Mechanism Design for Multiagent Systems

Vincent Conitzer

Assistant Professor of Computer Science and Economics
Duke University
conitzer@cs.duke.edu

Introduction

- Often, decisions must be taken based on the preferences of multiple, self-interested agents
- Allocations of resources/tasks
- Joint plans
- Would like to make decisions that are "good" with respect to the agents' preferences
- But, agents may lie about their preferences if this is to their benefit
- Mechanism design = creating rules for choosing the outcome that get good results nevertheless

Part I: "Classical" mechanism design

- Preference aggregation settings
- Mechanisms
- Solution concepts
- Revelation principle
- Vickrey-Clarke-Groves mechanisms
- Impossibility results

Preference aggregation settings

- Multiple agents...
- humans, computer programs, institutions, ...
- ... must decide on one of multiple outcomes...
- joint plan, allocation of tasks, allocation of resources, president, ...
- ... based on agents' preferences over the outcomes
- Each agent knows only its own preferences
- "Preferences" can be an ordering \geq_{i} over the outcomes, or a real-valued utility function u_{i}
- Often preferences are drawn from a commonly known distribution

Elections

Resource allocation \boldsymbol{T}

$$
\begin{aligned}
& \mathrm{v}(\mathrm{~B} \mathrm{~K} \text { K })=\$ 55 \\
& v\left(\frac{\pi}{\pi}\right)=\$ 0
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{v}(\mathrm{y} \text { 淘 })=\$ 0
\end{aligned}
$$

So, what is a mechanism?

- A mechanism prescribes:
- actions that the agents can take (based on their preferences)
- a mapping that takes all agents' actions as input, and outputs the chosen outcome
- the "rules of the game"
- can also output a probability distribution over outcomes
- Direct revelation mechanisms are mechanisms in which action set $=$ set of possible preferences

Example: plurality voting

- Every agent votes for one alternative
- Alternative with most votes wins
- random tiebreaking

Some other well-known voting mechanisms

- In all of these rules, each voter ranks all m candidates (direct revelation mechanisms)
- Other scoring mechanisms
- Borda: candidate gets m-1 points for being ranked first, $\mathrm{m}-2$ for being ranked second, ...
- Veto: candidate gets 0 points for being ranked last, 1 otherwise
- Pairwise election between two candidates: see which candidate is ranked above the other more often
- Copeland: candidate with most pairwise victories wins
- Maximin: compare candidates by their worst pairwise elections
- Slater: choose overall ranking disagreeing with as few pairwise elections as possible
- Other
- Single Transferable Vote (STV): candidate with fewest votes drops out, those votes transfer to next remaining candidate in ranking, repeat
- Kemeny: choose overall ranking that minimizes the number of disagreements with some vote on some pair of candidates

The "matching pennies" mechanism

- Winner of "matching pennies" gets to choose outcome

Mechanisms with payments

- In some settings (e.g. auctions), it is possible to make payments to/collect payments from the agents
- Quasilinear utility functions: $\mathrm{u}_{\mathrm{i}}\left(\mathrm{o}, \pi_{\mathrm{i}}\right)=\mathrm{v}_{\mathrm{i}}(\mathrm{o})+\pi_{\mathrm{i}}$
- We can use this to modify agents' incentives

A few different 1-item auction mechanisms

\Rightarrow English auction:

- Each bid must be higher than previous bid
- Last bidder wins, pays last bid
\rightarrow Japanese auction:
- Price rises, bidders drop out when price is too high
- Last bidder wins at price of last dropout

Dutch auction:

- Price drops until someone takes the item at that price
- Sealed-bid auctions (direct revelation mechanisms):
- Each bidder submits a bid in an envelope
- Auctioneer opens the envelopes, highest bid wins
- First-price sealed-bid auction: winner pays own bid
\rightarrow. Second-price sealed bid (or Vickrey) auction: winner pays second highest bid

What can we expect to happen?

- In direct revelation mechanisms, will (selfish) agents tell the truth about their preferences?
- Voter may not want to "waste" vote on poorly performing candidate (e.g. Nader)
- In first-price sealed-bid auction, winner would like to bid only ε above the second highest bid
- In other mechanisms, things get even more complicated...

A little bit of game theory

- $\Theta_{i}=$ set of all of agent i's possible preferences ("types")
- Notation: $u_{i}\left(\theta_{i}, o\right)$ is i 's utility for o when i has type θ_{i}
- A strategy s_{i} is a mapping from types to actions
$-s_{i}: \Theta_{i} \rightarrow A_{i}$
- For direct revelation mechanism, $s_{i}: \Theta_{i} \rightarrow \Theta_{i}$
- More generally, can map to distributions, $\mathrm{s}_{\mathrm{i}}: \Theta_{\mathrm{i}} \rightarrow \Delta\left(\mathrm{A}_{\mathrm{i}}\right)$
- A strategy s_{i} is a dominant strategy if for every type θ_{i}, no matter what the other agents do, $\mathrm{s}_{\mathrm{i}}\left(\theta_{\mathrm{i}}\right)$ maximizes i's utility
- A direct revelation mechanism is strategy-proof (or dominant-strategies incentive compatible) if telling the truth $\left(\mathrm{s}_{\mathrm{i}}\left(\theta_{\mathrm{i}}\right)=\theta_{\mathrm{i}}\right)$ is a dominant strategy for all players
- (Another, weaker concept: Bayes-Nash equilibrium)

The Vickrey auction is strategy-proof!

- What should a bidder with value v bid?

Collusion in the Vickrey auction

- Example: two colluding bidders

The revelation principle

- For any (complex, strange) mechanism that produces certain outcomes under strategic behavior...
- ... there exists an incentive compatible direct revelation mechanism that produces the same outcomes!
- "strategic behavior" = some solution concept (e.g. dominant strategies)

The Clarke mechanism [Clarke 71]

- Generalization of the Vickrey auction to arbitrary preference aggregation settings
- Agents reveal types directly
- $\theta_{\mathrm{i}}{ }^{\prime}$ is the type that i reports, θ_{i} is the actual type
- Clarke mechanism chooses some outcome o that maximizes $\Sigma_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\left(\theta_{\mathrm{i}}{ }^{\prime}, \mathrm{o}\right)$
- To determine the payment that agent j must make:
- Choose o' that maximizes $\Sigma_{i \neq j} u_{i}\left(\theta_{\mathrm{i}}{ }^{\prime}, o^{\prime}\right)$
- Make j pay $\Sigma_{i \neq j}\left(u_{i}\left(\theta_{i}^{\prime}, o^{\prime}\right)\right.$ - $\left.u_{i}\left(\theta_{i}^{\prime}, o\right)\right)$
- Clarke mechanism is:
- individually rational: no agent pays more than the outcome is worth to that agent
- (weak) budget balanced: agents pay a nonnegative amount

Why is the Clarke mechanism strategy-proof?

- Total utility for agent j is

$$
\begin{aligned}
& u_{\mathrm{j}}\left(\theta_{\mathrm{j}}, o\right)-\sum_{\mathrm{i} \neq \mathrm{j}}\left(\mathrm{u}_{\mathrm{i}}\left(\theta_{\mathrm{i}}^{\prime}, o^{\prime}\right)-\mathrm{u}_{\mathrm{i}}\left(\theta_{\mathrm{i}}^{\prime}, o\right)\right)= \\
& \mathrm{u}_{\mathrm{j}}\left(\theta_{\mathrm{j}}, o\right)+\sum_{\mathrm{i} \neq \mathrm{j}} \mathrm{u}_{\mathrm{i}}\left(\theta_{\mathrm{i}}^{\prime}, o\right)-\Sigma_{\mathrm{i} \neq \mathrm{j}} \mathrm{u}_{\mathrm{i}}\left(\theta_{\mathrm{i}}^{\prime}, o^{\prime}\right)
\end{aligned}
$$

- But agent j cannot affect the choice of o'
- Hence, j can focus on maximizing $u_{j}\left(\theta_{j}, o\right)+\Sigma_{i \neq j} u_{i}\left(\theta_{i}{ }^{\prime}, o\right)$
- But mechanism chooses o to maximize $\Sigma_{i} u_{i}\left(\theta_{\mathrm{i}}{ }^{\prime}, \mathrm{o}\right)$
- Hence, if $\theta_{\mathrm{j}}{ }^{\prime}=\theta_{\mathrm{j}}$, j^{\prime} s utility will be maximized!
- Extension of idea: add any term to player j's payment that does not depend on j 's reported type
- This is the family of Groves mechanisms [Groves 73]

The Clarke mechanism is not perfect

- Requires payments + quasilinear utility functions
- In general money needs to flow away from the system
- Vulnerable to collusion, false-name manipulation
- Maximizes sum of agents' utilities, but sometimes we are not interested in this
- E.g. want to maximize revenue

Impossibility results without payments

- Can we do without payments (voting mechanisms)?
- Gibbard-Satterthwaite [Gibbard 73, Satterthwaite 75] impossibility result: with three or more alternatives and unrestricted preferences, no voting mechanism exists that is
- deterministic
- strategy-proof
- onto (every alternative can win)
- non-dictatorial (more than one voter can affect the outcome)
- Generalization [Gibbard 77]: a randomized voting rule is strategy-proof if and only if it is a randomization over unilateral and duple rules
- unilateral = at most one voter affects the outcome
- duple $=$ at most two alternatives have a possibility of winning

Single-peaked preferences [Black 48]

- Suppose alternatives are ordered on a line
- Every voter prefers alternatives that are closer to her most preferred alternative
- Let every voter report only her most preferred alternative ("peak")
- Choose the median voter's peak as the winner
- Strategy-proof!

Impossibility result with payments

- Simple setting:

- We would like a mechanism that:
- is efficient (trade iff $y>x$)
- is budget-balanced (seller receives what buyer pays)
- is strategy-proof (or even weaker form of incentive compatible)
- is individually rational (even just in expectation)
- This is impossible! [Myerson \& Satterthwaite 83]

Part II: Enter the computer scientist

- Computational hardness of executing classical mechanisms
- New kinds of manipulation
- Computationally efficient approximation mechanisms
- Automatically designing mechanisms using optimization software
- Designing mechanisms for computationally bounded agents
- Communication constraints

How do we compute

the outcomes of mechanisms?

- Some voting mechanisms are NP-hard to execute (including Kemeny and Slater) [Bartholdi et al. 89, Dwork et al. 01, Ailon et al. 05, Alon 05]
- In practice can still solve instances with fairly large numbers of alternatives [Davenport \& Kalagnanam AAAIO4, Conitzer et al. AAAI06, Conitzer AAAI06]
- What about Clarke mechanism? Depends on setting

Inefficiency of sequential auctions

- Suppose your valuation function is $v(\mathbb{\square})=$ $\$ 200, \mathrm{v}$ (10) $=\$ 100, \mathrm{v}$) $=\$ 500$ (complementarity)
- Now suppose that there are two (say, Vickrey) auctions, the first one for and the second one for
- What should you bid in the first auction (for)?
- If you bid $\$ 200$, you may lose to a bidder who bids $\$ 250$, only to find out that you could have won for \$200
- If you bid anything higher, you may pay more than $\$ 200$, only to find out that sells for \$1000
- Sequential (and parallel) auctions are inefficient

Combinatorial auctions

 Simultaneously for sale: =, \square
used in truckload transportation, industrial procurement, radio spectrum allocation, ...

The winner determination problem (WDP)

- Choose a subset A (the accepted bids) of the bids B,
- to maximize $\Sigma_{b \text { in }} V_{b}$,
- under the constraint that every item occurs at most once in A
- This is assuming free disposal, i.e. not everything needs to be allocated

WDP example

- Items A, B, C, D, E
- Bids:
- (\{A, C, D\}, 7)
- (\{B, E\}, 7)
- (\{C\}, 3)
- (\{A, B, C, E\}, 9)
- (\{D\}, 4)
- (\{A, B, C\}, 5)
- (\{B, D\}, 5)

An integer program formulation

- x_{b} equals 1 if bid b is accepted, 0 if it is not
- maximize $\Sigma_{b} \mathrm{v}_{\mathrm{b}} \mathrm{x}_{\mathrm{b}}$
- subject to
- for each item $j, \Sigma_{b: j \text { in } b} x_{b} \leq 1$
- If each x_{b} can take any value in [0, 1], we say that bids can be partially accepted
- In this case, this is a linear program that can be solved in polynomial time
- This requires that
- each item can be divided into fractions
- if a bidder gets a fraction f of each of the items in his bundle, then this is worth the same fraction f of his value v_{b} for the bundle

Weighted independent set

- Choose subset of the vertices with maximum total weight,
- Constraint: no two vertices can have an edge between them
- NP-hard (generalizes regular independent set)

The winner determination problem as a weighted independent set problem

- Each bid is a vertex
- Draw an edge between two vertices if they share an item

- Optimal allocation = maximum weight independent set
- Can model any weighted independent set instance as a CA winner determination problem (1 item per edge (or clique))
- Weighted independent set is NP-hard, even to solve approximately [Håstad 96] - hence, so is WDP
- [Sandholm 02] noted that this inapproximability applies to the WDP

Polynomial-time solvable special cases

- Every bid is on a bundle of size at most two items [Rothkopf et al. 98]
- ~maximum weighted matching
- With 3 items per bid, NP-hard again (3-COVER)
- Items are organized on a tree \& each bid is on a connected set of items [Sandholm \& Suri 03]
- More generally, graph of bounded treewidth [Conitzer et al. AAAIO4]
- Even further generalization given by [Gottlob \& Greco EC07]

Clarke mechanism in CA

(aka. Generalized Vickrey Auction, GVA)

Clarke mechanism in CA...

$$
\mathrm{v}(\square)=\$ 300
$$

pays $\$ 700-\$ 300=\$ 400$

Collusion under GVA

E.g. [Ausubel and Milgrom 06]; general characterization in [Conitzer \& Sandholm AAMAS06]

False-name bidding
 [Yokoo et al. AIJ2001, GEB2003]

v (기 믐) $=\$ 700$
loses
$\mathrm{v}(\square)=\$ 300$
wins, pays $\$ 0$

$$
v(\mathbb{\square})=\$ 800
$$

wins, pays $\$ 200$

$$
v(\sqrt{D})=\$ 200
$$

wins, pays $\$ 0$

A mechanism is false-name-proof if bidders never have an incentive to use multiple identifiers

No mechanism that allocates items efficiently is false-name-proof [Yokoo et al. GEB2003]

Characterization of false-name-proof

voting rules

- Theorem [Conitzer 07]
- Any (neutral, anonymous, IR) false-name-proof voting rule f can be described by a single number k_{f} in $[0,1$]
- With probability k_{f}, the rule chooses an alternative uniformly at random
- With probability $1-\mathrm{k}_{\mathrm{f}}$, the rule draws two alternatives uniformly at random;
- If all votes rank the same alternative higher among the two, that alternative is chosen
- Otherwise, a coin is flipped to decide between the two alternatives

Alternative approaches to false-name-proofness

- Assume there is a cost to using a false name [Wagman \& Conitzer AAMAS08]
- Verify some of the agents' identities after the fact [Conitzer TARK07]

Strategy-proof mechanisms that solve the WDP approximately

- Running Clarke mechanism using approximation algorithms for WDP is generally not strategy-proof
- Assume bidders are single-minded (only want a single bundle)
- A greedy strategy-proof mechanism [Lehmann, O'Callaghan, Shoham JACM 03]:

Worst-case
approximation
ratio $=(\#$ items $)$

Can get a better approximation ratio, $\sqrt{ }$ (\#items),
by sorting by value $\sqrt{ }$ (bundle size)

Clarke mechanism with same approximation

 algorithm does not work$$
\begin{gathered}
\{a\}, 11 \\
\{b, c\}, 20 \\
\{a, d\}, 18 \\
\{a, c\}, 16 \\
\{c\}, 7 \\
\{d\}, 6
\end{gathered}
$$

Total value to bidders other than the $\{\mathrm{a}\}$ bidder: 26

$$
\begin{aligned}
& \vee\{b, c\}, 20 \\
& \vee\{a, d\}, 18 \\
& \times\{a, c\}, 16 \\
& \times\{c\}, 7 \\
& \times\{d\}, 6
\end{aligned}
$$

Total value: 38
\{a\} bidder should pay 38-26 = 12, more than her valuation!

Designing mechanisms automatically

- Mechanisms such as Clarke are very general...
- ... but will instantiate to something specific for specific settings
- This is what we care about
- Different approach: solve mechanism design problem automatically for setting at hand, as an optimization problem [Conitzer \& Sandholm UAI02]

Small example: divorce arbitration

- Outcomes:

- Each agent is of high type with probability 0.2 and of low type with probability 0.8
- Preferences of high type:
- $u($ get the painting $)=100$
- $u($ other gets the painting $)=0$
- $u($ museum $)=40$
- $u($ get the pieces $)=-9$
- u (other gets the pieces) $=-10$
- Preferences of low type:
- u (get the painting) $=2$
- $u($ other gets the painting $)=0$
- u (museum) $=1.5$
- $u($ get the pieces $)=-9$
- u (other gets the pieces) $=-10$

Optimal dominant-strategies incentive compatible randomized mechanism for maximizing expected sum of utilities

How do we set up the optimization?

- Use linear programming
- Variables:
- $\mathrm{p}\left(\mathrm{o} \mid \theta_{1}, \ldots, \theta_{\mathrm{n}}\right)=$ probability that outcome o is chosen given types $\theta_{1}, \ldots, \theta_{\mathrm{n}}$
- (maybe) $\pi_{i}\left(\theta_{1}, \ldots, \theta_{\mathrm{n}}\right)=\mathrm{i}$'s payment given types $\theta_{1}, \ldots, \theta_{\mathrm{n}}$
- Strategy-proofness constraints: for all i, $\theta_{1}, \ldots \theta_{\mathrm{n}}, \theta_{\mathrm{i}}{ }^{\prime}$:

$$
\begin{aligned}
& \Sigma_{o} \mathrm{p}\left(\mathrm{o} \mid \theta_{1}, \ldots, \theta_{\mathrm{n}}\right) \mathrm{u}_{\mathrm{i}}\left(\theta_{\mathrm{i}}, \mathrm{o}\right)+\pi_{\mathrm{i}}\left(\theta_{1}, \ldots, \theta_{\mathrm{n}}\right) \geq \\
& \Sigma_{\mathrm{o}} \mathrm{p}\left(\mathrm{o} \mid \theta_{1}, \ldots, \theta_{\mathrm{i}}^{\prime}, \ldots, \theta_{\mathrm{n}}\right) u_{\mathrm{i}}\left(\theta_{\mathrm{i}}, o\right)+\pi_{\mathrm{i}}\left(\theta_{1}, \ldots, \theta_{\mathrm{i}}^{\prime}, \ldots, \theta_{\mathrm{n}}\right)
\end{aligned}
$$

- Individual-rationality constraints: for all $\mathrm{i}, \theta_{1}, \ldots \theta_{\mathrm{n}}$:
$\Sigma_{\mathrm{o}} \mathrm{p}\left(\mathrm{o} \mid \theta_{1}, \ldots, \theta_{\mathrm{n}}\right) \mathrm{u}_{\mathrm{i}}\left(\theta_{\mathrm{i}}, \mathrm{o}\right)+\pi_{\mathrm{i}}\left(\theta_{1}, \ldots, \theta_{\mathrm{n}}\right) \geq 0$
- Objective (e.g. sum of utilities)
$\Sigma_{\theta 1, \ldots, \theta_{n}} \mathrm{p}\left(\theta_{1}, \ldots, \theta_{\mathrm{n}}\right) \Sigma_{\mathrm{i}}\left(\Sigma_{\mathrm{o}} \mathrm{p}\left(\mathrm{o} \mid \theta_{1}, \ldots, \theta_{\mathrm{n}}\right) \mathrm{u}_{\mathrm{i}}\left(\theta_{\mathrm{i}}, o\right)+\pi_{\mathrm{i}}\left(\theta_{1}, \ldots, \theta_{\mathrm{n}}\right)\right)$
- Also works for other incentive compatibility/individual rationality notions, other objectives, etc.
- For deterministic mechanisms, use mixed integer programming (probabilities in $\{0,1\}$)
- Typically designing the optimal deterministic mechanism is NP-hard

Computational limitations on the agents

- Will agents always be able to figure out what action is best for them?
- Revelation principle assumes this
- Effectively, does the manipulation for them!
- Theorem [Conitzer \& Sandholm 04]. There are settings where:
- Executing the optimal (utility-maximizing) incentive compatible mechanism is NP-complete
- There exists a non-incentive compatible mechanism, where
- The center only carries out polynomial computation
- Finding a beneficial insincere revelation is NP-complete for the agents
- If the agents manage to find the beneficial insincere revelation, the new mechanism is just as good as the optimal truthful one
- Otherwise, the new mechanism is strictly better

Hardness of manipulation of voting mechanisms

- Computing the strategically optimal vote ("manipulating") given others' votes is NP-hard for certain voting mechanisms (including STV) [Bartholdi et al. 89, Bartholdi \& Orlin 91]
- Well-known voting mechanisms can be modified to make manipulation NP-hard, \#P-hard, or even PSPACE-hard [Conitzer \& Sandholm IJCAI03, Elkind \& Lipmaa ISAAC05]
- Ideally, we would like manipulation to be usually hard, not worst-case hard
- Several impossibility results [Procaccia \& Rosenschein AAMAS06, Conitzer \& Sandholm AAAI06, Friedgut et al. 07]

Preference elicitation

- Sometimes, having each agent communicate all preferences at once is impractical
- E.g. in a combinatorial auction, a bidder can have a different valuation for every bundle (2 $2^{\text {\#items }} 11$ values)
- Preference elicitation:
- sequentially ask agents simple queries about their preferences,
- until we know enough to determine the outcome

Preference elicitation (CA)

center/auctioneer/ organizer/...

"v(\{A,B,C\})
< 70?"

"yes" "40"

${ }^{66} \mathrm{~V}(\{B,(\square\}) ? 99$
"What would you buy if the price for A is 30 , the price for B is 20 , the price for \mathbf{C} is 20?"
[Parkes, Ausubel \& Milgrom, Wurman \& Wellman, Blumrosen \& Nisan, Conen \& Sandholm, Hudson \& Sandholm, Nisan \& Segal, Lahaie \& Parkes, Santi et al, ...]

Preference elicitation (voting)

[Conitzer \& Sandholm AAAIO2, EC05, Konczak \& Lang 05, Conitzer AAMAS07, Pini et al. IJCAIO7, Walsh AAAIO7]

wins

Benefits of preference elicitation

- Less communication needed
- Agents do not always need to determine all of their preferences
- Only where their preferences matter

Other topics

- Online mechanism design: agents arrive and depart over time [Lavi \& Nisan 00, Friedman \& Parkes 03, Parkes \& Singh 03, Hajiaghayi et al. 04, 05 , Parkes \& Duong 07]
- Distributed implementation of mechanisms [Parkes \& Shneidman 04, Petcu et al. 06]

Some future directions

- General principles for how to get incentive compatibility without solving to optimality
- Are there other ways of addressing false-name manipulation?
- Can we scale automated mechanism design to larger instances?
- One approach: use domain structure (e.g. auctions [Likhodedov \& Sandholm, Guo \& Conitzer])
- Is there a systematic way of exploiting agents' computational boundedness?
- One approach: have an explicit model of computational costs [Larson \& Sandholm]
Thank you for your attention!

