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Abstract

In multiagent settings where the agents have different pref-
erences, preference aggregation is a central issue. Voting is
ageneral method for preference aggregation, but seminal re-
sults have shown that all general voting protocols are manip-
ulable. One could try to avoid manipulation by using pro-
tocols where determining a beneficial manipulation is hard.
Especially among computational agents, it is reasonable to
measure this hardness by computational complexity. Some
earlier work has been done in this area, but it was assumed
that the number of voters and candidates is unbounded. We
derive hardness results for the more common setting where
the number of candidates is small but the number of voters
can be large. We show that with complete information about
the others’ votes, individual manipulation is easy, and coali-
tional manipulation iseasy with unweighted voters. However,
constructive coalitional manipulation with weighted votersis
intractable for al of the voting protocols under study, except
inthe Cupprotocol. Destructive manipulation tendsto be eas-
ier, except in the Single Transferable Vofarotocol. Random-
izing over instantiations of the protocols (such as schedules
of a Cup) can be used to make manipulation hard. Finaly,
we show that under weak assumptions, if weighted coali-
tional manipulation with complete information about the oth-
ers' votesishard in some voting protocol, then individual and
unweighted manipulation is hard when there is uncertainty

too few other supporters to win, while Gore and Bush are
close to each other, the agent would be better off by declar-
ing Goreasitstop candidate. Manipulation isan undesirable
phenomenon because social choice schemes are tailored to
aggregate preferences in a socialy desirable way, and if the
agents reveal their preferences insincerely, a socially unde-
sirable candidate may be chosen.

Theissue of strategic voting has been studied extensively.
A seminal negative result, the Gibbard-Satterthwaite theo-
rem, showsthat if there are three or more candidates, thenin
any nondictatorial voting scheme, there are preferences un-
der which an agent is better off voting strategically (Gibbard
1973; Satterthwaite 1975). (A voting schemeiscalled dicta-
toria if one of the voters dictates the social choice no matter
how the others vote.)

When the voters are software agents, the algorithms they
use to decide how to vote must be coded explicitly. Given
that the voting a gorithm needs to be designed only once (by
an expert), and can be copied to large numbers of agents
(even ones representing unsophisticated human voters), it is
likely that rational strategic voting will increasingly become
an issue, unmuddied by irrationality, emotions, etc.

Especially in the context of software agents, it makes
sense to ask how complex it is to compute a beneficial ma-

nipulation. Such complexity can be used as a desirable prop-
erty because it can make manipulation infeasible to the vot-

ers. Designing voting protocols where manipulation is com-
plex promises to be an avenue for circumventing the funda-
mental impossibility results regarding the existence of non-

about the others’ votes.

1. Introduction
In multiagent settings, agents generally have different pref-

erences, and it is of central importance to be able to aggre-
gate these, i.e. to pick a socially desirable candidatefrom
a set of candidates. Candidates could be potential presi-
dents, joint plans, allocations of goods or resources, etc.
Voting is the most general preference aggregation scheme,
and voting mechanisms have been applied to software agents
(e.g. (Ephrati & Rosenschein 1991; 1993)).

One key problem voting schemes are confronted with is
that of manipulationby the voters. An agent is said to vote
strategically when it does not rank the alternatives according
to its true preferences, but rather so as to make the eventual
outcome most favorable to itself. For example, if an agent
prefers Nader to Gore to Bush, but knows that Nader has
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manipulable voting protocols.

The computational complexity of manipulation has al-
ready received some attention (Bartholdi, Tovey, & Trick
1989a; Bartholdi & Orlin 1991). However, the results to
date that do show high complexity rely on both the number
of candidates and the number of voters being unbounded.

In sharp contrast to those results, in this paper we show
high complexity results for the more common setting where
the number of candidatesisasmall constant (the number of
voters may belarge). Furthermore, we show low complexity
in certain settings where both the number of candidates and
voters are unbounded.

Restricting the number of candidatesto a constant reduces
the number of possible votes for asingle voter to a constant.
If thevotersall have equal weight in the election, the number



of de factopossible combinations of votes that even a coali-
tion can submit is polynomial in the number of votersin the
coalition (sincethe voters have equal weight, it does not mat-
ter which agent in the coalition submitted which vote; only
the multiplicities of the votes from the coalition matter). We
get the following straightforward result.

Proposition 1 Let there be a constant number of candi-
dates, and suppose that evaluating the result of a particular

combination of votes by a coalition is . If there is only

one voter in the coalition, or if the voters are unweighted, the

manipulation problem is irP. (This holds for all the differ-

ent variants of the manipulation problem, discussed later.)

Proof. The manipulators (an individual agent or a coalition)
can simply enumerate and evaluate all possibilities (thereis
apolynomial number of them). =

In particular, in the complete-information manipulation
problem in which the votes of the non-colluders are known,
evaluating the result of a (coalitional) vote is as easy as de-
termining the winner of an election, which must be in P
for practical voting mechanisms.! This leaves open two av-
enues for deriving high complexity results with few candi-
dates. First, we may investigate the complete-information
coalitional manipulation problem when voters have differ-
ent weights While many human elections are unweighted,
the introduction of weights generalizes the usability of vot-
ing schemes, and can be particularly important in multia-
gent systems settings with very heterogenous agents. We
study this with deterministic voting protocols in Section 3,
and in Section 4 we show that using randomization in the
voting protocols can further increase manipulation complex-
ity. Second, we may ask whether there are reasonable set-
tings where evaluatinga manipulation is N’ P-hard. For in-
stance, if we merely have probability distributions on the
non-colluders’ votes, how does the complexity of determin-
ing the probability that a given candidate wins change? We
study thisin Section 5, and show how to convert the results
from Section 3 into stronger claimsin this setting. In partic-
ular, we remove the assumptions of multiple manipulators
and weighted votes.

2. Review of common voting protocols

In this section we define an election and the common voting
protocols that we analyze.

Definition 1 Anelection consists of a set of: candidates; a

defined by re-interpreting a vote of weight & as k identical
unweighted votes’. Whenever points are defined, the candi-
date with the most points wins.)

e Borda. For each voter, acandidate receivesm —1 pointsif
it isthe voter’stop choice, m — 2 if it isthe second choice,
.., 0 if itisthelast.

e Copeland (aka. Tournamentiimulate a pairwise elec-
tion for each pair of candidatesin turn (in a pairwise elec-
tion, acandidate winsif it is preferred over the other can-
didate by more than half of the voters). A candidate gets
1 point if it defeats an opponent, O pointsif it draws, and
-1 pointsif it loses.

e Maximin. A candidate's score in a pairwise election is
the number of voters that prefer it over the opponent. A
candidate’s number of pointsisthe lowest scoreit getsin
any pairwise election.

e Single Transferable Vote (STWVinner determination
proceeds in rounds. In each round, a candidate’s score
is the number of voters that rank it highest among the re-
maining candidates; the candidate with the lowest score
drops out. The last remaining candidate wins. (A vote
“"transfers’ from its top remaining candidate to the next
highest remaining candidate when the former drops out.)

e Cup (aka. Binary Protocol)There is a balanced binary
treewith oneleaf per candidate. Then, each non-leaf node
is assigned the candidate that is the winner of the pairwise
election of the node’s children. The candidate assigned to
the root wins.

The Cup protocol requires a method for assigning
(scheduliny candidates to leaf nodes. For instance, this
assignment can be given ex ante(the " regular” Cup proto-
cal), or we can randomize uniformly over the assignment
after the votes have been submitted (Randomized Cyp

The winner determination function is not defined on all
possible combinations of votes in these protocols since the
tie-breaking methods are not specified. For simplicity, we
assume tie-breaking mechanisms are adversarial to the ma-
nipulator(s), but this assumption is easy to relax without af -
fecting the results of this paper.

3. Complexity of coalitional manipulation with
weighted voters

In this section we discuss the complexity of constructive ma-
nipulation (causing a candidate to win) and destructive ma-

set ofn voters (possibly weighted), who are each to provide nipulation (causing acandidate to not win). We represent the
a total order on the candidates; and a function from the set order of candidatesinavoteasfollows: (a1, as, ..., a,). If a
of all possible combinations of votes to the set of candidates, vote's weight is not specified, it is 1. All our A" P-hardness

which determines the winner.

Different voting protocols are distinguished by their win-
ner determination functions. We now review the most com-
mon protocols in use, al of which will be discussed in this
paper. (We define them in the case of unweighted votes;
the winner determination functions for weighted votes are

Theoretical voting mechanisms exist where determining the
winner is N P-hard (Bartholdi, Tovey, & Trick 1989b).

reductions, directly or indirectly, will be from the PARTI-
TION problem.

Definition 2 PARTITION. We are given a set of integers

{ki}1<i<: (possibly with multiplicities) summing &, and
are asked whether a subset of these integers suih to

2\We thus assume that weights are integers. The results also ap-
ply to al rational weights because they can be converted to integers
by multiplying all the weights by all the weights' denominators.



3.1. Constructive manipulation

Definition 3 CONSTRUCTIVE-COALITIONAL-
WEIGHTED-MANIPULATION (CCWM). We are given
a set of weighted voteS, the weights for a set of votds
which are still open, and a preferred candidaie We are
asked whether there is a way to cast the voteB so thatp
wins the electior.

Theorem 1 In the Borda protocol, CCWM {8/ P-complete
even with 3 candidates.

Proof. We reduce an arbitrary PARTITION instance to the
following CCWM instance. There are 3 candidates, a, b and
p. In S thereare 6K — 1 votersvoting (a, b, p) and another
6K — 1 voting (b,a,p). InT, for every k; there is a vote
of weight 6k;. We show the instances are equivalent. Sup-
posethereis a partition. Let the votesin T" corresponding to
the k; in one half of the partition vote (p, a, b), and let the
other ones vote (p, b, a). Then a and b each have 24K — 3
points, and p has 24K points. So there is a manipulation.
Conversely, suppose there is a manipulation. Then, since
moving p to the top of each vote in T" will never hurt p in
this protocol, there must exist a manipulation in which the
only votes made in T are (p, a, b) and (p, b, a). Inthis ma-
nipulation, since p has 24K pointsin total and a and b each
have 18 K — 3 points from the votes in S, it follows that a
and b each can gain at most 6 K + 2 points from the votesin
T. It follows that the voters voting (p, a, b) can have com-
bined total weight at most 6 X" + 2; hence the corresponding
k; can sum to at most K + % or (equivalently) to at most
K since the k; are dl integers. The same holds for the &;
corresponding to the (p, b, a) votes. Hence, in both cases,
they must sum to exactly K. But then, thisisapartition. =

Theorem 2 In the Copeland protocol, CCWM sV P-
complete even with 4 candidates.

Proof. We reduce an arbitrary PARTITION instance to the
following CCWM instance. There are 4 candidates, a, b,
cand p. In S there are 2K + 2 voters voting (p, a, b, ¢),
2K +2voting (¢, p, b,a), K + 1 voting (a, b, ¢, p), and K +
1 voting (b,a,c,p). InT, for every k; there is a vote of
weight ;. We show theinstances are equivalent. First, every
pairwise election is aready determined without 7", except
for the one between a and b. p defeats a and b; a and b each
defeat ¢; ¢ defeats p. If there is a winner in the pairwise
election between o and b, that winner will tie with p. So p
wins the Copeland election if and only if a and b tie in their
pairwise election. But, after thevotesin S alone, ¢ and b are
tied. Thus, the votesin 7" maintain thistieif and only if the
combined weight of the votes in T' preferring a to b is the
same as the combined weight of the votesin T preferring b
to a. This can happen if and only if thereis a partition. =

3To an economist, it would be more natural to define a success-
ful manipulation as one that increases the voter’s (expected) utility.
It is easy to see that our definitions are special cases of this utility-
based definition, so our hardness results apply to that as well.

“In dl N P-completeness proofs, we only prove ' P-hardness
because proving that the problemisin NP istrivial.

Theorem 3 In the Maximin protocol, CCWM is\ P-
complete even with 4 candidates.

Proof. We reduce an arbitrary PARTITION instance to the
following CCWM instance. There are 4 candidates, a, b, ¢
andp. In S thereare 7K — 1 votersvoting (a, b, ¢, p), TK —1
voting (b, ¢, a, p), 4K — 1 voting (¢, a, b, p), and 5K voting
(p,c,a,b). InT, for every k; there is a vote of weight 2k;.
We show the instances are equivalent. Suppose there is a
partition. Then, let the votes in T' corresponding to the &;
in one half of the partition vote (p, a, b, ¢), and let the other
onesvote (p, b, ¢, a). Then, p does equally well in each pair-
wise election: it always gets 9K pairwise points. a’s worst
pairwise election is against ¢, getting 9K — 1. b’sworst is
against a, getting 9K — 1. Finally ¢’'s worst is against b,
getting 9K — 1. Hence, p wins the election. So thereis a
manipulation. Conversely, suppose there is a manipulation.
Then, since moving p to the top of each votein T will never
hurt p in this protocol, there must exist a manipulation in
which all the votes in T put p at the top, and p thus gets
9K asitsworst pairwise score. Also, the votesin T cannot
change which each other candidate’sworst pairwise election
is: a’'sworst isagainst ¢, b’sworst isagainst a, and ¢’sworst
isagainst b. Since ¢ aready has 9K — 1 pointsin its pair-
wise election against b, no vote in 7" can put ¢ ahead of b.
Additionally, if any votein T" puts a right above ¢, swapping
their positions has no effect other than to decrease o's final
score, so we may also assume this does not occur. Similarly
we can show it safe to also assume no vote in T' puts b right
above a. Combining all of this, we may assume that al the
votes in T' vote either (p,a, b, c) or (p,b,c,a). Since a al-
ready has 7K — 1 points in the pairwise election against c,
the votesin T of the first kind can have a total weight of at
most 2 K'; hence the corresponding k; can sumto at most K.
The same holds for the k; corresponding to the second kind
of vote on the basis of b's score. Hence, in both cases, they
must sum to exactly K. But then, thisisapartition. m

Theorem 4 In the STV protocol, CCWM {4/ P-complete
even with 3 candidates.

Proof. We reduce an arbitrary PARTITION instance to the
following CCWM instance. There are 3 candidates, a, b and
p. In S thereare 6K — 1 votersvoting (b, p, a), 4K voting
(a,b,p), and 4K voting (p, a,b). In T, for every k; thereis
avote of weight 2k;. We show the instances are equivalent.
Suppose there is a partition. Then, let the votesin T' corre-
sponding to the k; in one half of the partition vote (a, p, b),
and |et the other onesvote (p, a, b). Theninthefirst round, b
has6 K — 1 points, a has6 K, and p has6 K. So b drops out;
al its votes transfer to p, so that p wins the final round. So
there is a manipulation. Conversely, suppose there is a ma-
nipulation. Clearly, p cannot drop out in the first round; but
also, a cannot drop out in the first round, since all its votes
in .S would transfer to b, and b would have at least 10K — 1
pointsin the final round, enough to guarantee it victory. So,
b must drop out in the first round. Hence, from the votesin
T, both a and ¢ must get at least 2 K weight that putsthemin
the top spot. The corresponding k; in either case must thus
sum to at least K. Hence, in both cases, they must sum to



exactly K. But then, thisisapartition. m

3.2. Destructive manipulation

In the destructiveversion of the CCWM problem (which
we call DCWM), instead of being asked whether there is
a coailitional vote that makes p win, we are asked whether
there is a codlitiona vote that makes h not win. It is easy
to see that DCWM can never be harder than CCWM (except
by a factor m) because in order to solve DCWM we may
simply solve CCWM once for each candidate besides h.

Interestingly, in these protocols (except STV), destructive
manipulation turns out to be drastically easier than construc-
tive manipulation!

Theorem 5 Consider any voting protocol where each can-

didate receives a numerical score based on the votes, and
the candidate with the highest score wins. Suppose that the

score function is monotone, that is, if votahanges its vote
so that{b : a >2"4 b} C {b: a >7°" b}, a’s score will not

decrease. Finally, assume that the winner can be determined

in polynomial time. Then for this protocol, DCWM is#h

Proof. Consider the following algorithm: for each candidate
a besides h, we determine what the outcome of the election
would befor thefollowing coditional vote. All the colluders
place a at the top of their votes, & at the bottom, and order
the other candidates in whichever way. We claim thereis a
vote for the colluders with which / does not win if and only
if h doesnot winin one of thesem — 1 elections. Theif part
istrivial. For the only if part, suppose there is a coditional
vote that makes a # h win the election. Then, in the coali-
tional vote we examine where a is always placed on top and
h dways at the bottom, by monotonicity, a’s score cannot be
lower and h’s cannot be higher than in the successful coali-
tional vote. It followsthat here, too, a’s score is higher than
h's, and hence h does not win the election. The algorithmis
clearly in P since we do m — 1 winner determinations, and
winner determinationisinP. m

Corollary 1 DCWM is inP for the Borda, Copeland, and
Maximin protocols.

The theorem does not apply to STV, however. We show
that in fact, in STV, DCWM is \/ P-complete.

Theorem 6 In the STV protocol, DCWM i8/ P-complete
even with 4 candidates.

Proof. We reduce an arbitrary instance of CCWM for STV
with 3 candidates to the following DCWM instance. Let
the candidates in the origina instance be «a, b, and p; and
let the voters (including the colluders) here have a com-
bined weight of . In the DCWM instance we construct,
we have the same candidates plus an additional candidate
h. T (the number of colluders and their weights) remains
exactly the same. S includes al the votes (with weights)
from the CCWM'’s instance’s S (h is added to the bottom
of these votes); additionally, there are the following 6 votes:
(a,b,p,h), (a,p,b,h), (b,a,p,h), (b,p,a,h),andtwotimes
(p, h,a,b). Findly, thereare W + 5 votesvoting (h, a, b, p).

We observe the following facts. First, h will not be elim-
inated before the last round as it has close to half the vote
weight at the start. Second, A will lose this last round if and
only if it facesp init, and all colluders have ranked p above
h. (If even one more vote transfersto A, it is certain to win
the election as it has more than half the vote weight; and if
p drops out, the (p, h, a, b) votes will transfer to h. On the
other hand, p is ranked above h in @l votesin S that do not
have h at the top, so whilep remains none of these transfer to
h.) Third, since the transfer of any additional voteto h leads
toitsvictory, al colluders may aswell place h at the bottom
of their votes. Fourth, as long as p has not dropped out, the
relative scores of (the remaining candidates among) a, b, and
p in each round before the last will be exactly the same as
in the CCWM instance if the coalition votes the same (dis-
regarding k) in both instances. (The 6 additional votesin S
are carefully chosen to always be distributed equally among
them while p remains.) Thus, thereis a coalitiona vote that
leads p to the last round if and only if the CCWM instance
has a constructive manipulation. Hence, by our second ob-
servation, the instances are equivalent. m

4. Increasing complexity via randomization

In this section, we investigate the effect of randomizing
over different instantiations of a protocol on manipulation
complexity. While most protocols only have one instanti-
ation, the Cup protocol requires a schedule to be instanti-
ated. We show that randomization over these schedules (af-
ter the votes have been cast) is sufficient to make manipula-
tion N/ P-complete. We first show that the Cup protocol is
easy to manipulate if the schedule is known in advance.

Theorem 7 In the Cup protocol (given the assignment of
candidates to leaves), CCWM is’#h

Proof. We demonstrate a method for finding all the poten-
tial winners of the election. In the binary tree representing
the schedule, we can consider each node to be a subelection,
and compute the set of potential winners for each subelec-
tion. (In such a subelection, we may say that the voters only
order the candidates in that subelection since the place of the
other candidates in the order isirrelevant.) Say a candidate
canabtain a particular result in the election if it does so for
some coalitional vote. The key claim to the proof, then, is
the following: a candidate can win a subelection if and only
if it can win one of its children, andit can defeat one of the
potential winners of the sibling child in a pairwise election.
It is easy to see that the condition is necessary. To show
that it is sufficient, let p be a candidate satisfying the con-
dition by being able to defeat h, a potential winner of the
other child (or half). Consider a coalitional vote that makes
p winits half, and another one that makes h win itshalf. We
now let each coalitional voter vote as follows: it ranks all
the candidates in p’s half above all those in A’s half; the rest
of the order is the same as in the votes that make p and h
win their halves. Clearly, this will make p and A the final-
ists. Also, p will win the pairwise election against 4 since
it is aways ranked above h with the colluders; and as we
know that there is some coalitional vote that makes p defeat



h pairwise, this one must have the same result. The obvious
recursive algorithm has running time O(m?>n) according to
the Master Theorem (Cormen, Leiserson, & Rivest 1990). =

It turns out that randomizing over cup schedules makes
manipulation hard even with few candidates, as the follow-
ing definition and theorem show.

Definition 4 UNCERTAIN-INSTANTIATION-
CONSTRUCTIVE-COALITIONAL-WEIGHTED-
MANIPULATION (UICCWM). We are given a set of
weighted votesS, the weights for a set of votésS which

are still open, a preferred candidate a distribution over
instantiations of the voting protocol, and a numbewhere

0 < r < 1. We are asked whether there is a way to cast the
votes inT" so thatp wins with probability greater than.

Theorem 8 In the Randomized Cup protocol, UICCWM is
N P-complete with 7 candidates.

Because of limited space, we only sketch the proof.

Proof sketch. Given weights for the colluders (correspond-
ing to the k; of a PARTITION instance), it is possible to
define votesin .S over the 7 candidates (a through £, and p)
with the following properties. First, the colluders can only
affect the outcomes of the pairwise elections between a, b,
and c¢. Second, they can achieve the result that a defeats b
(in their pairwise election), b defeats ¢, and ¢ defeats a if and
only if their weights can be partitioned. Third, d defeats e,
e defeats f, and f defeats d. Fourth, a defeats d, b defeats
e, and ¢ defeats f; otherwise, al of d, e, and f defeat al of
a, b, and c. Fifth, p defeats al of «a, b, and ¢, but loses to
al of d, e, and f. Then it can be shown that if the collud-
ers could decide each of the pairwise elections between a,
b, and ¢ independently, letting a defeat b, b defeat ¢, and ¢
defeat o strictly maximizesthe probability that p wins. (This
is done by drawing the Cup tree (which has one bye round)
and analyzing cases.) It follows that there exists a number
r (0 < r < 1) such that the colluders can make p win with
probability greater than r if and only if thereisapartition. m

5. Effect of uncertainty about others votes

So far we discussed the complexity of coalitional manipula-
tion when the others’ votes are known. We now show how
those results can be related to the complexity of manipula
tion by an individual voter when only adistributionover the
others votes is known. If we alow for arbitrary distribu-
tions, we need to specify a probability for each combination
of votes by the others, that is, exponentially many proba-
bilities (even with just two candidates). It isimpractical to
specify so many probabilities.® Therefore, it is reasonable
to presume that the language used for specifying these prob-
abilities would not be fully expressive. We derive the com-
plexity results of this section for extremely restricted prob-
ability distributions, which any reasonable language should
allow for. Thusour results apply to any reasonable language.

SFurthermore, if the input is exponential in the number of vot-
ers, an algorithm that is exponential in the number of votersis not
necessarily complex in the usual sense of input complexity.

Dueto limited space, we only present results on constructive
manipulations, but all results apply to the destructive cases
aswell and the proofs are anal ogous.

5.1. Weighted voters

First we show that with weighted voters, in protocols where
coalitional manipulation ishard in the complete-information
case, even evaluating a candidate's winning probability is
hard when there is uncertainty about the votes (even when
thereis no manipulator).

Definition 5 UNCERTAIN-VOTES-CONSTRUCTIVE-
WEIGHTED-EVALUATION (UVCWE). We are given a
weight for each voter, a distribution over all the votes, a
candidatep, and a number (0 < r < 1). We are asked
whether the probability of winning is greater tham.

Theorem 9 If CCWM is\ P-hard for a protocol (even with

k candidates), then UVCWE is algg P-hard for it (even
with k& candidates), even if the votes are drawn indepen-
dently and only the following types of (marginal) distribu-
tions are allowed: 1) the vote’s distribution is uniform over
all possible votes, and 2) the vote’s distribution puts all of
the probability mass on a single vote.

Proof. For the reduction from CCWM to UVCWE, we use
exactly the same voters, and p remainsthe same aswell. If a
voter was not acolluder in the CCWM instance and we were
thus given its vote, in the UVCWE instance its distribution
is degenerate at that vote. If the voter was in the collusion,
its distribution is now uniform. We set » = 0. Now, clearly,
in the PCWE instance there is a chance of p winning if and
only if there exists someway for the latter votesto be cast so
asto make p win - that is, if and only if there is an effective
collusion inthe CCWM problem. =

Next we show that if evaluating the winning probability is
hard, individual manipulation is aso hard.

Definition 6 UNCERTAIN-VOTES-CONSTRUCTIVE-
INDIVIDUAL-WEIGHTED-MANIPULATION

(UVCIWM). We are given a single manipulative voter with
a weight, weights for all the other voters, a distribution over
all the others’ votes, a candidage and a number, where

0 < r < 1. We are asked whether the manipulator can cast
its vote so thap wins with probability greater than.

Theorem 10 If UVCWE isN P-hard for a protocol (even
with k& candidates and restrictions on the distribution), then
UVCIWM is alsoN P-hard for it (even withk candidates
and the same restrictions).

Proof. For the reduction from UVCWE to UVCIWM, sim-
ply add a manipulator with weight 0. =

Combining Theorems 9 and 10, we get that with weighted
voters, if in some protocol coalitional manipulation is hard
in the complete-information setting, then even individual
manipulation is hard if others’ votes are uncertain. Apply-
ing this to the hardness results from Section 3, this means
that al of the protocols of this paper other than Cup are hard
to manipulate by individuals in the weighted case when the
manipulator is uncertain about the others' votes.



5.2. Unweighted voters

Finally, we show that in protocols where coalitional manip-
ulation is hard in the weighted complete-information case,
evaluating a candidate’s winning probability is hard even
in the unweighted case when there is uncertainty about the
votes (even when there is no manipulator). This assumes
that the language for specifying the probability distribution
is rich enough to alow for perfect correlations among the
votes of the nonmanipulators (that is, some votes are identi-
cal with probability one®).

Theorem 11 If UVCWE is N P-hard for a protocol (even
with k& candidates and restrictions on the distribution), then

the unweighted version of UVCWE is al&6P-hard for it
if we allow for perfect correlations (even withcandidates

and the same restrictions—except those conflicting with per-

fect correlations).

Proof. For the reduction from UVCWE to its unweighted
version, we replace each vote of weight k& with k unweighted
votes; we then make these k votes perfectly correlated. Sub-
sequently we pick a representative vote from each perfectly
correlated group, and we impose ajoint distribution on these
votes identical to the one on the corresponding votes in the
UVCWE problem. This determines ajoint distribution over
all votes. It is easy to see that the distribution over outcomes
is the same as in the instance we reduced from; hence, the
decision questions are equivalent. m

6. Conclusions and futureresearch

In multiagent settings where the agents have different pref-
erences, preference aggregation is a central issue. Voting
isageneral method for preference aggregation, but seminal
results have shown that all general voting protocols are ma-
nipulable. One could try to avoid manipulation by using pro-
tocols where determining a beneficial manipulation is hard.
Especially among computational agents, it is reasonable to
measure this hardness by computational complexity. Some
earlier work has been done in this areg, but it was assumed
that the number of voters and candidates is unbounded.

In this paper we derived hardness results even in the prac-
tical case where the number of candidates is a small con-
stant (but the number of voters may be large). We showed
that with compl ete information about the others' votes, indi-
vidual manipulation is easy, and coalitional manipulation is
easy with unweighted voters. However, constructive coali-
tional manipulation with weighted voters turned out to be
intractable for al of the voting protocols under study, except
for the Cup protocol (which is easy to manipulate even if the
number of candidates is unbounded). Destructive manip-
ulation tends to be easier, except in the Single Transferable
Vote (STV) protocol. Randomizing over instantiations of the
protocols (such as schedules of a Cup) can be used to make
manipulation hard. Finally, we showed that under weak as-
sumptions, if weighted coalitional manipulation with com-
plete information about the others’ votesishard in some vot-
ing protocol, then individual and unweighted manipulation
is hard when there is uncertainty about the others' votes.

®Representation of such distributions can still be concise.

In summary, our results suggest 1) using some of the
protocols studied in this paper rather than usual plural-
ity (majority) voting (where constructive/destructive un-
weighted/weighted individual/coalitional manipulation is
trivia), 2) preferring STV over the other protocols on the
basis of the difficulty of destructive manipulation, and 3)
randomizing over instantiations of a protocol. Our results
may also lead one to be generally less concerned about the
possibility of manipulation asit is hard in the common case
where not too much is known about how others will vote.

All of the results on complexity of manipulation to date
(including ours) use A/ P-hardness as the complexity mea-
sure. This is only a weak guarantee of hardness of ma-
nipulation. It means that there are infinitely many hard in-
stances, but many (or even most) instances may be easy to
manipulate. Future work includes studying other notions of
hardness in the manipulation context, such as average case
completeness (Gurevich 1991) and instance complexity (Or-
ponen et al. 1994). Another interesting avenue is to try
to embed a practically hard problem (e.g., factoring) in the
manipulation problem. Future work also includes proving
hardness of manipulation in more restricted protocols such
as auctions, and with more restricted preferences.
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