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Abstract
We study single-player extensive-form games with
imperfect recall, such as the Sleeping Beauty prob-
lem or the Absentminded Driver game. For such
games, two natural equilibrium concepts have been
proposed as alternative solution concepts to ex-ante
optimality. One equilibrium concept uses general-
ized double halving (GDH) as a belief system and
evidential decision theory (EDT), and another one
uses generalized thirding (GT) as a belief system
and causal decision theory (CDT). Our findings re-
late those three solution concepts of a game to solu-
tion concepts of a polynomial maximization prob-
lem: global optima, optimal points with respect
to subsets of variables and Karush–Kuhn–Tucker
(KKT) points. Based on these correspondences, we
are able to settle various complexity-theoretic ques-
tions on the computation of such strategies. For
ex-ante optimality and (EDT,GDH)-equilibria, we
obtain NP-hardness and inapproximability, and for
(CDT,GT)-equilibria we obtain CLS-completeness
results.

1 Introduction
Most formalisms that are used for reasoning under uncer-
tainty and for decision making in AI – for example, HMMs,
(dynamic) Bayesian networks, influence diagrams, MDPs,
POMDPs, multiagent versions of these – assume what is
known as perfect recall: the agent does not forget anything
it knew before. This may seem to be a very natural assump-
tion: in the design of AI agents, generally we have plenty of
reliable memory available. Moreover, the property of perfect
recall ensures various desirable properties in the context of
extensive-form games, including polynomial-time solvability
of two-player zero-sum games [Koller and Megiddo, 1992]
(and hence, a fortiori, single-player games). Finally, even
when modeling humans – as in, for example, behavioral game
theory [Camerer, 2003] – in spite of our clearly imperfect
memory, usually perfect-recall models are used. So why use
models with imperfect recall in AI?

It turns out there are a number of reasons why imperfect
recall is relevant for AI agents; moreover, in cases where it is
relevant, it is clear what the agent will and will not remember

– unlike in the case of human memory, which is harder to pre-
dict and consequently to model in standard representations of
imperfect recall. Imperfect-recall games already appear in the
AI literature in the context of solving very large games such
as poker: one technique for solving such games is abstraction
– i.e., reducing the game to a smaller, simplified one to solve
instead – and this process can give rise to imperfect recall in
the abstracted game [Waugh et al., 2009; Lanctot et al., 2012;
Kroer and Sandholm, 2016]. But imperfect recall is also of
interest for other reasons. First, we may deliberately choose
to have our agents forget: for example, the agent may tem-
porarily need access to data that is sensitive from a privacy
perspective, and therefore best forgotten afterwards. Conitzer
and Oesterheld [2023] give the example of an AI driver assis-
tant that can take over whenever the human car driver makes
a major error. When that happens, the AI needs to reason
about how good the human driver is in general, about whom
it is not allowed to store information. An AI agent could also
take the form of a highly distributed system operating across
many nodes, where not all the nodes have access to the same
information; hence, it may act at one node without having ac-
cess to information that it did have available when acting at
another node. Relatedly, the same agent (in the sense of being
based on the same source code) may be instantiated multiple
times, for example by human users deploying it in multiple
contexts. In such cases it can still be useful to consider this
family of instantiations as a single agent, but again these in-
stantiations will not all have access to the same information.
Finally, again building on the previous case, an agent may be
acting not only in the real world, but also in simulations; for
example, it may be simulated by another agent that wants to
ensure that another instantiation of the same agent will act in
a trustworthy fashion in the real world later [Kovarik et al.,
2023]. In this case, the real-world instantiation of the agent
will generally not have access to the information that the sim-
ulation had access to earlier.

Notably, we need to model this phenomenon as imper-
fect recall rather than merely as imperfect information. In
single-agent perfect-recall imperfect-information games (say,
a POMDP), there is never a (strict) reason to randomize,
whereas in imperfect-recall games the agent might have to
randomize in order to perform well overall; cf. the Absent-
minded Driver example [Piccione and Rubinstein, 1997] (see
appendix). For example, suppose we deploy a content rec-
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ommendation system to many people’s phones, in an edge-
computing sort of setup: We are not in constant communica-
tion with the phones, so the nodes of our system have to act
independently each day before getting back in touch with us.
Over the next day, we would like to experiment (in an opti-
mal way) what kind of content to recommend. With a pure
strategy, we would show all users the same content and learn
very little from it. Instead, we would prefer to randomize
the content shown on each phone, that is, use a mixed strat-
egy. Therefore, this situation cannot be a perfect-recall game
(even of imperfect information).

Being able to make decisions with imperfect recall also
represents a technical frontier. Many existing techniques
inherently rely on perfect recall. Solving two-player zero-
sum games becomes NP-hard as soon as one player has im-
perfect recall [Koller and Megiddo, 1992]. Moreover, in
these contexts, there remains controversy at the very foun-
dations of how to do probabilistic reasoning and decision
making. For example, the Sleeping Beauty problem [Elga,
2000] (see appendix) asks one to give the probability of
a state of the world in an imperfect-recall setting; some
(Thirders) believe that the correct answer is 1/3, and others
(Halvers) believe it is 1/2, see Section 3.2. Only recently
has a clear picture started to emerge regarding how each of
these positions can be combined with a corresponding form
of decision theory to make good decisions [Hitchcock, 2004;
Draper and Pust, 2008; Briggs, 2010; Conitzer, 2015; Oester-
held and Conitzer, 2022]; here we build on that recent con-
ceptual work to define and study several foundational com-
putational problems.

In this paper, we use extensive-form games to represent
settings with imperfect recall. Even though we are consider-
ing a single-agent setting, the extensive form is still especially
natural to use to model imperfect-recall settings, specifically
with the use of information sets. Indeed, as we will discuss,
game-theoretic phenomena such as notions of equilibrium
naturally come up in the presence of imperfect recall even
when there is just a single agent. Intuitively that is because
it is more challenging for that agent to coordinate its actions
with those it takes at other times. Moreover, randomization is
in general necessary. We consider behavior strategies, which
map each information set to a probability distribution over
actions. Based on recent literature, we study three distinct
solution concepts: (1) ex ante optimality, where the behavior
strategy is one that maximizes expected utility at the outset;
(2) equilibria based on causal decision theory and generalized
thirding, in which an agent would not want to change its ac-
tion at any information set, under the assumption that at all
other game tree nodes (including ones in the same informa-
tion set) the agent would follow the original strategy; and (3)
equilibria based on evidential decision theory and generalized
double halving, in which an agent would not want to switch
to a different distribution over actions at a given information
set, assuming that the agent would also use the new distribu-
tion at other nodes in that information set (but would use the
original strategy at all other information sets).

Section 2 and 3 define those solution concepts and cover
previously known characterizations and hardness results.
Section 4 presents our novel results: First we show that the

equilibria based on causal decision theory and generalized
thirding are exactly the Karush–Kuhn–Tucker points of a cor-
responding utility maximization problem. This makes gradi-
ent descent methods applicable to the computation of such an
equilibrium, and, relatedly, we derive that problems of find-
ing such an equilibrium – up to an inverse exponential pre-
cision – are complete for the class CLS (Continuous Local
Search). Finally, we derive various NP-hardness results for
maximizing over the set of equilibria and for finding an equi-
librium based on evidential decision theory and generalized
double halving. Naturally, all these complexity results also
have implications for learning or dynamics that converge to
these solutions.

2 Background for Imperfect-Recall Games
2.1 Single-Player Extensive-Form Games with

Imperfect Recall
We first define single-player extensive-form games, allowing
for imperfect recall. The concepts we use in doing so are
standard; for more detail and background, see, e.g., Fuden-
berg and Tirole [1991], Nisan et al. [2007] and Piccione and
Rubinstein [1997].

Definition 1. A single-player extensive-form game with im-
perfect recall (denoted Γ), sometimes also called an extensive
decision problem with imperfect recall, consists of:

1. A rooted tree, with nodes H and where the edges are
labeled with actions. The game starts at the root node
h0 and finishes at a leaf node, also called terminal node.
The terminal nodes in H will be denoted as Z . The set
Ah refers to the set of actions available at a nonterminal
node h ∈ H \ Z .

2. A utility function u : Z → R, where u(z) represents the
payoff that the player receives from finishing the game
at terminal node z.

3. A partition H \ Z = H∗ ⊔ Hc of nonterminal nodes
into a set of the player’s decision nodes H∗ and a set of
chance nodes Hc. This partition indicates whether the
single player or exogenous stochasticity determines the
action at any given node.

4. For each chance node h ∈ Hc, a fixed distribution Pc(· |
h) over Ah according to which chance determines an
action at h.

5. A partition H∗ = ⊔I∈I∗I of the player’s decision nodes
into information sets (“info sets” for short). We require
Ah = Ah′ for any nodes h, h′ in the same info set I .

Throughout this paper, we let ℓ := |I∗| denote the num-
ber of info sets. For computational purposes, we assume that
a game Γ is represented by its game tree structure of size
Θ(|H|) (which includes the info set partition), and by a bi-
nary encoding of its chance node probabilities and its utility
payoffs. The last two shall take on rational values only.

Any node h ∈ H uniquely corresponds to a
(node, action)-history hist(h) from root h0 to h in the
game tree. Define functions d, ν, a such that the
node history and action history from h0 to h con-
sist of the sequences

(
ν(h, 0), ν(h, 1), ... , ν(h, d(h))

)
and(

a(h, 0), a(h, 1), ... , a(h, d(h) − 1)
)

respectively. In other
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Figure 1: Running example of a single-player extensive-form game
with imperfect recall. It has two info sets I1 and I2, and five nonter-
minal nodes.

words, function d : H → N0 identifies the tree depth of a
node, ν : H×N0 → H the node ancestor at a specified depth,
and a : H×N0 → ⊔h∈HAh the action ancestor at a specified
depth. In particular, for all h ∈ H, we have ν(h, 0) = h0 and
ν(h, d(h)) = h. We restrict the domain of functions ν and a
to inputs (h, k) with k ≤ d(h) and k ≤ d(h)−1 respectively,
and note that a maps (h, k) into Aν(h,k).

The depth of Γ is defined to be the maximal depth of the
leaf nodes. For notational convenience, we add a singleton
info set to Γ for each chance node in Γ. The collection of
these info sets, each consisting of a single element in Hc,
shall be denoted by Ic. For each nonterminal node h ∈ H\Z ,
let Ih ∈ I∗ ⊔ Ic denote its info set. For each info set I ∈
I∗ ⊔ Ic, let AI denote its action set.

Nodes of the same info set are assumed to be indistinguish-
able to the player during the game (even though the player is
always aware of the full game structure). There may be infor-
mation about the history of play that the player holds at some
node, and that the player forgets somewhere further down its
subtree. For instance, consider the game in Figure 1. Once
the player arrives at node h3, she cannot distinguish it from
possibly being at node h2. Thus she has already forgotten that
she has only taken one action (action C) so far. In contrast to
that, games with perfect recall have every info set reflect that
the player remembers all her earlier actions. In particular, the
player does not forget which info sets she entered in which
order in the history of play.

With imperfect recall, it could furthermore be the case that
multiple nodes of the same history (of some terminal node)
belong to the same info set, as in info set I1 in the game of
Figure 1. The inability of a player to distinguish between
two nodes on the same history is a property that we will refer
to as absentmindedness; cf. the Absentminded Driver from
Piccione and Rubinstein [1997] (see appendix).

Let ∆(AI) denote the set of probability distributions over
the actions in AI . A (behavioural) strategy µ : I∗ →
⊔I∈I∗∆(AI) of the player assigns to each info set I a proba-
bility distribution µ(· | I) ∈ ∆(AI). At info set I , the player

will then randomly draw an action according to µ(· | I). By
abuse of notation, we extend any strategy µ of the player
to info sets Ih ∈ Ic of chance nodes h ∈ Hc by setting
µ(· | Ih) := Pc(· | h) there.

Given that the player is currently at node h̄ ∈ H \ Z and
that she plays according to strategy µ, we can calculate the
probability of reaching node h ∈ H by multiplying the prob-
abilities of the actions on the path from h̄ to h:

P(h | µ, h̄) =
d(h)−1∏
k=d(h̄)

µ
(
a(h, k) | Iν(h,k)

)
if h̄ ∈ hist(h)

and P(h | µ, h̄) = 0 otherwise. As a special case, we define
the reach probability P(h | µ) := P(h | µ, h0) of a node h ∈
H to be its reach probability from the root h0 of Γ. Naturally,
the reach probability of the root is 1.

The expected utility payoff for being at node h ∈ H \ Z
and using strategy µ from then on can be determined by
U(µ | h) :=

∑
z∈Z P(z | µ, h) · u(z). Furthermore, let

U : µ 7→ U(µ) := U(µ | h0) be the function that takes a
strategy µ of Γ and returns the expected utility payoff of the
player from following µ from the game start to termination.
U(µ) is also called the ex-ante (expected) utility of µ.

2.2 Utility as a Polynomial Function
Fix an ordering I1, . . . , Iℓ of the info sets in I∗ and denote
mi := |AIi | for all i ∈ [ℓ]. Moreover, fix an ordering
a1, . . . , ami of the actions in AIi for all i ∈ [ℓ].

We can uniquely describe a strategy µ of Γ by the proba-
bility values that it assigns to each action aj at info set Ii,
for i ∈ [ℓ] and j ∈ [mi]. A strategy µ is a vector µ =

(µij)i,j ∈×ℓ
i=1 Rmi such that each subvector µi· = (µij)j

lies in the simplex ∆(AIi) ≡ ∆mi−1 := {y ∈ Rmi : yj ≥
0 ∀j ,

∑mi

j=1 yj = 1}. Therefore, the strategy space of Γ is

×ℓ
i=1 ∆(AIi) ≡×ℓ

i=1 ∆
mi−1.

The expected utility function U of a strategy µ can be fully
written out as

U(µ) =
∑
z∈Z

(
u(z) ·

d(z)−1∏
k=0

µ
(
a(z, k) | Iν(z,k)

))
.

As noted by Piccione and Rubinstein [1997], this is a poly-
nomial function in the variables (µij)i,j . Recall that at
chance nodes, the probabilities are exogenously fixed con-
stants. Thus, the degree of the polynomial function U is
upper-bounded by the maximum number of times the player
of Γ might have to take a decision in order to reach a terminal
node. Note that polynomial U can be constructed in polyno-
mial time in the encoding size of Γ.
Example 2. In the game of Figure 1, we get ℓ = 2, m1 = 3,
m2 = 2. Let the actions be ordered as (L,C,R) and
(X,Y ). Then, for any point µ ∈ R3 × R2, we have U(µ) =
5µ11µ13µ21 + µ13µ22.

We show in the appendix that one can also reduce any mul-
tivariate polynomial p :×ℓ

i=1 Rmi → R to a single-player
extensive-form game Γ with imperfect recall such that its ex-
pected utility function satisfies U(µ) = p(µ) on×ℓ

i=1 Rmi .
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2.3 (Computing) Ex-ante Optimal Strategies
Suppose we want to solve a given game Γ. From a plan-
ning perspective, one would naturally search for a strategy
that promises the highest payoff at a time before the player
enters the game.

Definition 3. We say a strategy µ∗ is ex-ante optimal for Γ if
it solves

max
µ

U(µ) s.t. µ ∈
ℓ

×
i=1

∆(AIi) . (1)

Due to Koller and Megiddo [1992], we can find an ex-ante
optimal strategy for a single-player game with perfect recall
in polynomial time. This will not be the case anymore in the
presence of imperfect recall, as we will show next.

The class ZPP contains all those decision problems that can
be solved in expected polynomial time by a randomized (Las
Vegas) algorithm. Let OPT be an optimization problem with
max and min values q̄ and q. Then, a fully polynomial-time
approximation scheme (FPTAS) for OPT computes a solution
to an instance of OPT with an objective value that is at most
ϵ · (q̄ − q) away from the optimal value. This computation
must take polynomial time in 1/ϵ and the encoding size of the
instance. For a more precise definition, see de Klerk [2008].

Proposition 4. Consider the problem that takes a game Γ
and target value t ∈ Q (encoded in binary) as inputs and
asks whether there is a strategy µ for Γ with ex-ante expected
utility U(µ) ≥ t. This problem is NP-hard. Moreover:
(1.) Unless NP = ZPP, there is no FPTAS for this prob-

lem. NP-hardness and conditional inapproximability
hold even if the game instance Γ has a tree depth of 3
and only one info set.

(2.) NP-hardness holds even if Γ has no absentmindedness,
a tree depth of 4 and the player has 2 actions per info
set.

(3.) NP-hardness holds even if Γ has no absentmindedness,
a tree depth of 3 and the player has 3 actions per info
set.

Note that finding the ex-ante optimal strategy of Γ is at
least as hard as this decision problem of whether a target value
can be achieved in Γ. On the other hand, with an efficient
solver of the decision version, one can recover the optimal
ex-ante utility U∗ := maxµ U(µ) through binary search.

An early such NP-hardness result was given by Koller and
Megiddo [1992]. Gimbert et al. [2020] leverage the corre-
spondence to polynomial optimization (Section 2.2) to further
show that, in fact, this decision problem of whether a target
value can be achieved in Γ is ∃R-complete. The complex-
ity class ∃R, called the existential theory of the reals [Rene-
gar, 1992; Schaefer and Stefankovic, 2017], consists of all
those problems that reduce to deciding whether a sentence of
the following form is true: ∃x1 . . . ∃xnF (x1, . . . xn), where
the xi are real-valued variables and where F is a quantifier-
free formula that may contain equalities and inequalities of
real polynomials. ∃R lies in between NP and PSPACE [Shor,
1990; Canny, 1988]. The decision problem of Proposition 4
can also be shown to be a member of NP in an approximate
sense; namely, when it is allowed to incorrectly return “yes”

to the problem instance (Γ, t, ϵ) if there exists a strategy pro-
file µ with U(µ) ≥ t − ϵ. Here, ϵ > 0 represents an inverse-
exponential precision parameter.

A proof of Proposition 4 can be found in the appendix.
Result (1.) is based on the known hardness of maximizing a
polynomial function over a simplex [de Klerk, 2008]. Re-
sult (3.) reduces from the hard problem of finding an optimal
joint strategy in multiplayer common payoff games [Chu and
Halpern, 2001]. The proofs reveal that NP-hardness remains
even if the encoding size of the chance node probabilities and
utility values are in O(|H|).

3 Equilibria in Imperfect-Recall Games
Proposition 4 shows a strong obstacle to finding or approxi-
mating ex-ante optimal strategies for single-player extensive-
form games with imperfect recall. In light of these limi-
tations, we will relax the space of solutions to equilibrium
strategies. This solution concept argues that, whenever the
player finds herself in an info set, she has no influence over
which actions she chooses at other info sets. Therefore, at an
equilibrium strategy µ, the player will play the best action at
each info set, assuming that she has been playing according to
µ up to the current decision point and that she will continue to
do so at future decision points. Prior work has given a detailed
description of viable equilibrium concepts in single-player
games with imperfect recall [Piccione and Rubinstein, 1997;
Briggs, 2010; Oesterheld and Conitzer, 2022]. We will con-
sider two well-motivated equilibrium concepts that have been
proposed and where an ex-ante optimal strategy also consti-
tutes an equilibrium. In games without absentmindedness,
these two equilibrium concepts coincide. In games with ab-
sentmindedness, the concepts differ in how expected utilities
are evaluated for an action a at a current info set I , given
that the player plays according to strategy µ anywhere “else”.
Computing such expected utilities requires

1. A Belief System: A method to form beliefs (i.e., a prob-
ability distribution) over being at a specific node/history
of Γ given that the player is at info set I; and

2. A Decision Theory: An understanding of how an action
choice at the current node affects the freedom to choose
an action at other nodes of the same info set.

In the sequel, let I be the player’s current info set at which
she finds herself during play while playing µ in game Γ.

3.1 Decision Theories
Causal Decision Theory (CDT) postulates that the player can
take an action α ∈ ∆(AI) at the current node without violat-
ing that the player has been playing according to µ at past ar-
rivals at I , or that she will be playing according to µ at future
arrivals at I . The intuition behind CDT is that the player’s
choice to deviate away from µ at the current node does not
cause any change in behaviour at any other node of the same
info set I .

In contrast to that, Evidential Decision Theory (EDT) pos-
tulates that if the player takes an action α ∈ ∆(AI) at the
current node, then she will have also deviated to α whenever
she arrived in I in past play, and she will be deviating to α
whenever she arrives in I again in future play. Indeed, EDT
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argues that the choice to deviate to α now is evidence for the
player taking the same deviation choice in the past and future.

Denote with µI 7→α an EDT deviation, i.e., the strategy of
Γ that plays according to µ at every info set except at the info
set I ∈ I∗ where it plays according to α ∈ AI . By contrast,
a CDT deviation may result in different actions taken at the
same info set. This might not constitute a valid strategy that
the player could have picked before the game started.

Example 5. Consider the game in Figure 1 and suppose
the player enters the game with the strategy µ = (R,X).
Say, upon visiting info set I1, the player plans to deviate
from the µ-prescribed action R to the action L this one time
only. Then, CDT argues that the player will stick to her µ-
prescribed action R at the other node of I1, leading to one
of the two action histories (L,R,X) or (R,X). EDT, on the
other hand, argues that such a deviation will then happen at
both nodes of I , leading to the action histories (L,L).

3.2 Self-Locating Belief Systems
Let I1st ⊆ I refer to those nodes h ∈ I that are the first
node of their history to enter info set I . Define the reach
probability and (expected) visit frequency of I under µ as
P(I | µ) :=

∑
h∈I1st P(h | µ) and Fr(I | µ) :=

∑
h∈I P(h |

µ). Note that the reach probability and the visit frequency
can only differ in games with absentmindedness, and that the
visit frequency can be greater than 1. However, we have in
general that P(I | µ) > 0 if and only if Fr(I | µ) > 0.
Finally, denote with χ : P → {0, 1} the function that takes a
Boolean property P as input and evaluate 1 if and only if P
is true.

The first belief system argues that one should focus on the
visit frequencies:

Definition 6. Let I be an info set with Fr(I | µ) > 0 under µ,
and let h ∈ H∗ be a player node. Then, Generalized Thirding
(GT) determines the probability of the player to be at h, given
that she uses µ and is currently in I , through

PGT(h | µ, I) := χ(h ∈ I) · P(h | µ)
Fr(I | µ)

.

The second belief system argues that one should rather
focus on the reach probabilities. Note that the statement
I ∩ hist(z) ̸= ∅ evaluates as true if and only if I occurs in
history hist(z) of terminal node z ∈ Z at least once.

Definition 7. Let I be an info set with P(I | µ) > 0 under µ,
and let z ∈ Z be a terminal node. Then, Generalized Double
Halving (GDH) determines the probability of the player being
on the path hist(z) to terminal node z, given that she uses µ
and is currently in I , through

PGDH( hist(z) | µ, I ) := χ(I ∩ hist(z) ̸= ∅) · P(z | µ)
P(I | µ)

.

GT and GDH were introduced as “consistency” and “z-
consistency” by [Piccione and Rubinstein, 1997].

With the current definitions, GT and GDH assign probabil-
ities to different type of events (to be at player node versus
to be in the history of a terminal node). In the appendix,
we phrase GT and GDH in each other’s language. In the

language of GDH, GT assigns the event of being in history
hist(z) of a terminal node z a higher probability if the reach
probability of z under µ is higher (same as GDH) and if
hist(z) visits info set I very often (whereas GDH only cares
about I being visited at least once by hist(z)).

Example 8. Consider the game in Figure 1 again and sup-
pose the player enters the game with the strategy µ = ( 12L+
1
2R,X). Say, the player observes to be in info set I1. Then a
GT player believes to be at the node h0 in the history (R,X)
with probability 1

3 whereas a GDH player believes to be at
h0 in (R,X) with probability 1

2 . The names “Halving” and
“Thirding” originate from this contrast but for a different ex-
ample called Sleeping Beauty [Elga, 2000] (see appendix).

3.3 Two Equilibrium Concepts
Any claims made in this section are proven in the appendix.

We start with the equilibrium concept that uses Causal De-
cision Theory and Generalized Thirding. Denote with h ◦ a
the child node reached in Γ by following action a ∈ Ah from
player node h ∈ H∗. Then U(µ | h ◦ a) is the expected util-
ity the player receives from being at h, playing a now, and
playing according to µ afterwards.

Definition 9. Let the player currently be at an info set I with
Fr(I | µ) > 0, and let α ∈ ∆(AI) be a mixed action. Then,
the (CDT,GT)-expected utility of playing α now and accord-
ing to µ otherwise is
EUCDT,GT(α | µ, I) :=

∑
h∈I PGT(h | µ, I) ·

(∑
a∈AI

α(a) ·

U(µ | h ◦ a)
)

.

Note that the inner sum collapses to U(µ | h ◦ a) if the
considered mixed action α is a pure action a.

Definition 10. We say a strategy µ∗ of Γ is a (CDT,GT)-
equilibrium if for all info sets I ∈ I∗ with Fr(I | µ∗) > 0
under µ∗, we have
µ∗(· | I) ∈ argmaxα∈∆(AI) EUCDT,GT(α | µ∗, I) .

Alternatively, we can use the easier-to-check condition that
for all info sets I ∈ I∗ with Fr(I | µ∗) > 0 and all pure
actions a ∈ AI with µ∗(a | I) > 0, we have

a ∈ argmax
a′∈AI

EUCDT,GT(a
′ | µ∗, I) . (2)

Next, we introduce the equilibrium concept that uses Evi-
dential Decision Theory and Generalized Double Halving.

Definition 11. Let the player currently be at an info set I
with P(I | µ) > 0, and let α ∈ ∆(AI) be a mixed action.
Then, the (EDT,GDH)-expected utility of playing α now and
according to µ otherwise is
EUEDT,GDH(α | µ, I) :=

∑
z∈Z

PGDH( hist(z) | µI 7→α, I ) ·u(z)

The GDH belief probabilities in Definition 11 are well-
defined due to P(I | µ) = P(I | µI 7→α).

Definition 12. We say a strategy µ∗ of Γ is a (EDT,GDH)-
equilibrium if for all info sets I ∈ I∗ with P(I | µ∗) > 0
under µ∗, we have
µ∗(· | I) ∈ argmaxα∈∆(AI) EUEDT,GDH(α | µ∗, I) .
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For (EDT,GDH), it is not sufficient to only check for op-
timality of pure actions that are in the support of µ∗. For
instance, take the game in Figure 1 and suppose the player
enters the game with the strategy µ = (C,X). Say, the player
observes to be in info set I1. Then action C is optimal among
pure actions {L, C, R}. But the player would strictly benefit
from deviating to mixed action 1

2L + 1
2R.

Finally, observe that in games without absentmindedness,
the following notions coincide: CDT and EDT, GT and GDH,
and Definitions 9 and 11. In particular, both equilibrium con-
cepts coincide:

Lemma 13. In games without absentmindedness, a strat-
egy µ is a (CDT,GT)-equilibrium if and only if it is an
(EDT,GDH)-equilibrium.

3.4 Equilibria from the Ex-Ante Perspective
Recall from Section 2.2 that the (ex-ante) strategy utility
function U of Γ is a polynomial function from×ℓ

i=1 Rmi to
R. In this section, we give characterizations for (CDT,GT)-
and (EDT,GDH)-equilibria in terms of U , as presented by
Oesterheld and Conitzer [2022] and Piccione and Rubinstein
[1997]. We reprove these results in the appendix since our
setup and end goal differs slightly.

Polynomial U is continuously differentiable in µ ∈
×ℓ

i=1 Rmi . For i ∈ [ℓ] and j ∈ [mi], let ∇ij U stand for the
partial derivative in direction (i, j), that is, the linear change
of U at a point µ if you infinitesimally increase its µ(aj | Ii)
value.

Lemma 14. Let Ii be an info set, aj ∈ AIi an action, and
µ ∈×ℓ

i=1 ∆(AIi) a strategy. Then:
1. ∇ij U(µ) = 0 if Fr(Ii | µ) = 0, and
2. ∇ij U(µ) = Fr(Ii | µ) ·EUCDT,GT(aj | µ, Ii) otherwise.

Note that an infinitesimal increase of µ(aj | Ii) means in
a game-theoretic sense that the decision for action aj is made
slightly more probable at every node of info set Ii. This re-
sembles an EDT type of deviation power but restricted to
small deviations that stay close to the current action profile
µ. Then, Lemma 14 says that a CDT deviation – rescaled by
Fr(Ii | µ) – accurately captures the linear (=dominant) effect
of such a “local EDT deviation”.

Lemma 15. Strategy µ ∈ ×ℓ
i=1 ∆(AIi) of Γ is an

(EDT,GDH)-equilibrium if and only if for all i ∈ [ℓ]:
µi· ∈ argmax

y∈∆(AIi
)

U(µ1·, . . . , µi−1·, y, µi+1·, . . . , µℓ·) .

One possible interpretation of Lemma 15 is that
(EDT,GDH)-equilibria of Γ are exactly the Nash equilibria
of an ℓ-player simultaneous and identical-interest game G:
Each player i shall have the continuous action space ∆(AIi)
and the (single) utility payoff, a function of the chosen action
profile (µi·)

ℓ
i=1 ∈×ℓ

i=1 ∆(AIi), shall be the polynomial U .

3.5 Computational Considerations
One of our main results addresses the complexity of find-
ing a (CDT,GT)-equilibrium. There are problem instances
where all (CDT,GT)-equilibria take on irrational numbers
even though the game is easy to encode (see appendix).

Therefore, we relax our search to ϵ-approximate (CDT,GT)-
equilibria where ϵ is an inverse-exponential numerical preci-
sion parameter.

Definition 16. An instance of the problem (CDT,GT)-
EQUILIBRIUM consists of a single-player extensive-form
game Γ with imperfect recall and a precision parameter ϵ > 0
encoded in binary. A solution consists of a strategy µ for Γ
that satisfies for all I ∈ I∗ with Fr(I | µ) > 0:

EUCDT,GT
(
µ(· | I) | µ, I

)
≥ max

a′∈AI

EUCDT,GT(a
′ | µ, I)− ϵ .

There is also an alternative notion of being close to an equi-
librium, called ϵ-well-supported (CDT,GT)-equilibrium. It
instead requires condition (2) to be satisfied up to ϵ preci-
sion. An analysis of when both approximation concepts are
polynomial-time related can be found in the appendix.

We will give hardness results and restricted membership
results for (CDT,GT)-EQUILIBRIUM for the class CLS (Con-
tinuous Local Search). CLS was introduced by Daskalakis
and Papadimitriou [2011] who noted that it contains various
important problems of continuous local optimization that be-
long both to PPAD and PLS. PPAD [Papadimitriou, 1994] is
well-known as the class that captures the complexity of many
problems of Nash equilibrium computation ([Daskalakis et
al., 2009; Chen et al., 2009] and much subsequent work),
while PLS (Polynomial Local Search [Johnson et al., 1988])
represents the complexity of many problems of discrete local
optimization. Recently, Fearnley et al. [2023] showed that
CLS is equal to the intersection of PPAD and PLS, indicating
that CLS-hardness is quite a reliable notion of computational
difficulty. In addition, the hardness of CLS can also be based
on the cryptographic assumption of indistinguishability ob-
fuscation [Hubácek and Yogev, 2017]. Fearnley et al. [2023]
also showed that a version of the KKT point search prob-
lem is CLS-complete. Subsequent work has established CLS-
completeness of mixed Nash equilibria of congestion games
[Babichenko and Rubinstein, 2021] and solutions to a certain
class of contests [Elkind et al., 2022]. We can characterize
CLS through any of its complete problems.

We will mainly be interested in KKT points. Consider a
general non-linear maximization problem

max
x∈Rn

f(x) s.t. Bx+ b ≤ 0 , Cx+ c = 0 (3)

where f : Rn → R is continuously differentiable, B ∈
Rm×n, b ∈ Rm, C ∈ Rℓ×n, and c ∈ Rℓ, and the
domain is bounded. A point x ∈ Rn is then said to
be a KKT point for (3) if there exist KKT multipliers
τ1, . . . , τm, κ1, . . . , κℓ ∈ R such that Bx + b ≤ 0 and
Cx + c = 0, ∀j ∈ [m] : τj ≥ 0, ∀j ∈ [m] : τj = 0 or
Bj·x+ bj = 0, and

∇ f(x) =
m∑
j=1

τj · (Bj·)
T +

ℓ∑
i=1

κi · (Ci·)
T = 0 .

The KKT conditions are necessary first-order conditions for
a point to be a local optimum of (3). Furthermore, feasible
stationary points satisfy the KKT conditions.
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Figure 2: A plot of the gradient vector field ∇U of the strategy util-
ity function U . The underlying game is the one from Figure 1 except
where the player nodes of info set I2 are replaced by chance nodes
that choose actions X and Y with chance probabilities 1

2
each. Then

the player only has to choose a mixed action for info set I1. The plot
is in 2D for visualization convenience: The x-axis and y-axis repre-
sent the probabilities put on action R and L respectively. The action
simplex ∆({L,C,R}) becomes a right triangle with the point (0, 0)
corresponding to pure action C. The gradient coloring represents the
vector length.
There is no KKT point in the interior of the (projected) simplex be-
cause the gradient does not vanish there. The KKT points on the
boundary of the simplex are those where the gradient is directed
perpendicularly outwards of the boundary constraint (except corner
points, whose gradient only needs to lie in the positive cone of the
boundary constraint directions). Thus (0.6 ·L+0.4 ·R) is the only
KKT point. A game-theoretic analysis of the underlying game Γ
also yields (0.6 · L+ 0.4 ·R) as the only (CDT,GT)-equilibrium.

4 Main Results
To our knowledge, the results of this section are all novel un-
less explicitly stated otherwise. All proofs can be found in
the appendix.

4.1 Complexity of the Search Problems
First, we use Lemma 14 to give a characterization of
(CDT,GT)-equilibria in terms of ex-ante utility. For that, re-
call the ex-ante maximization problem (1).

Theorem 1. Strategy µ ∈×ℓ
i=1 ∆(AIi) of Γ is a (CDT,GT)-

equilibrium if and only if µ is a KKT point of (1).

We visualize Theorem 1 in Figure 2. This result also re-
veals a method to find (CDT,GT)-equilibria, namely by ap-
plying Gradient Descent on U . Note that in continuous opti-
mization, there can be KKT points that are not locally opti-
mal. An analogous effect can also happen in games with im-
perfect recall: In the game of Figure 1, strategy µ = (C,X)
is a (CDT,GT)-equilibrium. But it is not a local optimum
because for any ϵ > 0 a shift from µ(· | I1) = C to
ϵ · ( 12L + 1

2R) + (1 − ϵ) · C would yield the player ex-ante
utility 5 · ϵ

2 · ϵ
2 > 0. However, from a (CDT,GT) standpoint,

the player should be satisfied with her choice at I1. In terms
of the original definition of CDT, this is because deviating ex-
actly once in I1 never suffices to attain a utility of 5. In terms
of Lemma 14 and Theorem 1, the issue is that the first order
effect of increasing the probabilities of R and L is 0.

The three solution concepts considered in this paper form
an inclusion hierarchy, a result shown by Oesterheld and
Conitzer [2022] [cf. Piccione and Rubinstein, 1997]:
Lemma 17. An ex-ante optimal strategy of a game Γ is also
an (EDT,GDH)-equilibrium. An (EDT,GDH)-equilibrium is
also a (CDT,GT)-equilibrium.

In particular, any single-player extensive-form game Γ
with imperfect recall admits an (EDT,GDH)-equilibrium and
a (CDT,GT)-equilibrium.

The implication chain of Lemma 17 does not hold in the
reverse direction: Consider the game in Figure 1. Then
strategy µ = (C,X) is a (CDT,GT)-equilibrium, but not an
(EDT,GDH)-equilibrium. Moreover, strategy µ′ = (R, Y )
is an (EDT,GDH)-equilibrium with ex-ante utility 1. This is
not ex-ante optimal because strategy µ′′ = ( 12L + 1

2R,X)
achieves the (optimal) ex-ante utility 5/4.

The second part of Lemma 17 holds because ex-ante opti-
mal strategies always exist. This is in contrast to the multi-
player setting where Nash equilibria may not exist in the pres-
ence of imperfect recall. Moreover, Lemma 17 implies that
finding an ex-ante optimal strategy must be at least as hard as
finding an (EDT,GDH)-equilibrium which must be at least as
hard as finding a (CDT,GT)-equilibria. For the latter, we get
the following classification:
Theorem 2. (CDT,GT)-EQUILIBRIUM is CLS-hard. CLS-
hardness holds even for games restricted to:
(1.) a tree depth of 6 and the player has 2 actions per info

set,
(2.) no absentmindedness and a tree depth of 6, and
(3.) no chance nodes, a tree depth of 5, and only one info set.
The problem is in CLS for the subclass of problem instances of
(CDT,GT)-EQUILIBRIUM where a lower bound on positive
visit frequencies in Γ is easily obtainable.

All CLS results of Theorem 2 also hold analogously for the
search problem of an approximate well-supported (CDT,GT)-
equilibrium. We prove (1.) by a reduction from finding a
KKT point of a polynomial function over the hypercube. For
(2.) and (3.), we reduce from finding a Nash equilibrium of a
polytensor identical interest game. Both search problems we
reduce from were shown to be CLS-complete by Babichenko
and Rubinstein [2021].

The CLS membership in Theorem 2 implies that, unless
NP = co-NP, the considered problem cannot be hard for the
class NP [Megiddo and Papadimitriou, 1991]. We only prove
CLS membership for those games Γ where we can construct
a lower bound value λ > 0 that satisfies Fr(I | µ) = 0
or Fr(I | µ) ≥ λ for all strategies µ and info sets I in
Γ. That is because if Fr(I | µ) > 0 is too small, the
approximation error may explode when transitioning from
the ex-ante perspective ∇ij U(µ) to the de se perspective
EUCDT,GT(aj | µ, Ii). Fortunately, such a lower bound ex-
ists and is polynomial-time computable for many well-known
imperfect-recall games, such as the Absentminded Driver,
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Sleepy Beauty type problems, or all the games used in the
CLS-hardness results of Theorem 2. Thus, the computation
of an approximate (CDT,GT)-equilibrium is CLS-complete in
those games that admit such a lower bound on positive visit
frequencies. Statement (2.) shows in particular that absent-
mindedness is not the reason for CLS hardness. With Lemma
13, this implies

Corollary 18. In games without absentmindedness where a
lower bound on positive visit frequencies is easily obtainable,
it is CLS-complete to find an ϵ-(EDT,GDH)-equilibrium.

The authors are not aware of any complexity classifica-
tion for the problem of finding an approximate (EDT,GDH)-
equilibrium in games that may have absentmindedness –
even though Lemma 15 gives a nice characterization of
(EDT,GDH)-equilibria. Nonetheless, we are able to give con-
ditional inapproximability results for (EDT,GDH)-equilibria
with the next theorem.

4.2 Complexity of the Decision Problems
Next, we show that maximizing expected utility in an info set
or maximizing over the space of equilibria is NP-hard. In the
following problem formulations, any target value t ∈ Q shall
be encoded in binary.

Theorem 3. The following problems are all NP-hard. Unless
NP = ZPP, there is also no FPTAS for these problems.

(1a.) Given Γ and t ∈ Q, is there a (CDT,GT)-equilibrium of
Γ with ex-ante utility ≥ t?

(1b.) Given Γ, an info set I of Γ and t ∈ Q, is there a
(CDT,GT)-equilibrium µ with Fr(I | µ) > 0, and such
that the player has a (CDT,GT)-expected utility ≥ t upon
reaching I?

(1c.) Given Γ, an info set I of Γ and t ∈ Q, is there a strategy
µ of Γ with Fr(I | µ) > 0, and such that the player has
a (CDT,GT)-expected utility ≥ t upon reaching I?

(2a.) Given Γ and t ∈ Q, is there an (EDT,GDH)-equilibrium
of Γ with ex-ante utility ≥ t?

(2b.) Given Γ, an info set I of Γ and t ∈ Q, is there an
(EDT,GDH)-equilibrium µ with P(I | µ) > 0, and such
that the player has an (EDT,GDH)-expected utility ≥ t
upon reaching I?

(2c.) Given Γ, an info set I of Γ and t ∈ Q, is there a strategy
µ of Γ with P(I | µ) > 0, and such that the player has
an (EDT,GDH)-expected utility ≥ t upon reaching I?

(3a.) Given Γ and t ∈ Q, do all (EDT,GDH)-equilibria of Γ
have ex-ante utility ≥ t?

(3b.) Given Γ, an info set I of Γ and t ∈ Q, do all
(EDT,GDH)-equilibria µ with P(I | µ) > 0 yield the
player an (EDT,GDH)-expected utility ≥ t upon reach-
ing I?

All the results of Theorem 3 follow from Proposition 4.
Therefore, NP-hardness and conditional inapproximability
remain for problems of the form (-a.) even if we restrict the
game instances as described in Proposition 4. The same holds
for problems of the form (-b.) and (-c.) except that we have
to add one info set and one tree depth level to the game in-
stances. Hardness of decision problem (3a.) also relies on
the observation that in games with one info set only, any

(EDT,GDH)-equilibrium is also ex-ante optimal (cf. Lemma
15).

From (3a.) we obtain in particular that, unless NP = ZPP,
there is no FPTAS for the search problem of an (EDT,GDH)-
equilibrium in games with imperfect recall1. To compare this
to Theorem 2, we shall remark that the conditional inapprox-
imability result for (EDT,GDH)-equilibria (and ex-ante op-
timal strategies) is obtained even for games where a lower
bound on positive visit frequencies is easily obtainable.

The decision problems of the form (1-.), (2a.), and (2c.) are
all members of the complexity class ∃R, and therefore, in par-
ticular, in PSPACE. On one hand, this is because (CDT,GT)-
expected utilities and (EDT,GDH)-expected utilities can be
described as rational functions (fractions of polynomial func-
tions). Furthermore, this is because the alternative defini-
tion (2) of a (CDT,GT)-equilibrium gives rise to polynomi-
ally many comparisons of polynomial functions, and, for
(2a.), because ex-ante optimal strategies are (EDT,GDH)-
equilibria.

5 Conclusion
Games of imperfect recall have traditionally often been con-
sidered a theoretical curiosity; it is hard to model settings
with human actors as imperfect-recall games, because, while
most of us frequently forget things, we do not reliably for-
get things according to well-specified rules. For AI agents,
however, this is no longer true; moreover, because they can
be instantiated many times, sometimes in simulation, one in-
stantiation will generally not know what another knew earlier.
All this motivates the computational study of games of imper-
fect recall, which we initiated here for the single-player case.
We are aided in this endeavor by recent conceptual work that
specifies and motivates several natural solution concepts, and
we based our work on these. Standard polynomial-time algo-
rithms such as ones based on the sequence form are known to
no longer work in the presence of imperfect recall. In this pa-
per we found various complexity-theoretic evidence that in-
deed, single-player imperfect-recall games are hard to solve.
Some of this evidence is, intriguingly, based on the com-
plexity class CLS whose careful study is only very recent.
On the positive side, we also provided insights into solving
such games by drawing close connections to several problems
about maximizing polynomial functions.

There remain many avenues for future work. What can
be said about these computational problems for representa-
tion schemes other than the extensive form? Are there spe-
cial cases of imperfect-recall games that can be solved more
efficiently, whether they are single-player or multi-player?
One may also ask whether our results give insight into the
more conceptual questions. For example, to the extent that
(CDT,GT)-equilibria are (under reasonable complexity as-
sumptions) easier to compute than (EDT,GDH)-equilibria,
does that provide support for using the former solution con-
cept, at least for certain purposes? We hope that the work we
have done in this paper can serve as a springboard for further
research into this fascinating and important topic.

1Note that FPTAS even allow for an inverse-polynomial preci-
sion ϵ.
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Tamar Szabó Gendler and John Hawthorne, editor, Oxford
Studies in Epistemology: Volume 3, pages 3–34. Oxford
University Press, 2010.

[Camerer, 2003] Colin F. Camerer. Behavioral Game The-
ory: Experiments in Strategic Interaction. Princeton Uni-
versity Press, 2003.

[Canny, 1988] John Canny. Some algebraic and geometric
computations in pspace. In Proceedings of the Twentieth
Annual ACM Symposium on Theory of Computing, STOC
’88, page 460–467, New York, NY, USA, 1988. Associa-
tion for Computing Machinery.

[Chen et al., 2009] Xi Chen, Xiaotie Deng, and Shang-Hua
Teng. Settling the complexity of computing two-player
Nash equilibria. J. ACM, 56(3):14:1–14:57, 2009.

[Chu and Halpern, 2001] Francis C. Chu and Joseph Y.
Halpern. On the np-completeness of finding an optimal
strategy in games with common payoffs. Int. J. Game The-
ory, 30(1):99–106, 2001.

[Conitzer and Oesterheld, 2023] Conitzer and Oesterheld.
Foundations of cooperative ai. In Thirty-Seventh AAAI
Conference on Artificial Intelligence, AAAI 2023, Febru-
ary 7 - 14, 2022. AAAI Press, 2023.

[Conitzer, 2015] Vincent Conitzer. A Dutch book against
sleeping beauties who are evidential decision theorists.
Synthese, 192(9):2887–2899, 2015.

[Daskalakis and Papadimitriou, 2011] Constantinos
Daskalakis and Christos Papadimitriou. Continuous
local search. In Proceedings of the Twenty-Second Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA
’11, page 790–804, USA, 2011. Society for Industrial and
Applied Mathematics.

[Daskalakis et al., 2009] Constantinos Daskalakis, Paul W.
Goldberg, and Christos H. Papadimitriou. The complex-
ity of computing a Nash equilibrium. SIAM J. Comput.,
39(1):195–259, 2009.

[de Klerk, 2008] Etienne de Klerk. The complexity of opti-
mizing over a simplex, hypercube or sphere: a short sur-
vey. Central Eur. J. Oper. Res., 16(2):111–125, 2008.

[Draper and Pust, 2008] Kai Draper and Joel Pust. Di-
achronic Dutch Books and Sleeping Beauty. Synthese,
164(2):281–287, 2008.

[Elga, 2000] Adam Elga. Self-locating belief and the Sleep-
ing Beauty problem. Analysis, 60(2):143–147, 2000.

[Elkind et al., 2022] Edith Elkind, Abheek Ghosh, and
Paul W. Goldberg. Simultaneous contests with equal shar-
ing allocation of prizes: Computational complexity and
price of anarchy. In Algorithmic Game Theory - 15th
International Symposium, SAGT, volume 13584 of Lec-
ture Notes in Computer Science, pages 133–150. Springer,
2022.

[Fearnley et al., 2023] John Fearnley, Paul Goldberg,
Alexandros Hollender, and Rahul Savani. The complexity
of gradient descent: CLS = PPAD ∩ PLS. J. ACM,
70(1):7:1–7:74, 2023.

[Fudenberg and Tirole, 1991] Drew Fudenberg and Jean Ti-
role. Game Theory. MIT Press, October 1991.

[Gimbert et al., 2020] Hugo Gimbert, Soumyajit Paul, and
B. Srivathsan. A bridge between polynomial optimization
and games with imperfect recall. In Proceedings of the
19th International Conference on Autonomous Agents and
MultiAgent Systems, AAMAS ’20, page 456–464, Rich-
land, SC, 2020. International Foundation for Autonomous
Agents and Multiagent Systems.

[Hitchcock, 2004] Christopher Hitchcock. Beauty and the
bets. Synthese, 139(3):405–420, 2004.
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