements of 𝐿1 and 𝐿3, respectively, that are

Pareto-improvements on the default.

We now argue that the Pareto improvement y on the line

𝐿1 for which 𝑦1 = E [𝑢1 (Π(Γ))] is safely achievable. In other

words, y is the projection northward of the default utility, or

y = 𝜋1 (E [u(Π(Γ))] , 𝐿1). This y is also one of the endpoints of

𝐿′
1
. To achieve this utility, we construct the equivalent game as per

Lemma 9.5, where the utility to the original players of each outcome

(𝑎1, 𝑎2) of the new game Γ𝑠 is similarly the projection northward

onto 𝐿1 of the utility of the corresponding outcome (𝑎1, 𝑎2) in Γ𝑠 .
That is,

u𝑒 (𝑎1, 𝑎2) = 𝜋1 (u(𝑎1, 𝑎2), 𝐿1). (17)

Note that because C(Γ) is convex and the endpoints of the line

segment 𝐿1 are by definition in C(Γ), it is 𝐿1 ⊆ C(Γ). Hence, all
values of u𝑒 as defined in Eq. 17 are feasible. Because all outcomes

in the original game lie below the line 𝐿1, 𝜋1 is linear. Hence,

E
[
u𝑒 (Π(Γ𝑠 ))

]
= E [𝜋1 (u(Π(Γ)), 𝐿1)] (18)

= 𝜋1 (E [u(Π(Γ))] , 𝐿1) (19)

as required.

We have now shown that one of the endpoints of 𝐿′
1
is safely

achievable. Since the other endpoint of 𝐿′
1
is in 𝐿2, it is also safely

achievable. By Corollary 9.6, this implies that all of 𝐿′
1
is safely

achievable.

By an analogous line of reasoning, we can also show that all

elements of 𝐿′
3
are safely achievable.

Case B: Define 𝐿′
1
, 𝐿′

3
as before as those elements of 𝐿1, 𝐿3 re-

spectively that Pareto improve on the default E [u(Π(Γ))]. By
a similar argument as before, one can show that the utilities

𝜋𝑖 (E [u(Π(Γ))] , 𝐿′𝑗 ) is safely achievable both for 𝑖 = 1, 𝑗 = 1 and

for 𝑖 = 2, 𝑗 = 3. Call these points 𝐸1 and 𝐸3, respectively.

We now proceed in two steps. First, we will show that there is a

third safely achievable utility point 𝐸2, which is above both 𝐿1 and

𝐿3. Then we will show the claim using that point.

To construct 𝐸2, we again construct an SPI Γ𝑠 as per Lemma 9.5.

For each (𝑎1, 𝑎2) ∈ 𝐴1 ×𝐴2 we will set the utility 𝑢
𝑒 (𝑎1, 𝑎2) of the

corresponding (𝑎1, 𝑎2) ∈ 𝐴1 ×𝐴2 to be above or on both 𝐿1 and 𝐿3,

i.e., on or above a set whichwewill refer to asmax(𝐿1, 𝐿3). Formally,

max(𝐿1, 𝐿3) is the set of outcomes in 𝐿1 ∪ 𝐿3 that are not strictly

Pareto dominated by some other element of 𝐿′
1
∪ 𝐿′

3
. Note that by

definition every outcome in supp(Π(Γ)) is Pareto-dominated by

some outcome in either 𝐿1 or 𝐿3. Hence, by transitivity of Pareto

dominance, each outcome is Pareto-dominated by some outcome

in max(𝐿1, 𝐿3). Hence, the described u𝑒 is indeed feasible.

Now note that the set of feasible payoffs of Γ is convex. Further,

the curvemax(𝐿1, 𝐿3) is concave. Because the area above a concave
curve is convex and because the intersection of convex sets is

convex, the set of feasible payoffs on or above max(𝐿1, 𝐿3) is also
convex. By definition of convexity, 𝐸2 = E [u𝑒 (Π(Γ𝑠 ))] is therefore
also in the set of feasible payoffs on or above max(𝐿1, 𝐿3) and
therefore above both 𝐿1 and 𝐿3 as desired.

In our second step, we now use 𝐸1, 𝐸2, 𝐸3 to prove the claim.

Because of convexity of the set of safely achievable payoff vectors
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Player 2

𝑎 𝑏 𝑐

Player 1

𝑎 −5,−5 4, 0 10,−100
𝑏 0, 4 1, 1 10,−100
𝑐 −100, 10 −100, 10 3, 3

Table 4: An example of a game in which – depending on Π –
a Pareto improvement may not be safely achievable.

as per Corollary 9.6, all utilities below the curve consisting of the

line segments from 𝐸1 to 𝐸2 and from 𝐸2 to 𝐸3 are safely achievable.

The line that goes through 𝐸1, 𝐸2 intersects the line that contains

𝐿1 at 𝐸1, by definition. Since non-parallel lines intersect each other

exactly once and parallel lines that intersect each other are equal

and because 𝐸2 is above or on 𝐿1, the line segment from 𝐸1 to 𝐸2
lies entirely on or above 𝐿1. Similarly, it can be shown that the

line segment from 𝐸2 to 𝐸3 lies entirely on or above 𝐿3. It follows

that the 𝐸1 − 𝐸2 − 𝐸3 curve lies entirely above or on min(𝐿1, 𝐿3).
Now take any Pareto improvement that lies below both 𝐿′

1
and 𝐿′

3
.

Then this Pareto improvement lies belowmin(𝐿′
1
, 𝐿′

3
) and therefore

below the 𝐸1 − 𝐸2 − 𝐸3 curve. Hence, it is safely achievable. □

I PROOF OF PROPOSITION 9.8
Proposition 9.8. There is a game Γ = (𝐴, u), representatives

Π that satisfy Assumptions 7.1 and 7.2, and an outcome a ∈ 𝐴

s.t. 𝑢𝑖 (a) > E [𝑢𝑖 (Π(Γ))] for all players 𝑖 , but there is no perfect-
coordination SPI (𝐴𝑠 , u𝑠 , u𝑒 ) s.t. for all players 𝑖 , E

[
𝑢𝑒
𝑖
(Π(𝐴𝑠 , u𝑠 ))

]
=

𝑢𝑖 (a).

Proof. Consider the game in Table 4. Strategy 𝑐 can be elimi-

nated by strict dominance (Assumption 7.2) for both players, leav-

ing a typical Chicken-like payoff structure with two pure Nash

equilibria ((𝑎, 𝑏) and (𝑏, 𝑎)), as well as a mixed Nash equilibrium

(3/8 ∗ 𝑎 + 5/8 ∗ 𝑏, 3/8 ∗ 𝑎 + 5/8 ∗ 𝑏).
Now let us say that in the resulting game 𝑃 (Π(Γ)=(𝑎, 𝑏)) = 𝑝 =

𝑃 (Π(Γ)=(𝑏, 𝑎)) for some 𝑝 with 0 < 𝑝 ≤ 1/2. Then one (unsafe)

Pareto-improvement would be to simply always have the repre-

sentatives play (𝑐, 𝑐) for a certain payoff of (3, 3). Unfortunately,
there is no safe Pareto improvement with the same expected payoff.

Notice that (3, 3) is the unique element of C(Γ) that maximizes the

sum of the two players’ utilities. By linearity of expectation and con-

vexity of C(Γ), if for any Γ𝑠 it is E [u(Π(Γ𝑠 ))] = (3, 3), it must be

u(Π(Γ𝑠 )) = (3, 3) with certainty. Unfortunately, in any safe Pareto

improvement the outcomes (𝑎, 𝑏) and (𝑏, 𝑎) must corresponds to

outcomes that still gives utilities of (4, 0) and (0, 4), respectively,
because these are Pareto-optimal within the set of feasible payoff

vectors. □
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