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ABSTRACT
Recent applications of game theory in security domains use
algorithms to solve a Stackelberg model, in which one player
(the leader) first commits to a mixed strategy and then the
other player (the follower) observes that strategy and best-
responds to it. However, in real-world applications, it is
hard to determine whether the follower is actually able to
observe the leader’s mixed strategy before acting.

In this paper, we model the uncertainty about whether
the follower is able to observe the leader’s strategy as part
of the game (as proposed in the extended version of Yin
et al. [17]). We describe an iterative algorithm for solving
these games. This algorithm alternates between calling a
Nash equilibrium solver and a Stackelberg solver as subrou-
tines. We prove that the algorithm finds a solution in a finite
number of steps and show empirically that it runs fast on
games of reasonable size. We also discuss other properties
of this methodology based on the experiments.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems; J.4 [Social and Behavioral Sciences]: Eco-
nomics

General Terms
Algorithms, Economics, Theory

Keywords
game theory, Stackelberg, Nash, observability, strategy gen-
eration

1. INTRODUCTION
When multiple self-interested agents interact in the same

domain, game theory provides a framework for reasoning
about how each agent should act. One use of game theory
is by an outside party that tries to predict the outcome of a
strategic situation. For example, when we design a mecha-
nism (e.g., an auction), we can use game theory to evaluate
whether any given design will lead to good outcomes when
the agents participating in it are strategic. Another use is by
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one of the agents in the game that wants to determine how
to play. For example, game theory is often used to create
poker-playing programs. Recently, algorithms for comput-
ing game-theoretic solutions have also started to find appli-
cations in security applications, where one of the players,
the defender, tries to allocate limited defensive resources in
anticipation of an attack by an attacker. Real-world exam-
ples include the placement of checkpoints and canine units
at Los Angeles International airport [13] and the assignment
of Federal Air Marshals to flights [15].

Probably the best-known solution concept in game theory
is that of Nash equilibrium: a profile of mixed strategies, one
for each player, is said to be in Nash equilibrium if no indi-
vidual player can benefit from deviating. (A mixed strategy
is a distribution over pure strategies; a pure strategy is a
complete, deterministic plan of action.) Another possibility,
especially in the context of an agent who is determining how
to play in a game, is to compute a Stackelberg mixed strategy
for the player. Such a strategy is an optimal solution when
the player can commit to the mixed strategy before her op-
ponent moves, so that the opponent will best-respond to the
mixed strategy. This latter approach has various desirable
properties, including the following. It avoids the equilib-
rium selection problem (if a game has multiple equilibria,
which one should we play?). It leads to utilities for the com-
mitting player that are at least as high as, and sometimes
higher than, what she would get in any Nash equilibrium (in
fact, any correlated equilibrium [16]). Finally, in two-player
normal-form games, there is a polynomial-time algorithm
for computing a Stackelberg mixed strategy [3, 16], whereas
computing a Nash equilibrium is PPAD-complete [5, 1, 2],
and computing an (even approximately) optimal Nash equi-
librium is NP-hard for just about any reasonable definition
of optimality [6, 4].

We can illustrate the differences between these concepts
using the example game shown in Figure 1. (We will use the
same game as an example later in the paper.) This game
has no pure-strategy Nash equilibrium. The unique mixed-
strategy Nash equilibrium profile of this game is
〈(0.5, 0.5), (0, 0.5, 0.5, 0)〉.1 The row player’s utility from

1The equilibrium is unique because of the following. If the
row player plays U with probability > 0.5, then only EL and
L can be best responses for the column player, but then U
cannot be a best response for the row player. By symmetry,
the row player also cannot play D with probability > 0.5.
Hence any equilibrium has the row player playing (0.5, 0.5).
Only L and R are best responses to this for the column
player, and the only way to put probability on these to keep
the row player indifferent between U and D is (0, 0.5, 0.5, 0).



playing this equilibrium is 0.5. In contrast, in the Stack-
elberg model, the row player can commit to playing U, so
that the column player best-responds with EL, which re-
sults in a utility of 9 for the row player. The row player
can achieve an even higher utility by committing to a mixed
strategy. If the row player commits to playing U with prob-
ability 8/9 + ε and D with probability 1/9 − ε, the column
player’s best-response is still EL, and the row player’s util-
ity is approximately 9+1/9. The Stackelberg solution is the
limit as ε→ 0. (Note that there are symmetric solutions on
the other side of the game where the row player puts most of
the probability on D and the column player responds with
ER.)

EL L R ER
U 9,10 0,9 1,8 10,0
D 10,0 1,8 0,9 9,10

Figure 1: An example normal-form game.

Of course, playing a Stackelberg strategy seems to make
little sense without some argument as to why the player
should indeed be able to commit before her opponent moves.
In the real-world security applications mentioned above, where
Stackelberg strategies are indeed used, the argument is that
the attacker (follower) can observe the defender (leader)’s
actions over time, and thereby reconstruct the distribution,
before attacking. This argument is not entirely uncontro-
versial: in many contexts, it is not clear that the follower
can indeed observe the leader’s mixed strategy. A recent
study shows that a large class of security games has the
property that any Stackelberg strategy is also a Nash equi-
librium strategy (and moreover that there is no equilibrium
selection problem) [17]. Nevertheless, this is known to not be
true for other security games (as well as other non-security
games, such as the example game that we just considered).

How should the leader agent play when she is not sure
about the follower’s ability to observe her mixed strategy,
as is often the case in practice? One model that has been
proposed in the extended version of Yin et al. [17] for this is
to consider an extensive-form game where Nature makes a
random move determining whether the leader’s mixed strat-
egy is observable or not, and then to find an equilibrium
of this larger game. We will discuss this model in detail
in Section 2. In this paper, we study properties of this
model, present the first algorithm for solving these infinite-
size extensive-form games, and evaluate it on random games.
Our algorithm calls subroutines for solving Nash and Stack-
elberg problems; it works on arbitrary games (as long as the
Nash and Stackelberg subroutines do).

2. REVIEW: EXTENSIVE-FORM GAME
TO MODEL UNCERTAINTY ABOUT
OBSERVABILITY

There are two players in the original game (represented in
normal form): the leader and the follower. The leader’s set
of pure actions is Al. The follower’s set of pure actions is
Af . If the outcome of the game is (al, af ), where al ∈ Al is
the leader’s action and af ∈ Af is the follower’s action, then
the leader’s utility is ul(al, af ), and the follower’s utility is
uf (al, af ).

We now present the extensive-form game model intro-

duced by Yin et al. (in the extended version of the pa-
per [17]), which is arguably the most straightforward way to
introduce uncertainty about the follower’s ability to observe
the leader’s distribution over Al. The extensive-form game
proceeds as follows. First, Nature decides whether the fol-
lower will observe the leader’s distribution or not. The prob-
ability that the follower observes the leader’s distribution is
pobs; correspondingly, the probability that the follower does
not observe it is 1−pobs. Then, the leader, without knowing
Nature’s choice, chooses a distribution over Al. Next, the
follower chooses a response af ∈ Af , possibly after observ-
ing the distribution over Al chosen by the leader if Nature
has decided that the follower is able to observe. Finally, al
is drawn from the leader’s distribution; the leader’s utility
is ul(al, af ), and the follower’s utility is uf (al, af ).

(pobs) (1-pobs)

Nature

Leader

Follower

 (infinite
number of
  actions)

 (infinite
number of
  actions)

observed not observed

follower moves with knowledge
   of the leader's distribution

follower moves without knowledge
   of the leader's distribution

Figure 2: The extensive form of the game.

The extensive form of this game is shown in Figure 2. At
the root, Nature makes a choice; at the next level, the leader
chooses a distribution over Al (note that there are infinitely
many distributions to choose from—in particular, choosing
a distribution is not the same as randomizing over which
action to choose here); and at the next level, the follower
chooses an action in Af . Nodes that are in the same infor-
mation set are connected with dashed lines. The two leader
nodes are in the same information set because the leader
does not observe Nature’s decision. The follower’s nodes in
the right subtree are in the same information set, because
the right subtree corresponds to the case where the follower
does not observe the distribution.

It is important to emphasize that a pure strategy for the
leader in this extensive-form game is a distribution over Al;
a mixed strategy for the leader is a distribution over such
distributions. (In fact, we will show shortly that a distri-
bution over distributions over Al cannot be simplified to a
distribution over Al in this context.) A pure strategy for the
follower specifies one action in Af for every follower node on
the left-hand side of the tree, plus one additional action for
the follower’s information set on the right-hand side of the
tree. In fact, it is possible to simplify the left-hand side of
the tree: we can take the follower’s best action at each of his
nodes on the left-hand side, and simply propagate the corre-
sponding value up to that node as in backward induction.2

(If there is a tie for the follower, he will break it in favor of
the leader, to stay consistent with the Stackelberg model.)
Thus we can eliminate the bottom level of the left-hand side
of the tree, so that effectively a follower pure strategy in
the extensive form consists of only a single action in Af ,
corresponding to his action in the information set on the
right-hand side.

2Note that we are just doing this at a conceptual level; we
never actually write down this (infinite-sized) tree.



Since our goal is to solve an extensive-form game, a nat-
ural question is whether off-the-shelf extensive-form game
solvers are sufficient for this. As we have pointed out, the
leader’s strategy space is infinite, preventing the direct ap-
plication of standard methods. One way to address this is to
discretize the leader’s strategy space and obtain an approx-
imate solution. Because this strategy space is an (|Al| − 1)-
simplex, discretizing it sufficiently finely is likely to lead to
scalability issues. Our algorithm, in contrast, generates pure
strategies for the leader in an informed way that results in an
exact solution. Moreover, as we will see, experimentally our
algorithm requires the generation of only very few strategies,
so that there can be little doubt that this is preferable to
the uninformed discretization approach.

3. EQUILIBRIA MAY REQUIRE
RANDOMIZING OVER
DISTRIBUTIONS

Because pure strategies for the leader in the extensive-
form game are distributions over Al, it follows that mixed
strategies for the leader are distributions over distributions.
However, one may be skeptical as to whether it is ever really
necessary to randomize over distributions, rather than just
simplifying the strategy back down to a single distribution.
In this subsection, we show that for some games, randomiz-
ing over distributions is in fact necessary, in the sense that
there is no equilibrium of the extensive-form game in which
the leader plays a pure strategy.

Consider again the example game in Figure 1, whose Nash
equilibrium and Stackelberg strategies we have already ana-
lyzed. Now consider the extensive-form variant of this game
where the leader (row player)’s distribution is observed with
probability pobs = .99. Because the leader’s distribution is
almost always observed, it is suboptimal for the leader to
put positive probability on any distribution that has prob-
ability strictly between 1/9 and 8/9 on U. This is because,
when observed (which happens almost always), such dis-
tributions would incentivize the follower to play L or R,
whereas any more extreme distributions will incentivize the
follower to play EL or ER, leading to much higher utilities
for the leader. (We recall that, upon observing the distri-
bution, the follower is assumed to break ties in the leader’s
favor for technical reasons, though this is not essential for
the example.)

It is also suboptimal to put positive probability on any
distribution that puts strictly more than 8/9 probability on
U. This is because, as long as the probability on U is at
least 8/9, any unit of probability mass placed on D results
in a utility of 10 rather than 9 in the .99 of cases where the
follower observes; this outweighs any benefit that placing
this unit of probability elsewhere might have in the .01 of
cases where the follower does not observe. Similarly, putting
positive probability on any distribution that puts strictly
less than 1/9 probability on U is suboptimal. Hence, all of
the leader’s mass is either on the distribution (8/9, 1/9) or
on the distribution (1/9, 8/9).

If the leader places all her mass on the distribution
(8/9, 1/9), the follower is incentivized to play EL all the
time. However, if this is so, the leader has an incentive to de-
viate to (1/9, 8/9). This is because this distribution will give
her just as high a utility as (8/9, 1/9) if it is observed (the
follower will respond with ER); however, if it is not observed,

the follower will not know that the leader has deviated and
still play EL, and (1/9, 8/9) gives a higher utility against
EL than (8/9, 1/9). Hence there is no equilibrium where
the leader places all her mass on (8/9, 1/9) (and, by sym-
metry, there is none where the leader places all her mass on
(1/9, 8/9)). In fact, by similar reasoning as that used to es-
tablish the uniqueness of the Nash equilibrium of the original
game, we can conclude that in equilibrium the leader must
randomize uniformly between (8/9, 1/9) and (1/9, 8/9); the
follower must then respond accordingly with EL or ER when
he observes the distribution, and when he does not observe
the distribution he must randomize uniformly between L and
R (to keep the leader indifferent between her two distribu-
tions). Hence, this is the unique equilibrium.

4. THE ALGORITHM
We now present our algorithm for solving for an equi-

librium of the extensive-form game (Figure 2). The intu-
ition behind the algorithm is as follows. As we have al-
ready pointed out, after applying backward induction to
the left-hand side of the extensive-form game, the follower’s
pure strategy space in the extensive-form game is simply
Af (corresponding to the action he takes on the right-hand
side), which is manageable. What is not manageable is the
space of all the leader pure strategies in the extensive form:
there is one for every distribution over Al, so there are in-
finitely many. This prevents us from simply writing down
the normal-form game corresponding to the extensive-form
game and solving that. (Note that this is not the same
as the original normal-form game that has no uncertainty
about observability.)

To address this, we start with a limited set of leader dis-
tributions (for example, the set of all |Al| degenerate distri-
butions), and solve for a Nash equilibrium of this restricted
game. This will give us a mixed strategy for the follower;
the next step is to find the best leader pure strategy (distri-
bution over Al) in response to this follower mixed strategy.
As we will see, technically, this corresponds to solving for
a Stackelberg solution of an appropriately modified normal-
form game. We then add the resulting distribution to the
set of leader distributions, solve for a new equilibrium, etc.,
until convergence.

This type of strategy generation approach has been ap-
plied to solve various games where the strategy space is too
large to write down [11, 7, 8]. (It has a close relation to
the notion of constraint / column generation in linear pro-
gramming.) Usually, this is because the strategy space is
combinatorial—but it is finite, and hence the algorithm is
guaranteed to converge eventually. In our case, however,
there is a continuum of leader strategies, so we have to prove
convergence, which we will do later.

Our algorithm for finding an equilibrium of the extensive-
form game is shown in Figure 3. In this algorithm, G(D,Af )
is a normal-form game, more specifically it is the normal-
form game corresponding to the extensive-form game, except
that the leader can only choose from the distributions in D.

At any point, D is the set of distributions for the leader
that we have generated so far. We find a mixed-strategy
Nash equilibrium 〈p,q〉 of a normal-form game G in which
the leader’s set of pure strategies is D, the follower’s set
of pure strategies is Af , and the players’ utilities for the



D ← any finite non-empty set of distributions over Al

Loop:
G ← G(D,Af )
〈p,q〉 ← FIND-NE(G)
p′ ← LEADER-BR(q)
If uGl (p′,q) ≤ uGl (p,q) Then

Return 〈p,q〉
Else
D ← D ∪ {p′}

Figure 3: The algorithm.

outcome (d, af ) are defined as follows.

uGl (d, af ) = pobsEal∼d[ul(al,FOLLOWER-BRobs(d))]

+ (1− pobs)Eal∼d[ul(al, af )] (1)

uGf (d, af ) = pobsEal∼d[uf (al,FOLLOWER-BRobs(d))]

+ (1− pobs)Eal∼d[uf (al, af )] (2)

Here d ∈ D is a distribution over Al; al is the leader’s action
drawn according to d; and af ∈ Af is the follower’s action.
ul and uf correspond to the utilities in the original normal-
form game (that did not model uncertain observability). In
each of these formulas, the first summand corresponds to
the case where the follower observes the leader’s chosen dis-
tribution over Al, so that the follower best-responds to that
distribution; the second summand corresponds to the case
where the follower does not observe the leader’s distribu-
tion over Af , so that the follower will follow his strategy
af for the right-hand side of the extensive-form game. The
follower’s best-response is computed as follows.

FOLLOWER-BRobs(d) ∈ arg max
af∈A∗

f

Eal∼d[ul(al, af )]

A∗f = arg max
af∈Af

Eal∼d[uf (al, af )]

That is, the follower maximizes his expected utility, breaking
the ties in favor of the leader.3

We then check whether p is actually a best-response to
q if the leader considers all possible distributions over Al

(we only know for sure that it is a best response among the
restricted set D). To do that, we compute a best-response
distribution p′ over Al that maximizes the leader’s expected
utility u′d(p′,q). If it turns out that u′d(p′,q) is equal to
the leader’s utility in the computed Nash equilibrium of the
game, then it follows that p is a best response to q, and
because q is also a best response to p, we can return 〈p,q〉
as an equilibrium of the extensive-form game with uncertain
observability. Otherwise, we add distribution p′ to D, and
the algorithm continues on to the next iteration, in which
we construct a new game G, compute its Nash equilibrium,
and so on.

In Subsection 4.1, we show how to compute the leader’s
best response LEADER-BR(q) efficiently using a set of lin-
ear programs (corresponding to a Stackelberg solve). In Sub-
section 4.2, we show how the algorithm solves the example

3This is a common assumption in Stackelberg games; with-
out it, it may happen that no solution exists. Specifically,
if the original normal-form game is generic, then the fol-
lower breaks ties in the leader’s favor in every subgame-
perfect equilibrium of the regular Stackelberg extensive-form
game [16].

game in Figure 1 with pobs = .99. In Subsection 4.3, we show
that the algorithm converges in a finite number of iterations.

4.1 Computing the leader’s best response
In this section, we describe an efficient way to compute

a distribution p′ over the leader’s actions Al such that the
leader’s utility of playing p′ is maximized assuming that the
follower plays a given strategy q. That is, p′ is the leader’s
best response to the follower’s mixed strategy q, denoted by
LEADER-BR(q) in the algorithm shown in Figure 3.

Our goal is to formulate LEADER-BR as a linear pro-
gram. However, the leader’s utility is not linear in p′ in the
case where the follower observes the leader’s mixed strat-
egy, because the leader’s utility depends on the follower’s
best response to this observation, which can be different for
different values of p′. Hence, we use a trick that is also used
in computing Stackelberg strategies (with certain observ-
ability) [3, 16]: we write an LP that maximizes the leader’s
expected utility under the constraint that the follower’s best
response in the observed case is a fixed action a∗f . To find
the leader’s best response to q overall, we solve such an LP
for each a∗f ∈ Af ; we obtain a best response for the leader
by choosing the optimal solution vector p′ for an LP with
the highest objective value (leader utility). Note that some
of these LPs may be infeasible.

Specifically, given a∗f , q, we solve the following LP, whose
variables are the p′al

.

Maximize pobs
∑

al∈Al

p′al
ul(al, a

∗
f )

+ (1− pobs)
∑

al∈Al

∑
af∈Af

p′al
qaful(al, af )

Subject to

∀af ∈ Af :
∑

al∈Al

p′al
uf (al, a

∗
f ) ≥

∑
al∈Al

p′al
uf (al, af )

∑
al∈Al

p′al
= 1

∀al ∈ Al : p′al
≥ 0

This formulation is almost identical to the standard one
for solving for a Stackelberg strategy [3, 16], except the ob-
jective is different to account for the fact that the follower
may not observe the distribution. In fact, if we modify the
leader’s utility function to uq

l (al, a
∗
f ) = pobsul(al, a

∗
f ) + (1−

pobs)
∑

af∈Af
qaful(al, af ), then the objective simplifies to∑

al∈Al
p′al

uq
l (al, a

∗
f ), and we obtain the standard Stackel-

berg formulation. Hence, we are just doing a Stackelberg
solve on a modified game.

4.2 An example run of the algorithm
In this section, we demonstrate how the algorithm com-

putes an equilibrium of the uncertain-observability extensive-
form game for the payoff matrix shown in Figure 1, with
probability of observability pobs = 0.99. (We already solved
for the equilibrium of this game analytically in Section 3—
the purpose here is to show how the algorithm finds this
equilibrium.) In this game, there are two actions in Al, so
each leader distribution is represented by a vector of two
numbers summing to 1.

Initialization. We initialize the set of leader distributions
with the two degenerate distributions over Al: the distri-



bution (1, 0) corresponds to the leader always playing U,
and the distribution (0, 1) corresponds to the leader always
playing D. The normal-form game for the current set of dis-
tributions D = {(1, 0), (0, 1)} and the utilities uGl , u

G
f com-

puted according to Equations (1), (2) is shown in Figure 4.
(Note that the follower strategy has very little effect on the
expected payoffs in this game; this is because the follower
strategy only concerns the “unobserved” part of the game,
which occurs very rarely in this game. The “observed” part
has been preprocessed with backward induction.)

EL L R ER
(1,0) 9,10 8.91, 9.99 8.92, 9.98 9.01, 9.9
(0,1) 9.01, 9.9 8.92, 9.98 8.91, 9.99 9,10

Figure 4: The normal-form game after the initial-
ization.

Iteration 1. We first compute a Nash equilibrium of the
normal-form game shown in Figure 4, namely, 〈(.5, .5),
(0, .5, .5, 0)〉. Next, we compute the leader’s best response to
the follower’s mixed strategy (0, .5, .5, 0). This results in the
distribution s1, in which the leader plays U with probability
8/9 and D with probability 1/9, so that the follower’s best
response to s1 is EL.

s1 = (8/9)U + (1/9)D

It turns out that the leader’s utility from playing s1 against
the follower’s mixed strategy (0, .5, .5, 0) is higher than the
leader’s utility in the current NE profile 〈(.5, .5), (0, .5, .5, 0)〉.
Thus, we add s1 to D. The resulting normal-form game is
shown in Figure 5.

EL L R ER
(1,0) 9,10 8.91, 9.99 8.92, 9.98 9.01, 9.9
(0,1) 9.01, 9.9 8.92, 9.98 8.91, 9.99 9,10
s1 9.11, 8.89 9.02, 8.89 9.03, 8.88 9.12, 8.81

Figure 5: The normal-form game after the first it-
eration.

Iteration 2. We compute a Nash equilibrium of the game
shown in Figure 5, namely, the pure-strategy Nash equilib-
rium 〈s1,L〉. The leader’s best response to the follower’s
strategy L is s2, where

s2 = (1/9)U + (8/9)D

The leader’s utility from playing s2 against L is higher than
the leader’s utility from playing s1 against L. Thus, we add
s2 to the set D. The resulting normal-form game is shown
in Figure 6.

EL L R ER
(1,0) 9,10 8.91, 9.99 8.92, 9.98 9.01, 9.9
(0,1) 9.01, 9.9 8.92, 9.98 8.91, 9.99 9,10
s1 9.11, 8.89 9.02, 8.89 9.03, 8.88 9.12, 8.81
s2 9.12, 8.81 9.03, 8.88 9.02, 8.89 9.11, 8.89

Figure 6: The normal-form game after the second
iteration.

Iteration 3. We compute a mixed-strategy Nash equilib-
rium of the normal-form game shown in Figure 6, namely,
〈(0, 0, .5, .5), (0, .5, .5, 0)〉. When we compute the leader’s

best-response to the follower’s mixed strategy (0, .5, .5, 0), it
turns out that there is no distribution that gives the leader
a utility higher than the leader’s utility in the computed NE
profile. Thus we have found an equilibrium of the uncertain-
observability extensive-form game, in which the leader plays
s1 with probability .5 and s2 with probability .5, while the
follower plays L with probability .5 and R with probability
.5.

4.3 A bound on the number of iterations
In this section, we prove that the algorithm is guaranteed

to find an equilibrium of the extensive-form game in a finite
number of iterations. For each af , the set of leader mixed
strategies Saf to which af is a best response is a polytope

in R|Al|. Denote the number of vertices of Saf by v(Saf ).
Typical linear program solvers will return a vertex of the fea-
sible region; we will assume that we use such a solver. Then,
the number of iterations of our algorithm can be bounded
as follows.

Theorem 1. The algorithm finds an equilibrium of the
extensive-form game modeling uncertain observability in no
more than 1 +

∑
af∈Af

v(Saf ) iterations.

Proof. LEADER-BR returns the optimal solution to one
of the linear programs in Subsection 4.1. The feasible region
of each of these linear programs is one of the regions Saf .
Hence, by the assumption on our LP solver, LEADER-BR
always returns a vertex of such a region.

When we generate a vertex corresponding to a distribution
that is already in D, we have converged: this vertex cannot
be a better response to q than p, because p is a best response
to q among distributions in D. Because there are at most∑

af∈Af
v(Saf ) distinct vertices to generate, the bound on

the number of iterations follows.

5. A STRONGER BOUND ON THE
LEADER’S SUPPORT SIZE

Theorem 1 implies that there always exists an equilibrium

in which the leader randomizes over at most 1+
∑

af∈Af

v(Saf )

distributions. This is still a rather loose bound. The follow-
ing theorem establishes a much tighter bound.

Theorem 2. In any uncertain-observability extensive-
form game, there exists an equilibrium in which the number
of distributions on which the leader places positive probability
is at most |Al|.

Proof. Let d denote a distribution over leader actions,
where d(al) denotes the probability d places on leader action
al ∈ Al. Suppose there is an equilibrium of the whole game
with pd denoting the leader probability on distribution d,
and qaf denoting the follower probability on follower action
af (conditional on the follower not being able to observe).
Let π(al) =

∑
d p(d)d(al) be the marginal probability that

the leader plays al. Finally, let us
l (d) denote the utility that

the leader would get for committing to d in a pure Stackel-
berg version of the game (corresponding to the “observed”
side of the game tree). Then, consider the following linear
program whose variables are p′d (one for every distribution
d in the support of pd). (This LP is just for the purpose of



analysis.)

Maximize
∑
d

p′du
s
l (d)

Subject to

(∀al)
∑
d

p′dd(al) = π(al)

(∀d) p′d ≥ 0

That is, this linear program tries to modify the leader’s equi-
librium strategy to maximize the leader’s overall Stackelberg
utility (the utility on the “observed” side of the game tree)
under the constraint that the marginal probabilities do not
change (so that nothing changes on the “unobserved” side of
the tree).

The original equilibrium pd must be an optimal solution
to this LP, because, if we suppose to the contrary that there
is a better solution, then the leader would want to switch
to that better solution (it would not change her utility on
the “unobserved” side and it would improve it on the “ob-
served” side), contradicting the equilibrium assumption. In
fact, any optimal solution to this linear program must be an
equilibrium when combined with the qaf , because it will do
just as well as pd for the leader, and the follower will still
be best-responding (on the “unobserved” side) because the
marginal probabilities on the al remain the same. A linear
program with |Al| constraints (not counting the nonnegativ-
ity constraints for each variable) must have an optimal solu-
tion with at most |Al| of its variables set to nonzero values
(which follows, for example, from the simplex algorithm).
It follows that there exists an equilibrium where the leader
places positive probability on at most |Al| distributions.

6. EXPERIMENTS
The goal of our experiments is to study a number of prop-

erties of the proposed algorithm and the solutions it gener-
ates. Since the bound on the number of iterations given in
Theorem 1 is quite loose, we want to measure the number
of iterations and the overall run time of the algorithm for
different payoff matrices and values of pobs. Another goal of
the experiments is to measure the leader’s support size, that
is, the number of distributions played with positive proba-
bility in the leader’s equilibrium strategy, which we showed
to be bounded by the number of the leader’s actions |Al|
(Theorem 2). We also want to study the dependence of the
leader’s equilibrium utility on the probability of observabil-
ity pobs. Finally, we want to find out how often the leader’s
equilibrium strategy in the extensive-form game is actually
different from Nash and Stackelberg strategies in the original
normal-form game.

In our experimental results we consider 15 × 15 payoff
matrices and vary pobs. We used two different Nash equi-
librium solvers, a MIP solver with different objectives [14],
and the Gambit [10] implementation of the Lemke-Howson
algorithm [9]. For the MIP solver, we used three different
objective functions: no objective, minimizing the size of the
leader support, and maximizing the leader utility.

We considered two distributions over games. The first
distribution (uniform) generated payoff matrices with indi-
vidual payoffs drawn uniformly at random from [0, 1]. The
second (gamut) generated payoff matrices from the various
game types offered in GAMUT [12], with uniform weight

given to each type.
Figures 7(a) and 7(b) show the run time of the different al-

gorithms as a function of pobs. One general trend is that the
MIP solver that minimizes the leader support is the fastest
solver. One interesting difference is that run time gener-
ally increases with pobs for the GAMUT distribution, but is
fairly flat or decreasing for uniform. The short run time is
due to the low number of iterations, which we discuss next.

Figures 7(c) and 7(d) show the number of iterations taken
by the algorithm. Each iteration corresponds to a com-
plete pass through the loop in Figure 3, which includes a
Nash equilibrium computation in the extensive form game
followed by a LEADER-BR solve. The number of iterations
generally tracks the run time fairly closely. Two exceptions
are GAMBIT and MIP with leader support minimization
for the GAMUT distribution. As we can see, the number
of iterations is surprisingly low compared to our theoretical
bound of Theorem 1. We leave the question of whether a
tighter theoretical bound on the number of iterations can be
obtained for future research.

The support size (number of distributions over which the
leader randomizes in the equilibrium) is shown in Figures
7(e) and 7(f). The small support size is explained in part
by the low number of iterations. Since we initialize the al-
gorithm with |Al| pure strategies for the leader, the leader’s
support size cannot be larger than |Al| plus the number of it-
erations. However, it is significantly lower than that bound.

Figures 7(g) and 7(h) show the leader’s expected utility in
the equilibrium. As expected, higher values of pobs lead to
higher utility for the leader—this is the benefit of commit-
ment. Using the MIP that maximizes leader utility (within
a single Nash solve) tends to lead to high leader utilities
in the final equilibrium, but intriguingly the MIP with no
objective surpasses it for the GAMUT games.

Finally, Figures 7(i) and 7(j) show how often the leader’s
equilibrium strategy coincided with Stackelberg (full observ-
ability) or Nash (no observability) strategies of the game.
The Nash subroutine that is used by the algorithm here is
the MIP formulation that minimizes the support size. Nat-
urally, the higher the value of pobs is, the more often the
equilibrium strategy coincides with Stackelberg and the less
often it coincides with Nash. In general, it coincides with
Nash very often and with Stackelberg quite often. We can
also see that the equilibrium strategy concides with both
Nash and Stackelberg at the same time in a high percent-
age of GAMUT games. This indicates that in certain game
families, simply playing a Nash/Stackelberg strategy of the
original normal-form game is also an equilibrium strategy in
the extensive-form game with uncertain observability across
intervals of pobs. However, this is not the case in games
with uniformly random payoffs, which suggests the need for
an algorithm like the one we present in this paper.

The main lessons that we take away from this set of ex-
periments are as follows. First, our proposed algorithm is
quite fast in practice, especially compared to the loose the-
oretical bound on the number of iterations that we estab-
lished in Theorem 1. Second, there are games in which the
defender’s equilibrium strategy is sensitive to the value of
pobs, which suggests that it is important to model the un-
certainty about the observability. Third, there are families
of games in which the equilibrium does not change across
wide intervals of pobs—in such cases, playing Nash or Stack-
elberg strategies of the original normal-form game may be
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“good enough”.

7. CONCLUSION
Several recently deployed applications in security domains

use game theory for the strategic allocation of defensive re-
sources. These applications compute a Stackelberg strategy
rather than a Nash strategy. For this to make sense, the fol-
lower needs to be able to observe the leader’s distribution;
however, in many applications, there is some uncertainty
about whether the follower has this ability. One previously
proposed solution to this dilemma is to model model this
uncertainty explicitly as a move by Nature in an extensive-
form game of infinite size. We pursued this approach in this
paper, and proposed an iterative algorithm for computing an
equilibrium of the extensive-form game. The algorithm al-
ternately calls subroutines for computing Nash and Stackel-
berg solutions, and is guaranteed to terminate in finite time.
In experiments, the algorithm required very few iterations
to compute an equilibrium. While we proved the perhaps
unintuitive property that in some of these games, the leader
must randomize over distributions in equilibrium, this hap-
pened very rarely in the experiments. We also proved an
upper bound on the number of distributions in the leader’s
support, though this bound is still well above what we typ-
ically see in the experiments.

We believe that our algorithm constitutes a useful ad-
dition to the toolbox of techniques for computing game-
theoretic solutions, especially in ambiguous real-world do-
mains. Strengths of the algorithm include that it can be ap-
plied to any game (as opposed to, for instance, just security
games), and it can also use as subroutines Nash and Stack-
elberg solvers that are tailored to particular game families.
The algorithm is efficient in practice, and is guaranteed to
produce a solution with support no larger than the number
of actions in the original game despite solving an extensive
form game with a potentially infinite branching factor.

A potential drawback to the overall framework, not the
algorithm, is that it requires us to determine the number
pobs. This may not be an issue insofar as the solution stays
the same across a range of values of pobs, yet many open
problems remain. As pobs shrinks, we are more likely to en-
counter equilibrium selection problems—how do we address
these? What happens if we have some degree of control over
pobs? Are there other ways of addressing the problem of un-
certainty about observability that do not involve making the
uncertainty explicit in the extensive form?

8. ACKNOWLEDGMENTS
We acknowledge NSF CAREER 0953756 and IIS-0812113,

ARO 56698-CI, and an Alfred P. Sloan fellowship for sup-
port. We also thank Christopher Kiekintveld, Milind Tambe,
and Zhengyu Yin for useful discussions about this topic.

9. REFERENCES
[1] X. Chen and X. Deng. Settling the complexity of

two-player Nash equilibrium. In Proceedings of the
Annual Symposium on Foundations of Computer
Science (FOCS), pages 261–272, 2006.

[2] X. Chen, X. Deng, and S.-H. Teng. Computing Nash
equilibria: Approximation and smoothed complexity.
In Proceedings of the Annual Symposium on

Foundations of Computer Science (FOCS), pages
603–612, 2006.

[3] V. Conitzer and T. Sandholm. Computing the optimal
strategy to commit to. In Proceedings of the ACM
Conference on Electronic Commerce (EC), pages
82–90, Ann Arbor, MI, USA, 2006.

[4] V. Conitzer and T. Sandholm. New complexity results
about Nash equilibria. Games and Economic Behavior,
63(2):621–641, 2008. Earlier versions appeared in
IJCAI-03 and as technical report CMU-CS-02-135.

[5] C. Daskalakis, P. Goldberg, and C. H. Papadimitriou.
The complexity of computing a Nash equilibrium. In
Proceedings of the Annual Symposium on Theory of
Computing (STOC), pages 71–78, 2006.

[6] I. Gilboa and E. Zemel. Nash and correlated
equilibria: Some complexity considerations. Games
and Economic Behavior, 1:80–93, 1989.

[7] E. Halvorson, V. Conitzer, and R. Parr. Multi-step
multi-sensor hider-seeker games. In Proceedings of the
Twenty-First International Joint Conference on
Artificial Intelligence (IJCAI), pages 159–166,
Pasadena, CA, USA, 2009.

[8] M. Jain, E. Kardes, C. Kiekintveld, F. Ordóñez, and
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