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Introduction
•

 
Often, decisions must be taken based on the 
preferences of multiple, self-interested

 
agents

–
 

Allocations of resources/tasks
–

 
Joint plans

–
 

…
•

 
Would like to make decisions that are “good”

 with respect to the agents’
 

preferences
•

 
But, agents may lie about their preferences if 
this is to their benefit

•
 

Mechanism design
 

= creating rules for 
choosing the outcome that get good results 
nevertheless



Part I: “Classical”
 

mechanism design

•
 

Preference aggregation settings
•

 
Mechanisms

•
 

Solution concepts
•

 
Revelation principle

•
 

Vickrey-Clarke-Groves mechanisms
•

 
Impossibility results



Preference aggregation settings
•

 
Multiple agents…
–

 
humans, computer programs, institutions, …

•
 

… must decide on one of multiple outcomes…
–

 
joint plan, allocation of tasks, allocation of 
resources, president, …

•
 

… based on agents’
 

preferences
 

over the 
outcomes
–

 
Each agent knows only its own preferences

–
 

“Preferences”
 

can be an ordering ≥i

 

over the 
outcomes, or a real-valued utility function ui

–
 

Often preferences are drawn from a commonly 
known distribution



Elections

Outcome space = {            ,             ,             }

>             > >             >



Resource allocation

Outcome space = {               ,               ,             }

v(               ) = $55

v(               ) = $0

v(               ) = $0

v(               ) = $0

v(               ) = $32

v(               ) = $0



So, what is a mechanism?
•

 
A mechanism

 
prescribes:

–
 

actions
 

that the agents can take (based on their 
preferences)

–
 

a mapping
 

that takes all agents’
 

actions as input, and 
outputs the chosen outcome

•
 

the “rules of the game”
•

 
can also output a probability distribution over outcomes

•
 

Direct revelation mechanisms
 

are mechanisms in 
which action set = set of possible preferences



Example: plurality voting

.5 .5 .5 .5

.5 .5

.5 .5.5 .5

.5 .5

•
 

Every agent votes for one alternative
•

 
Alternative with most votes wins
–

 
random tiebreaking



Some other well-known voting mechanisms
•

 
In all of these rules, each voter ranks all m

 
candidates 

(direct revelation mechanisms)
•

 
Other scoring mechanisms
–

 

Borda: candidate gets m-1

 

points for being ranked first, m-2

 

for being ranked 
second, …

–

 

Veto: candidate gets 0

 

points for being ranked last, 1

 

otherwise
•

 
Pairwise election

 
between two candidates: see which candidate is 

ranked above the other more often
–

 

Copeland: candidate with most pairwise victories wins
–

 

Maximin: compare candidates by their worst pairwise elections
–

 

Slater: choose overall ranking disagreeing with as few pairwise elections as 
possible

•
 

Other
–

 

Single Transferable Vote (STV):  candidate with fewest votes drops out, 
those votes transfer to next remaining candidate in ranking, repeat

–

 

Kemeny:  choose overall ranking that minimizes the number of 
disagreements with some vote on some pair of candidates



The “matching pennies”
 

mechanism
•

 
Winner of “matching pennies”

 
gets to choose outcome 



Mechanisms with payments

•
 

In some settings (e.g. auctions), it is possible to make 
payments to/collect payments from the agents

•
 

Quasilinear
 

utility functions: ui

 

(o, πi

 

) = vi

 

(o) + πi
•

 
We can use this to modify agents’

 
incentives



A few different 1-item auction mechanisms
•

 
English

 
auction:

–
 

Each bid must be higher than previous bid
–

 
Last bidder wins, pays last bid

•
 

Japanese
 

auction:
–

 
Price rises, bidders drop out when price is too high

–
 

Last bidder wins at price of last dropout 
•

 
Dutch

 
auction:

–
 

Price drops until someone takes the item at that price
•

 
Sealed-bid

 
auctions (direct revelation mechanisms):

–
 

Each bidder submits a bid in an envelope
–

 
Auctioneer opens the envelopes, highest bid wins

•

 

First-price

 

sealed-bid auction: winner pays own bid
•

 

Second-price sealed bid (or Vickrey) auction: winner pays second 
highest bid



What can we expect to happen?
•

 
In direct revelation mechanisms, will (selfish) agents 
tell the truth about their preferences?
–

 
Voter may not want to “waste”

 
vote on poorly performing 

candidate (e.g. Nader)
–

 
In first-price sealed-bid auction, winner would like to bid 
only ε

 
above the second highest bid

•
 

In other mechanisms, things get even more 
complicated…



A little bit of game theory
•

 
Θi

 

= set of all of agent i’s
 

possible preferences (“types”)
–

 
Notation: ui

 

(θi

 

, o)
 

is i’s
 

utility for o
 

when i
 

has type θi

•
 

A strategy si

 

is a mapping from types to actions 
–

 
si

 

: Θi

 

→ Ai
–

 
For direct revelation mechanism, si

 

: Θi

 

→Θi
–

 
More generally, can map to distributions, si

 

: Θi

 

→ Δ(Ai

 

)
•

 
A strategy si

 

is a dominant strategy
 

if for every type θi

 

, 
no matter what the other agents do, si

 

(θi

 

)
 

maximizes i’s
 utility

•
 

A direct revelation mechanism is strategy-proof
 

(or 
dominant-strategies incentive compatible) if telling the 
truth (si

 

(θi

 

) = θi

 

) is a dominant strategy for all players
•

 
(Another, weaker concept: Bayes-Nash equilibrium)



The Vickrey auction is strategy-proof!

0

b
 

= highest bid 
among other 

bidders

•
 

What should a bidder with value v
 

bid?

Option 1: Win the 
item at price b, get 
utility v -

 
b

Option 2: Lose the 
item, get utility 0

Would like to win if 
and only if v -

 
b > 0

 –
 

but bidding 
truthfully 

accomplishes this!



Collusion
 

in the Vickrey auction

0

b
 

= highest bid among 
other bidders

•
 

Example: two colluding bidders

price colluder 1 would pay 
when colluders bid truthfully

v2

 

= second colluder’s 
true valuation

v1

 

= first colluder’s true 
valuation

price colluder 1 would pay if 
colluder 2 does not bid

gains to be distributed among colluders



The revelation principle
•

 
For any (complex, strange) mechanism that produces 
certain outcomes under strategic behavior…

•
 

… there exists an incentive compatible direct 
revelation mechanism that produces the same 
outcomes!
–

 
“strategic behavior”

 
= some solution concept (e.g. 

dominant strategies)

mechanism outcome
actions

P1

P2

P3

types

new mechanism



The Clarke mechanism
 

[Clarke 71]
•

 
Generalization of the Vickrey auction to arbitrary 
preference aggregation settings

•
 

Agents reveal types directly
–

 
θi

 

’
 

is the type that i
 

reports, θi is the actual type
•

 
Clarke mechanism chooses some outcome o that 
maximizes Σi ui

 

(θi

 

’, o)
•

 
To determine the payment that agent j

 
must make:

–
 

Choose o’
 

that maximizes Σi≠j

 

ui

 

(θi

 

’, o’)
–

 
Make j

 
pay Σi≠j

 

(ui

 

(θi

 

’, o’) -
 

ui

 

(θi

 

’, o))

•
 

Clarke mechanism is:
–

 
individually rational: no agent pays more than the outcome 
is worth to that agent

–
 

(weak) budget balanced: agents pay a nonnegative amount



Why is the Clarke mechanism strategy-proof?
•

 
Total utility for agent j

 
is 

uj

 

(θj

 

, o) -
 

Σi≠j

 

(ui

 

(θi

 

’, o’) -
 

ui

 

(θi

 

’, o)) =
uj

 

(θj

 

, o) + Σi≠j

 

ui

 

(θi

 

’, o) -
 

Σi≠j

 

ui

 

(θi

 

’, o’) 
•

 
But agent j

 
cannot affect the choice of o’

•
 

Hence, j
 

can focus on maximizing uj

 

(θj

 

, o) + Σi≠j

 

ui

 

(θi

 

’, o)
•

 
But mechanism chooses

 
o to maximize

 
Σi ui

 

(θi

 

’, o)
•

 
Hence, if

 
θj

 

’ = θj

 

,
 

j’s
 

utility will be maximized!

•
 

Extension of idea: add any term to player j’s
 

payment 
that does not depend on j’s

 
reported type

•
 

This is the family of Groves mechanisms [Groves 73]



The Clarke mechanism is not perfect
•

 
Requires payments + quasilinear utility functions

•
 

In general money needs to flow away from the 
system

•
 

Vulnerable to collusion, false-name manipulation
•

 
Maximizes sum of agents’

 
utilities, but sometimes we 

are not interested in this
–

 
E.g. want to maximize revenue



Impossibility results without payments
•

 
Can we do without payments (voting mechanisms)?

•
 

Gibbard-Satterthwaite [Gibbard

 

73, Satterthwaite 75]

 impossibility result: with three or more alternatives
 

and 
unrestricted preferences, no voting mechanism exists 
that is
–

 
deterministic

–
 

strategy-proof
–

 
onto (every alternative can win)

–
 

non-dictatorial (more than one voter can affect the outcome)
•

 
Generalization [Gibbard

 

77]: a randomized voting rule is 
strategy-proof if and only if it is a randomization over 
unilateral

 
and duple

 
rules

–
 

unilateral = at most one voter affects the outcome
–

 
duple = at most two alternatives have a possibility of winning



Single-peaked
 

preferences [Black 48]
•

 
Suppose alternatives are ordered on a line

a1 a2 a3 a4 a5

•
 

Every voter prefers alternatives that are closer to her 
most preferred alternative

•
 

Let every voter report only her most preferred 
alternative (“peak”)

v1v2 v3v4

v5

•
 

Choose the median voter’s peak as the winner
•

 
Strategy-proof!



Impossibility result with payments
•

 
Simple setting:

v( ) = x v( ) = y

•
 

We would like a mechanism that:
–

 
is efficient (trade iff

 
y > x)

–
 

is budget-balanced (seller receives what buyer pays)
–

 
is strategy-proof (or even weaker form of incentive compatible)

–
 

is individually rational (even just in expectation)

•
 

This is impossible!  [Myerson & Satterthwaite 83]



Part II: Enter the computer scientist
•

 
Computational hardness of executing classical 
mechanisms

•
 

New kinds of manipulation
•

 
Computationally efficient approximation 
mechanisms

•
 

Automatically designing mechanisms using 
optimization software

•
 

Designing mechanisms for computationally 
bounded agents

•
 

Communication constraints



How do we compute
 the outcomes of mechanisms?

•
 

Some voting mechanisms are NP-hard to execute 
(including Kemeny and Slater) [Bartholdi et al. 89, 
Dwork

 
et al. 01, Ailon

 
et al. 05, Alon

 
05]

–
 

In practice can still solve instances with fairly large 
numbers of alternatives [Davenport & Kalagnanam AAAI04, Conitzer 
et al. AAAI06, Conitzer AAAI06]

•
 

What about Clarke mechanism?  Depends on 
setting



Inefficiency of sequential
 

auctions
•

 
Suppose your valuation function is v(    ) = 
$200, v(     ) = $100, v(        ) = $500 (complementarity)

•
 

Now suppose that there are two (say, Vickrey) 
auctions, the first one for      and the second 
one for

•
 

What should you bid in the first auction (for     )?
•

 
If you bid $200, you may lose to a bidder who 
bids $250, only to find out that you could have 
won       for $200

•
 

If you bid anything higher, you may pay more 
than $200, only to find out that       sells for 
$1000

•
 

Sequential (and parallel) auctions are inefficient



Combinatorial
 

auctions

v( ) = $500

v( ) = $700

v( ) = $300

Simultaneously for sale:
 
,        ,  

bid 1

bid 2

bid 3

used in truckload transportation, industrial procurement, radio spectrum allocation, …



The winner determination problem 
(WDP)

•
 

Choose a subset A (the accepted bids) of the 
bids B, 

•
 

to maximize Σb in A

 

vb

 

, 
•

 
under the constraint that every item occurs at 
most once in A
–

 
This is assuming free disposal, i.e. not everything 
needs to be allocated



WDP example
•

 
Items A, B, C, D, E

•
 

Bids:
•

 
({A, C, D}, 7)

•
 

({B, E}, 7)
•

 
({C}, 3)

•
 

({A, B, C, E}, 9)
•

 
({D}, 4)

•
 

({A, B, C}, 5)
•

 
({B, D}, 5)



An integer program formulation
•

 
xb

 

equals 1 if bid b is accepted, 0 if it is not
maximize Σb vbxb
subject to

for each item j, Σb: j in b xb ≤ 1
•

 
If each xb

 

can take any value in [0, 1], we say that 
bids can be partially accepted

•
 

In this case, this is a linear
 

program that can be 
solved in polynomial time

•
 

This requires that
–

 
each item can be divided into fractions

–
 

if a bidder gets a fraction f of each
 

of the items in his bundle, 
then this is worth the same fraction f of his value vb

 

for the 
bundle



Weighted independent set

•
 

Choose subset of the vertices with maximum total 
weight,

•
 

Constraint: no two vertices can have an edge 
between them

•
 

NP-hard (generalizes regular independent set)

2
2

3
4

3

2 4



The winner determination problem as a 
weighted independent set problem

•
 

Each bid is a vertex
•

 
Draw an edge between two vertices if they share an item

v( ) = $500
bid 1

v( ) = $700
bid 2

v( ) = $300
bid 3

•
 

Optimal allocation = maximum weight independent set
•

 
Can model any weighted independent set instance as a CA 
winner determination problem (1 item per edge (or clique))

•
 

Weighted independent set is NP-hard, even to solve 
approximately [Håstad

 
96] -

 
hence, so is WDP

–

 

[Sandholm 02]

 

noted that this inapproximability applies to the WDP



Polynomial-time solvable special cases
•

 
Every bid is on a bundle of size at most two items 
[Rothkopf

 

et al. 98]
–

 
~maximum weighted matching

–
 

With 3 items per bid, NP-hard again (3-COVER)
•

 
Items are organized on a tree & each bid is on a 
connected set of items [Sandholm & Suri

 

03]
–

 

More generally, graph of bounded treewidth [Conitzer et al. AAAI04]
–

 

Even further generalization given by [Gottlob

 

& Greco EC07]

item A

item B

item C

item D

item E

item F

item G

item H



Clarke mechanism in CA
 (aka. Generalized Vickrey Auction, GVA)

v( ) = $500

v( ) = $700

v( ) = $300

$500

$300



Clarke mechanism in CA…

v( ) = $700

v( ) = $300
$700

pays
 

$700 -
 

$300 = $400



Collusion
 

under GVA

v( ) = $1000

v( ) = $700

v( ) = $1000

$0

$0
E.g. [Ausubel

 

and Milgrom

 

06]; general characterization in [Conitzer & Sandholm AAMAS06]



False-name bidding
 [Yokoo

 

et al. AIJ2001, GEB2003]

v( ) = $800v( ) = $700

v( ) = $300 v( ) = $200

loses

wins, pays $0

wins, pays $200

wins, pays $0

A mechanism is false-name-proof if bidders never have an 
incentive to use multiple identifiers

No
 

mechanism that allocates items efficiently is false-name-proof 
[Yokoo

 

et al. GEB2003]



Characterization of false-name-proof 
voting rules

•
 

Theorem [Conitzer 07]

•
 

Any (neutral, anonymous, IR)
 

false-name-proof 
voting rule f can be described by a single 
number kf

 

in [0,1]
•

 
With probability kf

 

, the rule chooses an 
alternative uniformly at random

•
 

With probability 1-
 

kf

 

, the rule draws two 
alternatives uniformly at random;
–

 
If all votes rank the same alternative higher among 
the two, that alternative is chosen

–
 

Otherwise, a coin is flipped to decide between the 
two alternatives



Alternative approaches to 
false-name-proofness

•
 

Assume there is a cost
 

to using a false name 
[Wagman

 

& Conitzer AAMAS08]

•
 

Verify some of the agents’
 

identities after the 
fact [Conitzer TARK07]



Strategy-proof mechanisms that solve the 
WDP approximately

•
 

Running Clarke mechanism using approximation 
algorithms for WDP is generally not strategy-proof

•
 

Assume bidders are single-minded (only want a single 
bundle)

•
 

A greedy strategy-proof mechanism [Lehmann, O’Callaghan, 
Shoham

 

JACM 03]:
1.  Sort bids by 
(value/bundle 

size)

{a}, 11
{b, c}, 20
{a, d}, 18
{a, c}, 16

{c}, 7
{d}, 6

2.  Accept 
greedily starting 

from top

3.  Winning bid 
pays bundle size

 
times 

(value/bundle size)

 
of first bid forced 

out by the winning 
bid

1*(18/2) = 9

2*(7/1) = 14

Worst-case 
approximation 
ratio = (#items)

Can get a better approximation 
ratio, √(#items),

by sorting by value/√(bundle 
size)

0



Clarke mechanism with same approximation 
algorithm does not work
{a}, 11

{b, c}, 20
{a, d}, 18
{a, c}, 16

{c}, 7
{d}, 6

{b, c}, 20
{a, d}, 18
{a, c}, 16

{c}, 7
{d}, 6

Total value to 
bidders other 
than the {a} 
bidder: 26

Total value: 38

{a} bidder should 
pay 38 -

 
26 = 12, 

more than her 
valuation!



Designing mechanisms automatically
•

 
Mechanisms such as Clarke are very general…

•
 

… but will instantiate to something specific for specific 
settings
–

 
This is what we care about

•
 

Different approach: solve mechanism design problem 
automatically for setting at hand, as an optimization 
problem

 
[Conitzer & Sandholm UAI02]



Small example: divorce arbitration

•
 

Outcomes:
•

 
Each agent is of high

 
type with probability 0.2 and of low

 type with probability 0.8
–

 

Preferences of high

 

type:
•

 

u(get

 

the painting) = 100
•

 

u(other

 

gets the painting) = 0
•

 

u(museum) = 40
•

 

u(get

 

the pieces) = -9
•

 

u(other

 

gets the pieces) = -10
–

 

Preferences of low

 

type:
•

 

u(get

 

the painting) = 2
•

 

u(other

 

gets the painting) = 0
•

 

u(museum) = 1.5
•

 

u(get

 

the pieces) = -9
•

 

u(other

 

gets the pieces) = -10



Optimal dominant-strategies
 

incentive compatible 
randomized mechanism for maximizing expected 

sum of utilities 

high

low

lowhigh

.96 .04

.96 .04.47 .4 .13



How do we set up the optimization?
•

 
Use linear programming

•
 

Variables: 
–

 

p(o

 

| θ1

 

, …, θn

 

) = probability that outcome o is chosen given types θ1

 

, …, θn

–

 

(maybe) πi

 

(θ1

 

, …, θn

 

) = i’s

 

payment given types θ1

 

, …, θn

•
 

Strategy-proofness constraints: for all i, θ1

 

, …θn

 

,
 

θi

 

’:
Σo

 

p(o
 

| θ1

 

, …, θn

 

)ui

 

(θi

 

, o) + πi

 

(θ1

 

, …, θn

 

) ≥
Σo

 

p(o
 

| θ1

 

, …, θi

 

’, …, θn

 

)ui

 

(θi

 

, o) + πi

 

(θ1

 

, …, θi

 

’, …, θn

 

)
•

 
Individual-rationality constraints: for all i, θ1

 

, …θn

 

:
Σo

 

p(o
 

| θ1

 

, …, θn

 

)ui

 

(θi

 

, o) + πi

 

(θ1

 

, …, θn

 

) ≥
 

0
•

 
Objective (e.g. sum of utilities)
Σθ1, …, θn

 

p(θ1

 

, …, θn

 

)Σi

 

(Σo

 

p(o
 

| θ1

 

, …, θn

 

)ui

 

(θi

 

, o) + πi

 

(θ1

 

, …, θn

 

))
•

 
Also works for other incentive compatibility/individual rationality 
notions, other objectives, etc.

•
 

For deterministic mechanisms, use mixed integer programming 
(probabilities in

 
{0, 1})

–

 

Typically designing the optimal deterministic mechanism is NP-hard



Computational limitations on the agents
•

 
Will agents always be able to figure out what action is 
best for them?

•
 

Revelation principle assumes this
–

 
Effectively, does the manipulation for them!

•
 

Theorem [Conitzer & Sandholm 04].
 

There are settings where:
–

 

Executing the optimal (utility-maximizing) incentive compatible

 

mechanism 
is NP-complete

–

 

There exists a non-incentive

 

compatible

 

mechanism, where
•

 

The center only carries out polynomial computation
•

 

Finding a beneficial insincere revelation is NP-complete for the agents
•

 

If the agents manage to find the beneficial insincere revelation, the new 
mechanism is just as good as the optimal truthful one

•

 

Otherwise, the new mechanism is strictly better



Hardness of manipulation 
of voting mechanisms

•
 

Computing the strategically optimal vote 
(“manipulating”) given others’

 
votes is NP-hard for 

certain voting mechanisms (including STV) [Bartholdi et al. 
89, Bartholdi & Orlin

 

91]

•
 

Well-known voting mechanisms can be modified to make 
manipulation NP-hard, #P-hard, or even PSPACE-hard 
[Conitzer & Sandholm IJCAI03, Elkind

 

& Lipmaa

 

ISAAC05]

•
 

Ideally, we would like manipulation to be usually hard, 
not worst-case hard
–

 

Several impossibility results [Procaccia

 

& Rosenschein

 

AAMAS06, Conitzer & 
Sandholm AAAI06, Friedgut

 

et al. 07]



Preference elicitation
•

 
Sometimes, having each agent communicate all 
preferences at once is impractical

•
 

E.g. in a combinatorial auction, a bidder can 
have a different valuation for every bundle 
(2#items-1

 
values)

•
 

Preference elicitation: 
–

 
sequentially ask agents simple queries about their 
preferences,

–
 

until we know enough to determine the outcome



Preference elicitation (CA)

center/auctioneer/
 organizer/…

“v({A})?”

“30”
“40”

“What would you buy 
if the price for A is 30, 
the price for B is 20, 

the price for C is 20?”

“nothing”

“v({A,B,C}) 
< 70?”

“v({B, C})?”

“yes”

gets {A}, 
pays 30

gets {B,C}, 
pays 40

[Parkes, Ausubel

 

& Milgrom, 
Wurman

 

& Wellman, Blumrosen

 

& 
Nisan, Conen

 

& Sandholm, Hudson 
& Sandholm, Nisan & Segal, Lahaie

 
& Parkes, Santi et al, …]



Preference elicitation (voting)

> center/auctioneer/
 organizer/…

?”“

“yes”

> ?”“

“no”

“most 
preferred?”

“ ”

> ?”“
“yes”

wins
[Conitzer & Sandholm AAAI02, 

EC05, Konczak

 

& Lang 05, 
Conitzer AAMAS07, Pini

 

et al. 
IJCAI07, Walsh AAAI07]



Benefits of preference elicitation

•
 

Less communication needed
•

 
Agents do not always need to determine

 
all of 

their preferences
–

 
Only where their preferences matter



Other topics

•
 

Online mechanism design: agents arrive and depart over 
time [Lavi

 
& Nisan 00, Friedman & Parkes

 
03, Parkes

 
& Singh 

03, Hajiaghayi
 

et al. 04, 05, Parkes
 

& Duong 07]
•

 
Distributed

 
implementation of mechanisms [Parkes

 
& 

Shneidman
 

04, Petcu
 

et al. 06]



Some future directions
•

 
General principles for how to get incentive compatibility 
without solving to optimality

•
 

Are there other ways of addressing false-name 
manipulation?

•
 

Can we scale automated mechanism design to larger 
instances?
–

 
One approach: use domain structure (e.g. auctions [Likhodedov

 

& 
Sandholm, Guo

 

& Conitzer])
•

 
Is there a systematic way of exploiting agents’

 computational boundedness?
–

 
One approach: have an explicit model of computational costs 
[Larson & Sandholm]

Thank you for your attention!
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