
Automated Mechanism Design
EC-08 tutorial

Vincent Conitzer &
Yevgeniy (Eugene) Vorobeychik

First half (Vince): overview

• Part I: Mechanism design review
• Part II: Automated mechanism design: the basic

approach
• Part III: Some variants and applications

Part I: Mechanism design review

• Preference aggregation settings
• Mechanisms
• Solution concepts
• Revelation principle
• Vickrey-Clarke-Groves mechanism(s)
• Impossibility results

Introduction
• Often, decisions must be taken based on the

preferences of multiple, self-interested agents
– Allocations of resources/tasks
– Joint plans
– …

• Would like to make decisions that are “good”
with respect to the agents’ preferences

• But, agents may lie about their preferences if
this is to their benefit

• Mechanism design = creating rules for
choosing the outcome that get good results
nevertheless

Preference aggregation settings
• Multiple agents…

– humans, computer programs, institutions, …
• … must decide on one of multiple outcomes…

– joint plan, allocation of tasks, allocation of
resources, president, …

• … based on agents’ preferences over the
outcomes
– Each agent knows only its own preferences
– “Preferences” can be an ordering ≥i over the

outcomes, or a real-valued utility function ui
– Often preferences are assumed to be drawn from a

commonly known distribution

Elections

Outcome space = { , , }

> > > >

Resource allocation

Outcome space = { , , }

v() = $55

v() = $0

v() = $0

v() = $0

v() = $32

v() = $0

So, what is a mechanism?
• A mechanism prescribes:

– actions that the agents can take (based on their
preferences)

– a mapping that takes all agents’ actions as input, and
outputs the chosen outcome

• the “rules of the game”
• can also output a probability distribution over outcomes

• Direct revelation mechanisms are mechanisms in
which action set = set of possible preferences

Example: plurality voting

.5 .5 .5 .5

.5 .5

.5 .5.5 .5

.5 .5

• Every agent votes for one alternative
• Alternative with most votes wins

– random tiebreaking

Some other well-known voting mechanisms
• In all of these rules, each voter ranks all m candidates

(direct revelation mechanisms)
• Other scoring mechanisms

– Borda: candidate gets m-1 points for being ranked first, m-2 for being ranked
second, …

– Veto: candidate gets 0 points for being ranked last, 1 otherwise
• Pairwise election between two candidates: see which candidate is

ranked above the other more often
– Copeland: candidate with most pairwise victories wins
– Maximin: compare candidates by their worst pairwise elections
– Slater: choose overall ranking disagreeing with as few pairwise elections as

possible
• Other

– Single Transferable Vote (STV): candidate with fewest votes drops out,
those votes transfer to next remaining candidate in ranking, repeat

– Kemeny: choose overall ranking that minimizes the number of
disagreements with some vote on some pair of candidates

The “matching pennies” mechanism
• Winner of “matching pennies” gets to choose outcome

Mechanisms with payments

• In some settings (e.g. auctions), it is possible to make
payments to/collect payments from the agents

• Quasilinear utility functions: ui(o, πi) = vi(o) + πi
• We can use this to modify agents’ incentives

A few different 1-item auction mechanisms
• English auction:

– Each bid must be higher than previous bid
– Last bidder wins, pays last bid

• Japanese auction:
– Price rises, bidders drop out when price is too high
– Last bidder wins at price of last dropout

• Dutch auction:
– Price drops until someone takes the item at that price

• Sealed-bid auctions (direct revelation mechanisms):
– Each bidder submits a bid in an envelope
– Auctioneer opens the envelopes, highest bid wins

• First-price sealed-bid auction: winner pays own bid
• Second-price sealed bid (or Vickrey) auction: winner pays second

highest bid

What can we expect to happen?
• In direct revelation mechanisms, will (selfish) agents

tell the truth about their preferences?
– Voter may not want to “waste” vote on poorly performing

candidate (e.g. Nader)
– In first-price sealed-bid auction, winner would like to bid

only ε above the second highest bid

• In other mechanisms, things get even more
complicated…

A little bit of game theory
• Θi = set of all of agent i’s possible preferences (“types”)

– Notation: ui(θi, o) is i’s utility for o when i has type θi

• A strategy si is a mapping from types to actions
– si: Θi → Ai
– For direct revelation mechanism, si: Θi →Θi
– More generally, can map to distributions, si: Θi → Δ(Ai)

• A strategy si is a dominant strategy if for every type θi,
no matter what the other agents do, si(θi) maximizes i’s
utility

• A direct revelation mechanism is strategy-proof (or
dominant-strategies incentive compatible) if telling the
truth (si(θi) = θi) is a dominant strategy for all players

• (Another, weaker concept: Bayes-Nash equilibrium)

The Vickrey auction is strategy-proof!

0

b = highest bid
among other

bidders

• What should a bidder with value v bid?

Option 1: Win the
item at price b, get
utility v - b

Option 2: Lose the
item, get utility 0

Would like to win if
and only if v - b > 0

– but bidding
truthfully

accomplishes this!

Collusion in the Vickrey auction

0

b = highest bid among
other bidders

• Example: two colluding bidders

price colluder 1 would pay
when colluders bid truthfully

v2 = second colluder’s
true valuation

v1 = first colluder’s true
valuation

price colluder 1 would pay if
colluder 2 does not bid

gains to be distributed among colluders

The revelation principle
• For any (complex, strange) mechanism that produces

certain outcomes under strategic behavior…
• … there exists an incentive compatible direct

revelation mechanism that produces the same
outcomes!
– “strategic behavior” = some solution concept (e.g.

dominant strategies)

mechanism outcome
actions

P1

P2

P3

types

new mechanism

The Clarke mechanism [Clarke 71]
• Generalization of the Vickrey auction to arbitrary

preference aggregation settings
• Agents reveal types directly

– θi’ is the type that i reports, θi is the actual type
• Clarke mechanism chooses some outcome o that

maximizes Σi ui(θi’, o)
• To determine the payment that agent j must make:

– Choose o’ that maximizes Σi≠j ui(θi’, o’)
– Make j pay Σi≠j (ui(θi’, o’) - ui(θi’, o))

• Clarke mechanism is:
– individually rational: no agent pays more than the outcome

is worth to that agent
– (weak) budget balanced: agents pay a nonnegative amount

Why is the Clarke mechanism strategy-proof?
• Total utility for agent j is

uj(θj, o) - Σi≠j (ui(θi’, o’) - ui(θi’, o)) =
uj(θj, o) + Σi≠j ui(θi’, o) - Σi≠j ui(θi’, o’)

• But agent j cannot affect the choice of o’
• Hence, j can focus on maximizing uj(θj, o) + Σi≠j ui(θi’, o)
• But mechanism chooses o to maximize Σi ui(θi’, o)
• Hence, if θj’ = θj, j’s utility will be maximized!

• Extension of idea: add any term to player j’s payment
that does not depend on j’s reported type

• This is the family of Groves mechanisms [Groves 73]

• “The VCG mechanism” usually refers to Clarke, “VCG
mechanisms” usually refers to Groves

Combinatorial auctions

v() = $500

v() = $700

v() = $300

Simultaneously for sale: , ,
bid 1

bid 2

bid 3

used in truckload transportation, industrial procurement, radio spectrum allocation, …

Clarke mechanism in CA
(aka. Generalized Vickrey Auction, GVA)

v() = $500

v() = $700

v() = $300

$500

$300

Clarke mechanism in CA…

v() = $700

v() = $300
$700

pays $700 - $300 = $400

The Clarke mechanism is not perfect
• Requires payments + quasilinear utility functions
• In general money needs to flow away from the

system
• Vulnerable to collusion, false-name manipulation
• Maximizes sum of agents’ utilities (not counting

payments), but sometimes we are not interested in
this
– E.g. want to maximize revenue

Impossibility results without payments
• Can we do without payments (voting mechanisms)?
• Gibbard-Satterthwaite [Gibbard 73, Satterthwaite 75]

impossibility result: with three or more alternatives and
unrestricted preferences, no voting mechanism exists
that is
– deterministic
– strategy-proof
– non-imposing (every alternative can win)
– non-dictatorial (more than one voter can affect the outcome)

• Generalization [Gibbard 77]: a randomized voting rule is
strategy-proof only if it is a randomization over
unilateral and duple rules
– unilateral = at most one voter affects the outcome
– duple = at most two alternatives have a possibility of winning

Single-peaked preferences [Black 48]
• Suppose alternatives are ordered on a line

a1 a2 a3 a4 a5

• Every voter prefers alternatives that are closer to her
most preferred alternative

• Let every voter report only her most preferred
alternative (“peak”)

v1v2 v3v4

v5

• Choose the median voter’s peak as the winner
• Strategy-proof!

Impossibility result with payments
• Simple setting:

v() = x v() = y

• We would like a mechanism that:
– is efficient (trade iff y > x)
– is budget-balanced (seller receives what buyer pays)
– is strategy-proof (or even weaker forms of incentive compatible)
– is individually rational (even just in expectation)

• This is impossible! [Myerson & Satterthwaite 83]

Part II: Automated mechanism design:
the basic approach

• General vs. specific mechanisms
• Motivation
• Examples
• Linear/integer programming approaches
• Computational complexity
• More examples

General vs. specific mechanisms

• Mechanisms such as Clarke (VCG) mechanism are
very general…

• … but will instantiate to something specific in any
specific setting
– This is what we care about

Example: Divorce arbitration

• Outcomes:

• Each agent is of high type w.p. .2 and low type
w.p. .8
– Preferences of high type:

• u(get the painting) = 11,000
• u(museum) = 6,000
• u(other gets the painting) = 1,000
• u(burn) = 0

– Preferences of low type:
• u(get the painting) = 1,200
• u(museum) = 1,100
• u(other gets the painting) = 1,000
• u(burn) = 0

Clarke (VCG) mechanism

high

low

lowhigh

Both pay 100Wife pays 200

Husband pays 200Both pay 5,000

Expected sum of divorcees’ utilities = 5,136

“Manual” mechanism design has
yielded

• some positive results:
– “Mechanism x achieves properties P in any

setting that belongs to class C”
• some impossibility results:

– “There is no mechanism that achieves
properties P for all settings in class C”

• Design problem instance comes along
– Set of outcomes, agents, set of possible types for each

agent, prior over types, …
• What if no canonical mechanism covers this instance?

– Unusual objective, or payments not possible, or …
– Impossibility results may exist for the general class of

settings
• But instance may have additional structure (restricted preferences

or prior) so good mechanisms exist (but unknown)

• What if a canonical mechanism does cover the setting?
– Can we use instance’s structure to get higher objective

value?
– Can we get stronger nonmanipulability/participation

properties?
• Manual design for every instance is prohibitively slow

Difficulties with manual mechanism design

Automated mechanism design (AMD)
[C. & Sandholm UAI-02, later papers; for overview, see either Sandholm CP-03

overview or (more up to date) Chapter 6 of C.’s thesis (2006)]

• Idea: Solve mechanism design as optimization
problem automatically

• Create a mechanism for the specific setting at
hand rather than a class of settings

• Advantages:
– Can lead to greater value of designer’s objective than

known mechanisms
– Sometimes circumvents economic impossibility results

& always minimizes the pain implied by them
– Can be used in new settings & for unusual objectives
– Can yield stronger incentive compatibility &

participation properties
– Shifts the burden of design from human to machine

Classical vs. automated mechanism design

Prove general
theorems & publish

Intuitions about
mechanism design

Real-world mechanism
design problem appears

Build mechanism
by hand

Mechanism for
setting at hand

Classical

Build software Automated mechanism
design software(once)

Real-world mechanism
design problem appears

Apply software
to problem

Automated

Mechanism for
setting at hand

Input
• Instance is given by

– Set of possible outcomes
– Set of agents

• For each agent
– set of possible types
– probability distribution over these types

– Objective function
• Gives a value for each outcome for each combination of agents’

types
• E.g. social welfare, payment maximization

– Restrictions on the mechanism
• Are payments allowed?
• Is randomization over outcomes allowed?
• What versions of incentive compatibility (IC) & individual rationality

(IR) are used?

Output
• Mechanism

– A mechanism maps combinations of agents’
revealed types to outcomes

• Randomized mechanism maps to probability
distributions over outcomes

• Also specifies payments by agents (if payments
allowed)

• … which
– satisfies the IR and IC constraints
– maximizes the expectation of the objective

function

Optimal BNE incentive compatible deterministic mechanism
without payments for maximizing sum of divorcees’ utilities

high

low

lowhigh

Expected sum of divorcees’ utilities = 5,248

Optimal BNE incentive compatible randomized mechanism
without payments for maximizing sum of divorcees’ utilities

high

low

lowhigh

.57.43

.55 .45

Expected sum of divorcees’ utilities = 5,510

Optimal BNE incentive compatible randomized mechanism with
payments for maximizing sum of divorcees’ utilities

high

low

lowhigh

Expected sum of divorcees’ utilities = 5,688

Wife pays 1,000

Optimal BNE incentive compatible randomized mechanism
with payments for maximizing arbitrator’s revenue

high

low

lowhigh

Expected sum of divorcees’ utilities = 0 Arbitrator expects 4,320

Both pay 250Wife pays 13,750

Husband pays 11,250

Modified divorce arbitration example

• Outcomes:
• Each agent is of high type with probability 0.2 and of low

type with probability 0.8
– Preferences of high type:

• u(get the painting) = 100
• u(other gets the painting) = 0
• u(museum) = 40
• u(get the pieces) = -9
• u(other gets the pieces) = -10

– Preferences of low type:
• u(get the painting) = 2
• u(other gets the painting) = 0
• u(museum) = 1.5
• u(get the pieces) = -9
• u(other gets the pieces) = -10

Optimal dominant-strategies incentive compatible
randomized mechanism for maximizing expected

sum of utilities

high

low

lowhigh

.96 .04

.96 .04.47 .4 .13

How do we set up the optimization?
• Use linear programming
• Variables:

– p(o | θ1, …, θn) = probability that outcome o is chosen given types θ1, …, θn

– (maybe) πi(θ1, …, θn) = i’s payment given types θ1, …, θn

• Strategy-proofness constraints: for all i, θ1, …θn, θi’:
Σop(o | θ1, …, θn)ui(θi, o) + πi(θ1, …, θn) ≥
Σop(o | θ1, …, θi’, …, θn)ui(θi, o) + πi(θ1, …, θi’, …, θn)

• Individual-rationality constraints: for all i, θ1, …θn:
Σop(o | θ1, …, θn)ui(θi, o) + πi(θ1, …, θn) ≥ 0

• Objective (e.g. sum of utilities)
Σθ1, …, θnp(θ1, …, θn)Σi(Σop(o | θ1, …, θn)ui(θi, o) + πi(θ1, …, θn))

• Also works for BNE incentive compatibility, ex-interim individual
rationality notions, other objectives, etc.

• For deterministic mechanisms, use mixed integer programming
(probabilities in {0, 1})
– Typically designing the optimal deterministic mechanism is NP-hard

Computational complexity of automatically
designing deterministic mechanisms

• Many different variants
– Objective to maximize: Social welfare/revenue/designer’s

agenda for outcome
– Payments allowed/not allowed
– IR constraint: ex interim IR/ex post IR/no IR
– IC constraint: Dominant strategies/Bayes-Nash equilibrium

• The above already gives 3 * 2 * 3 * 2 = 36 variants
• Approach: Prove hardness for the case of only 1

type-reporting agent
– results imply hardness in more general settings

DSE & BNE incentive compatibility constraints
coincide when there is only 1 (reporting) agent

Dominant strategies:
Reporting truthfully is optimal

for any types the others
report

Bayes-Nash equilibrium:
Reporting truthfully is optimal
in expectation over the other

agents’ (true) types

o2o3t12

o9o5t11

t22t21

o2o3t12

o9o5t11

t22t21 P(t21)u1(t11,o5) +
P(t22)u1(t11,o9) ≥
P(t21)u1(t11,o3) +
P(t22)u1(t11,o2)

u1(t11,o5) ≥ u1(t11,o3)
AND

u1(t11,o9) ≥ u1(t11,o2)

t21

o3t11

o5t11

u1(t11,o5) ≥ u1(t11,o3)
is equivalent to

P(t21)u1(t11,o5) ≥ P(t21)u1(t11,o3)

With only 1
reporting agent,
the constraints are
the same

Ex post and ex interim individual rationality constraints
coincide when there is only 1 (reporting) agent

Ex post:
Participating never hurts (for

any types of the other
agents)

Ex interim:
Participating does not hurt in

expectation over the other
agents’ (true) types

o2o3t12

o9o5t11

t22t21

o2o3t12

o9o5t11

t22t21 P(t21)u1(t11,o5) +
P(t22)u1(t11,o9) ≥ 0

u1(t11,o5) ≥ 0
AND

u1(t11,o9) ≥ 0

t21

o3t11

o5t11

u1(t11,o5) ≥ 0
is equivalent to

P(t21)u1(t11,o5) ≥ 0

With only 1
reporting agent,
the constraints are
the same

How hard is designing an optimal
deterministic mechanism?

[C. and Sandholm UAI02, ICEC03, EC04]

1. Maximizing social
welfare (not regarding
the payments) (VCG)

1. Maximizing social welfare (no
payments)

2. Designer’s own utility over
outcomes (no payments)

3. General (linear) objective that
doesn’t regard payments

4. Expected revenue

Solvable in polynomial
time (for any constant
number of agents):

NP-hard (even with 1 reporting
agent):

1 and 3 hold even with no IR constraints

AMD can create small optimal (expected-
revenue maximizing) combinatorial auctions
• Instance 1

– 2 items, 2 bidders, 4 types each (LL, LH, HL, HH)
– H=utility 2 for that item, L=utility 1
– But: utility 6 for getting both items if type HH (complementarity)
– Uniform prior over types
– Optimal ex-interim IR, BNE mechanism (0 = item is burned):
– Payment rule not shown
– Expected revenue: 3.94 (VCG: 2.69)

• Instance 2
– 2 items, 3 bidders
– Complementarity and substitutability
– Took 5.9 seconds
– Uses randomization

1,1
2,1
2,1
2,0
HL

2,21,20,1LH
2,21,21,0HL

1,1

0,2
LH

1,11,1HH

2,20,0LL
HHLL

Optimal mechanisms for a public good
• AMD can design optimal mechanisms for public goods, taking

money burning into account as a loss
• Bridge building instance

– Agent 1: High type (prob .6) values bridge at 10. Low: values at 1
– Agent 2: High type (prob .4) values bridge at 11. Low: values at 2
– Bridge costs 6 to build

• Optimal mechanism (ex-post IR, BNE):

• There is no general mechanism that achieves budget balance,
ex-post efficiency, and ex-post IR

• However, for this instance, AMD found such a mechanism

Outcome
rule

Payment
ruleBuildDon’t

build
Low

Build

High

BuildHigh

Low

0, 60, 0Low
.67,
5.33

High

4, 2High

Low

Combinatorial public goods
problems

• AMD for interrelated public goods
• Example: building a bridge and/or a boat

– 2 agents each uniform from types: {None, Bridge, Boat, Either}
• Type indicates which of the two would be useful to the agent
• If something is built that is useful to you, you get 2, otherwise 0

– Boat costs 1 to build, bridge 3

• Optimal mechanism (ex-post IR, dominant strategies):

• Again, no money burning, but outcome not always efficient
– E.g., sometimes nothing is built while boat should have been

Outcome rule
(P(none), P(boat),
P(bridge), P(both))

(0,0,1,0)
(0,0,1,0)

(0,.5,0,.5)
(1,0,0,0)
Bridge

(0,1,0,0)(0,1,0,0)(.5,.5,0,0)Boat
(0,0,1,0)(0,1,0,0)(1,0,0,0)Bridge

(0,1,0,0)

(0,1,0,0)
Boat

(0,1,0,0)(.5,.5,0,0)Either

(0,1,0,0)(1,0,0,0)None
EitherNone

Additional & future directions
• Scalability is a major concern

– Can sometimes create more concise LP formulations
• Sometimes, some constraints are implied by others

– In restricted domains faster algorithms sometimes exist
• Can sometimes make use of partial characterizations of the optimal

mechanism (e.g. [C. and Sandholm AAMAS04])
– More heuristic approaches (e.g. [C. and Sandholm IJCAI07])

• Automatically generated mechanisms can be complex/hard to
understand
– Can we make automatically designed mechanisms more intuitive? Do

we need to?
• Settings where communicating entire type (preferences) is

undesirable
– AMD with partial types [Hyafil & Boutilier IJCAI07, AAAI07, Hyafil thesis proposal]
– AMD for multistage mechanisms [Sandholm, C., Boutilier IJCAI07]

• Using AMD to create conjectures about general
mechanisms

Part III: Some variants and
applications

(AMD as a “philosophy”)

• Truthful feedback mechanisms with minimal
payments

• Auctions with revenue redistribution

Designing truthful feedback
mechanisms [Jurca & Faltings EC06]

• Say we have a buyer of a product; would like
her to give feedback

• Quality of her experience is represented by
signal sj

• She submits a signal sh as her feedback
• If she reports truthfully, her signal is likely to

match/be close to a “reference” reviewer’s
feedback sk
– Assume reference reviewer reports truthfully

(equilibrium reasoning)
• We pay the reviewer τ(sh, sk)

Linear program for designing truthful
feedback mechanism with minimal
expected payment [Jurca & Faltings EC06]

• Δ(sj, sh) is the maximum external incentive to misreport sh given
true experience sj

• C is the maximum cost for reporting at all

• Jurca and Faltings study a number of related problems [EC06,
WWW07,EC07, Jurca’s thesis, SIGecom Exchanges 08]

Auctions with revenue redistribution

Guo and C.,
EC 07,

Games and Economic Behavior forthcoming

Second-price (Vickrey) auction

v() = 2 v() = 4 v() = 3

v() = 2 v() = 4 v() = 3

pays 3

receives 3

Vickrey auction without a seller

v() = 2 v() = 4 v() = 3

pays 3
(money wasted!)

Can we redistribute the payment?

v() = 2 v() = 4 v() = 3

pays 3receives 1
receives 1

receives 1

Idea: give everyone 1/n
of the payment

not strategy-proof
Bidding higher can increase your redistribution payment

Strategy-proof redistribution
[Bailey 97, Porter et al. 04, Cavallo 06]

v() = 2 v() = 4 v() = 3

pays 3receives 1
receives 2/3

receives 2/3

Idea: give everyone 1/n of
second-highest other bid

strategy-proof
Your redistribution does not depend on your bid;

incentives are the same as in Vickrey

2/3 wasted (22%)

Bailey-Cavallo mechanism…
• Bids: V1≥V2≥V3≥... ≥Vn≥0
• First run Vickrey auction
• Payment is V2

• First two bidders receive V3/n
• Remaining bidders receive V2/n
• Total redistributed:

2V3/n+(n-2)V2/n

R1 = V3/n
R2 = V3/n
R3 = V2/n
R4 = V2/n
...
Rn-1= V2/n
Rn = V2/n

Can we do better?

Desirable properties
Strategy-proofness
Voluntary participation: bidder’s utility always

nonnegative
Efficiency: bidder with highest valuation gets item
Non-deficit: sum of payments is nonnegative

i.e. total Vickrey payment ≥ total redistribution
(Strong) budget balance: sum of payments is zero

i.e. total Vickrey payment = total redistribution
Impossible to get all
We sacrifice budget balance

Try to get approximate budget balance
Other work sacrifices: strategy-proofness [Parkes 01],

efficiency [Faltings 04], non-deficit [Bailey 97], budget
balance [Cavallo 06]

Another redistribution mechanism

• Bids: V1≥V2≥V3≥V4≥... ≥Vn≥0
• First run Vickrey
• Redistribution:

Receive 1/(n-2) * second-
highest other bid,
- 2/[(n-2)(n-3)] third-highest
other bid

• Total redistributed:
V2-6V4/[(n-2)(n-3)]

• Efficient & strategy-proof
• Voluntary participation & non-

deficit (for large enough n)

R1 = V3/(n-2) - 2/[(n-2)(n-3)]V4

R2 = V3/(n-2) - 2/[(n-2)(n-3)]V4

R3 = V2/(n-2) - 2/[(n-2)(n-3)]V4

R4 = V2/(n-2) - 2/[(n-2)(n-3)]V3

...
Rn-1= V2/(n-2) - 2/[(n-2)(n-3)]V3

Rn = V2/(n-2) - 2/[(n-2)(n-3)]V3

Comparing redistributions
• Bailey-Cavallo: ∑Ri =2V3/n+(n-2)V2/n
• Second mechanism: ∑Ri =V2-6V4/[(n-2)(n-3)]
• Sometimes the first mechanism redistributes more
• Sometimes the second redistributes more
• Both redistribute 100% in some cases
• What about the worst case?
• Bailey-Cavallo worst case: V3=0

– fraction redistributed: 1-2/n
• Second mechanism worst case: V2=V4

– fraction redistributed: 1-6/[(n-2)(n-3)]
• For large enough n, 1-6/[(n-2)(n-3)]≥1-2/n, so

second is better (in the worst case)

Generalization: linear
redistribution mechanisms

• Run Vickrey
• Amount redistributed to bidder i:

C0 + C1 V-i,1 + C2 V-i,2 + ... + Cn-1 V-i,n-1

where V-i,j is the j-th highest other bid for bidder i
• Bailey-Cavallo: C2 = 1/n
• Second mechanism: C2 = 1/(n-2), C3 = - 2/[(n-2)(n-3)]

• Bidder’s redistribution does not depend on own bid, so
strategy-proof

• Efficient
• Other properties?

Recall: R=C0 + C1 V-i,1 + C2 V-i,2 + ... + Cn-1 V-i,n-1

R1 = C0+C1V2+C2V3+C3V4+...+CiVi+1+...+Cn-1Vn

R2 = C0+C1V1+C2V3+C3V4+...+CiVi+1+...+Cn-1Vn

R3 = C0+C1V1+C2V2+C3V4+...+CiVi+1+...+Cn-1Vn

R4 = C0+C1V1+C2V2+C3V3+...+CiVi+1+...+Cn-1Vn

...
Rn-1= C0+C1V1+C2V2+C3V3+...+CiVi +...+Cn-1Vn

Rn = C0+C1V1+C2V2+C3V3+...+CiVi +...+Cn-1Vn-1

Redistribution to each bidder

Voluntary participation & non-deficit

• Voluntary participation:
equivalent to

Rn=C0+C1V1+C2V2+C3V3+...+CiVi+...+Cn-1Vn-1 ≥0
for all V1≥V2≥V3≥... ≥Vn-1≥0

• Non-deficit:
∑Ri≤V2 for all V1≥V2≥V3≥... ≥Vn-1≥Vn≥0

Worst-case optimal (linear)
redistribution

Try to maximize worst-case redistribution %

Variables: Ci, K
Maximize K
Subject to:
Rn≥0 for all V1≥V2≥V3≥... ≥Vn-1≥0
∑Ri≤V2 for all V1≥V2≥V3≥... ≥Vn≥0
∑Ri≥KV2 for all V1≥V2≥V3≥... ≥Vn≥0
Ri as defined in previous slides

Transformation into linear program
• Claim: C0=0
• Lemma: Q1X1+Q2X2+Q3X3+...+QkXk≥0 for

all X1≥X2≥...≥Xk≥0
is equivalent to
Q1+Q2+...+Qi≥0 for i=1 to k

• Using this lemma, can write all constraints
as linear inequalities over the Ci

Worst-case optimal remaining %

n=5: 27% (40%)
n=6: 16% (33%)
n=7: 9.5% (29%)
n=8: 5.5% (25%)
n=9: 3.1% (22%)

n=10: 1.8% (20%)
n=15: 0.085% (13%)
n=20: 3.6 e-5 (10%)
n=30: 5.4 e-8 (7%)

The data in the parentheses are for the Bailey-Cavallo mechanism

Average-case remaining %
(uniform distribution)

n=5: 8.9% (6.7%)
n=6: 6.9% (4.8%)
n=7: 3.6% (3.6%)
n=8: 2.5% (2.8%)
n=9: 1.3% (2.2%)

n=10: 0.8% (1.8%)
n=15: 3.7 e-4 (0.8%)
n=20: 1.7 e-5 (0.5%)
n=30: 2.6 e-8 (0.2%)

The data in the parentheses are for the Bailey-Cavallo mechanism

m-unit auction with unit demand:
VCG (m+1th price) mechanism

v() = 2 v() = 4 v() = 3

pays 2 pays 2

strategy-proof
Our techniques can be generalized to this setting

m+1th price mechanism

Variables: Ci ,K
Maximize K
subject to:
Rn≥0 for all V1≥V2≥V3≥... ≥Vn-1≥0
∑Ri≤ V2 for all V1≥V2≥V3≥... ≥Vn≥0
∑Ri≥ K V2 for all V1≥V2≥V3≥... ≥Vn≥0
Ri as defined in previous slides

Only need to change V2 into mVm+1

Results

BC = Bailey-
Cavallo

WO = Worst-
case Optimal

Analytical characterization of WO
mechanism

• Unique optimum
• Can show: for fixed m, as n goes to infinity, worst-case

redistribution percentage approaches 100% with rate of
convergence 1/2

Worst-case optimality outside the
linear family

• Theorem: The worst-case optimal linear redistribution
mechanism is also worst-case optimal among all VCG
redistribution mechanisms that are
– deterministic,
– anonymous,
– strategy-proof,
– efficient,
– non-deficit

• Voluntary participation is not mentioned
– Sacrificing voluntary participation does not help

• Not uniquely worst-case optimal

Related paper

• Moulin's working paper “Efficient, strategy-proof and
almost budget-balanced assignment”
– pursues different worst-case objective (minimize

waste/efficiency)
– results in same mechanism in the unit-demand

setting (!)
– different mechanism results after removing

voluntary participation requirement

Additional results on redistribution

• We generalized the above to multi-unit auctions
with nonincreasing marginal values [Guo & C. GEB
forthcoming]

• Maximizing expected redistribution given a prior
[Guo & C. AAMAS-08a]

• Redistribution mechanisms that are not
“dominated” by other redistribution mechanisms
[Guo & C. AAMAS-08b; Apt, C., Guo, Markakis <under construction>]

• Sacrificing efficiency to increase redistribution
(and, thereby, overall welfare)

[Guo & C. EC-08! Saturday 10am]

Some additional special-purpose
AMD directions

• Sequences of take-it-or-leave-it-offers [Sandholm &
Gilpin AAMAS06]

• Revenue-maximizing combinatorial auctions
[Likhodedov & Sandholm AAAI04, AAAI05]

• Online mechanisms [Hajiaghayi, Kleinberg, Sandholm
AAAI07]

• And: more in the second half of this tutorial…

Automted Mechanism Design:
Approaches & Applications

PART II

Vincent Conitzer and Yevgeniy Vorobeychik

A Computational Approach to
Constrained MD

Input: designer objective, design parameters, constraints, game
model

Output: (nearly) optimal mechanism with respect to the specified
objective

This is a constrained optimization problem if predictions of the
strategic choices of players are readily available

Mechanism Design for
Simulation-Based Games

Players
System

(simulation)...
...

design
parameters

player
strategies must predict

outcome

Outline
Motivating example: strategic procurement in a supply-chain game

The two-stage model of mechanism design

Mechanism design in a supply-chain game

Automated mechanism design on constrained design spaces

Solving simulation-based games

Evolutionary and learning approaches to automated mechanism
design

Outline
Motivating example: strategic procurement in a supply-chain game

The two-stage model of mechanism design

Mechanism design in a supply-chain game

Automated mechanism design on constrained design spaces

Solving simulation-based games

Evolutionary and learning approaches to automated mechanism
design

Supply-Chain Game
(TAC/SCM)

TAC/SCM: supply-chain management (SCM) scenario of the
international Trading Agent Competition (TAC)

Autonomous agents (developed by teams) act as PC
manufacturers

buy components from suppliers (simulator)

bid on orders from customers (simulator)

In TAC/SCM 2003 agents were observed to make excessive
component purchases on day 0 (the first simulation day)

Game Master Response

Designers introduced storage cost, charged daily for component
inventory, to reduce incentives for excessive day-0 procurement

MD Question: how to set the storage cost parameter?

agent behavior extremely complex

payoffs uncertain

My approach: systematic exploration of the parameter and agent
strategy spaces

Outline

Motivating example: strategic procurement in a supply-chain game

The two-stage model of mechanism design

Mechanism design in a supply-chain game

Automated mechanism design on constrained design spaces

Solving simulation-based games

Some Notation

Mechanism parameters: θ

Strategic choice by player i : ri

strategy profile: r

Objective function: W (θ, r)

Player utility functions: ui (θ,r)

TAC/SCM Example

Mechanism parameter θ is storage cost

A strategic choice ri is the day-0 procurement decision of player i

Player utility functions, ui (θ,r), are expected profits at the end of
simulation

Objective function, W (θ, r), is an indicator function:

1 if total day-0 procurement (sum of individual procurement
choices) is below a fixed threshold

Mechanism Design: The Model

W(θ,r),u(θ,r)

D

θ
stage 1: designer chooses the mechanism

players

rstage 2: players choose strategies

Mechanism Design: The Model

W(θ,r),u(θ,r)

D

θ
stage 1: designer chooses the mechanism

players

rstage 2: players choose strategies

* Given the mechanism, stage 2 is a game
* Designer must predict joint strategic choices

by the players in this game

Mechanism Design: The Model

W(θ,r),u(θ,r)

D

θ
stage 1: designer chooses the mechanism

players

rstage 2: players choose strategies

* Given the mechanism, stage 2 is a game
* Designer must predict joint strategic choices

by the players in this game

Formally, can solve this by
backwards induction:
1. Obtain solutions to
games in stage 2, r*(θ)
2. Find θ that maximizes
W(θ, r*(θ))

Outline
Motivating example: strategic procurement in a supply-chain game

The two-stage model of mechanism design

Mechanism design in a supply-chain game

Automated mechanism design on constrained design spaces

Solving simulation-based games

Evolutionary and learning approaches to automated mechanism
design

General Approach

For each (of a small set of) θ:

Collect payoff samples for a set of strategy profiles r

Approximate (ranges of) N.E. outcomes based on collected
data

In TAC/SCM, we can summarize N.E. outcomes as total
day-0 procurement: φ(r,θ) = ∑i ri (θ)

Generalize solution correspondence to θ outside of the data set

Obtaining N.E. Outcome
Correspondence

Storage Cost = 0

0

7500000

15000000

22500000

30000000

2.1 2.4 2.7 3.0 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7 6.0 6.3 6.6 6.9 7.2

E
p

si
lo

n
 B

o
u

n
d

Total Day 0 Procurement

Em
pi

ri
ca

l r
eg

re
t

Total day-0 procurement , φ(r,0)

Obtaining N.E. Outcome
Correspondence

0

1

2

3

4

5

6

7

0 50 100 150 200

No reasonable setting
of storage cost likely to
achieve the designer’s
objective

T
o

ta
l

d
ay

-0
 p

ro
cu

re
m

e
n

t

Storage cost (%)

0

7500000

15000000

22500000

30000000

2.1 2.4 2.7 3.0 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7 6.0 6.3 6.6 6.9 7.2

E
p

si
lo

n
 B

o
u

n
d

Total Day 0 Procurement

Stepping back...

Able to take advantage of structure in the TAC/SCM application

The designer only cares about total day-0 procurement

Can plot the approximate N.E. outcome correspondence in 2D

Very simple objective function

How can we do simulation-based mechanism design in general ?

The Mechanism Design Process

choosing the
mechanism

mechanism

predicting
player strategies

predictions

The Mechanism Design Process

choosing the
mechanism

mechanism

predicting
player strategies

predictions

predicting
player strategies

predictions

Outline
Motivating example: strategic procurement in a supply-chain game

The two-stage model of mechanism design

Mechanism design in a supply-chain game

Automated mechanism design on constrained design spaces

Solving simulation-based games

Evolutionary and learning approaches to automated mechanism
design

Problem Specification and
Inputs

Constrained, n-dimensional design space, Θ

Each mechanism induces an infinite game (possibly specified
using simulations)

Black-box specification of the objective and constraints

Suppose we are given a solver for a class of games induced by Θ

SOLVER: S(θ) is a mapping from θ ∈ Θ to a solution r*(θ)

Solution Strategy: Stochastic
Optimization

Iterative algorithm that explores the mechanism design space

Simulated annealing:

move to the next mechanism if it is better than current

probabilistically explore inferior mechanism choices

local search algorithm with global convergence properties

Many other alternatives (stochastic approximation, genetic
algorithms, etc)

Application to Mechanism
Design in Bayesian Games

Each mechanism induces infinite games of incomplete
information (i.e., infinite sets of player choices and types)

Joint space of player types T, a profile of types is t ∈ T

Black-box specification of the distribution over T

The solution concept is Bayes-Nash Equilibrium

Thus, S(θ) produces r*(t, θ) s.t. for every player i, ri*(ti, θ) is a
best response to the strategies of other players

Mechanism Design Problems
Consider two types of mechanism design problems:

Bayesian mechanism design: maxθ Et [W(r*(t, θ),t,θ)]

Robust mechanism design: maxθ inft [W(r*(t, θ),t,θ)]

Caveat with Robust MD: cannot computationally take inf (or
min) of a black box objective function over an infinite type space

Relaxation: probably approximately robust mechanism design

Estimate worst case w.r.t. “large” set of types using n samples

Probably Approximately
Robust MD

Suppose we select the best of L candidate mechanisms using n
samples from the type distribution to estimate the worst-case
outcomes. In order to attain confidence of at least 1 - α that we
“ignore” a set of types no larger than a measure p, we need at
least

samples

Evaluating Constraints

A similar caveat exists in evaluating constraints which are
conditional on type:

Cannot computationally evaluate such constraints for every type

Relaxation: ensure constraint holds on a “large” set of types (p-
strong constraints hold for a type set with measure at least 1 - p)

constraints
outcome

(θ, t, r(t))
true / false

Example: ex-interim
individual rationality

Verifying p-strong constraints

Let B be a set on which a probabilistic constraint is violated and
suppose that there is a uniform prior over [0,1] on the measure
of B. We need

samples to verify with confidence at least 1 - α that the constraint
holds for a set of types with probability at least 1 - p

Applications to Computational
Auction Design

Several examples of 2-player 1-item auctions

Games solved using the Reeves-Wellman solver (Reeves and
Wellman, 2004)

Objectives:

Fairness, revenue, welfare

Constraints:

Ex-interim individual rationality

1. Shared-Good Auction

Design space: f(a,a’) = ha + ka’ (two parameters h and k)

 Notation: SGA(h, k)

For 2 players, U[A,B] types, have an analytic expression for BNE

Remark: all SGA(h,k) mechanisms are efficient

Searching for Sharing
Mechanisms

(h0, k0)start at a random point

(hk, kk)in iteration k,
probabilistically select the

next point
...

select the best mechanism
seen thus far

(hk+1, kk+1)
evaluate (predict
player strategies)

Objective: Expected
“Fairness”

Minimize difference in expected utility between winner and loser

Theory: SGA(0, k) optimal for k > 0

Finds the optimal
mechanism

Applying
AMD

Maximize Ex Ante Fairness

Minimize expected difference in utility

No analytic characterization

SGA(0.49,1) with value 0.176
could not improve on this

even with known BNE

Applying
AMD

Robust Fairness

Minimize nearly-maximal difference in utility

Theory: SGA(h, 0) is optimal for h > 0

Finds the optimal
mechanism

Applying
AMD

2. “Myerson” Auctions

U1 = q t - p1(t) p1(t) = k1 a(t) + k2 a’ (t)+ K1

U2 = (1 - q) t - p2(t) p2(t) = k3 a(t) + k4 a’ (t)+ K2

all parameters in [0,1]

winner gets the good with probability q, pays p1(t)

Maximizing Expected Revenue
Theory: optimal incentive compatible* mechanism in this design
space yields expected revenue of 1/3

*Incentive compatible = it is a Bayes-Nash Equilibrium to bid actual type (value for the item)

finds an auction with expected
revenue of 0.3

Applying
AMD

Maximize Expected Welfare

Welfare = sum of player utilities

Theory: monotone strategies suffice; optimal welfare is 2/3

first-price and second-price sealed-bid auctions are efficient

Finds the optimal
mechanism

Applying
AMD

Robust Revenue Maximization

Theory: any auction with no fixed transfers and monotone
increasing BNE strategies yields at most 0 robust revenue (e.g.,
first-price and second-price auctions)

finds an auction with minimum
revenue > 0

Applying
AMD

3. “Anti-Social” Auctions

U1 and U2 are like in “Myerson” auctions, but include a
parameter for the amount of disutility to one agent from the
other’s utility

Same set of parameters as before

Maximizing Expected Revenue

Theory:

No known optimum; expected revenue from Vicious Vickrey (VV) auction (the only one
previously studied) is 0.48

Vicious Vickrey is not ex-interim individually rational

After adjustment for individual rationality, expected revenue of VV falls to 0.438

Using VV as a starting
point, finds IR auction
with revenue = 0.49

Applying
AMD

From a random starting
point, finds IR auction
with revenue = 0.44

Takeaways
The mechanism design problem can be modeled as a one-shot
two-stage game

This game can in principle be solved using backward induction

In practice, we can use an iterative improvement
algorithm, which runs a game solver as a subroutine,
evaluating the objective function and constraints on the
obtained solutions

This is a practical approach for a parameterized design of
auctions in various settings: a series of positive examples

The Mechanism Design Process

choosing the
mechanism

mechanism

predicting
player strategies

predictions

choosing the
mechanism

mechanism

predicting
player strategies

predictions

Outline
Motivating example: strategic procurement in a supply-chain game

The two-stage model of mechanism design

Mechanism design in a supply-chain game

Automated mechanism design on constrained design spaces

Solving simulation-based games

Evolutionary and learning approaches to automated mechanism
design

The “Small” Game Setting
The simplest setting is when we have at least n samples available
for every joint strategic choice of players in the game (define a
game comprised of sample mean payoffs)

An “obvious” approach is to compute a Nash equilibrium on this
empirical game (e.g., using GAMBIT, etc)

Analysis question 1: sensitivity analysis (probabilistic bounds on
the Nash equilibrium approximation quality)

Analysis question 2: the sequence of sets of equilibria converges
in several senses to the set of equilibria on the underlying game

The “Small” Game Setting

Row

Column

aR,1

aR,2

aC,1 aC,2
(aR,1, aC,1)

(5, 5)

(6, 5)

(5, 6)

(6, 6)

(5.5, 5.5)

(6.3, 0.5)

(0.5, 6.3)

(2.1, 2.1)

Convergence Results for
“Small” Games

Result 1: regrets of all mixed strategy profiles converge a.s.

Result 2: The set of N.E. points w.r.t. the estimated game
converges to the set of actual N.E. in directed Hausdorff distance

Every N.E. of the estimated game is eventually close to some
N.E. of the underlying game

Result 3: Every N.E. is an approximate N.E. of the estimated
game for a large enough number of payoff samples

The “Small” Game Setting
Mechanism design result:

IF

Finite mechanism design space

Each mechanism induces a finite game with a unique N.E.

THEN

Mechanism design choices w.r.t. estimated game converge
to optimal choices

The “Large” Game Setting

Impossible to take samples for every strategy profile: must
approximate Nash equilibria based on limited information

Fundamental question: how do we guide the sampling process to
obtain a set of payoff samples which yields a good Nash
approximation?

One answer to this is by appealing again to stochastic search
techniques

Stochastic Search Methods For
Infinite Games

Let’s focus on some player, i, and fix the strategies of the others

Given the simulation-based game and a fixed r-i, computing a best
response for player i is a stochastic optimization problem, that is,
we need to maximize i’s utility given the simulation

We will see that approximating a best response is a key step
towards Nash equilibrium approximation

Approximating Best Response
Directly in Bayesian Games

Parameterize the strategy function: r(ti) = f(k, ti), where k is a
vector of parameters

Find the setting of k which maximizes ui (f(k, ti) , r-i(t-i))

br(ti) ≈ argmaxk ui (f(k, ti) , r-i(t-i))

Can use stochastic search to find an approximately maximizing
vector k (e.g., simulated annealing is globally convergent)

Call this the “direct” method

Learning Best Response in
Bayesian Games

Use machine learning techniques to approximate the best response
strategy as a function of type (value)

t

br(t)

t1

best
response

Learning Best Response in
Bayesian Games

Use machine learning techniques to approximate the best response
strategy as a function of type (value)

t

br(t)

t1 t2 t3 t4

Comparison of Best Response
Approximation Methods

0

0.01

0.02

0.03

0.04

0.05

0.06

vickrey* fpsb* sga*
E
u

(
s
,k

)
 -

 E
u

(
s
',

k
)

BR_regression
BR_stochApprox_regression
BR_direct
BR_stochApprox_direct

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Vickrey* fpsb (k>=0.5)* fpsb (k<0.5) sga (k>=2/3)* sga (k<2/3)

E
u

(
s
,k

)
 -

 E
u

(
s
',

k
)

BR_regression

BR_stochApprox_regression

BR_direct

BR_stochApprox_direct

RAND

all methods perform very well (small error relative to calibration)
“direct” method (search in function space) > learning-based method

simulated annealing > stochastic gradient-descent

From Best Response to a Nash
Equilibrium

To go from best response to a Nash equilibrium, we can follow
iterated best response dynamics

1.Start with a profile r

2.Find best response, br(r) to r for all players

3.Set r to br(r) in the next iteration

4.Repeat

Poor convergence properties but performs well in practice

From Best Response to a Nash
Equilibrium

We propose an alternative algorithm based on minimizing game
theoretic regret

Game theoretic regret of a strategy profile r (denote ε(r)):

the most utility any agent i can gain by deviating from ri to
another strategy

in a Nash equilibrium, no such gain can be obtained; thus, if r
is Nash equilibrium, ε(r) = 0

Regret Minimization
If a Nash equilibrium r* exists, the function ε(r) has r* as its
global minimum: ε(r*) = minr ε(r)

Thus, if we actually know the regret function, we could use
non-linear minimization to approximate a Nash equilibrium

Suppose we have an estimate of ε(r), ê(r)

Finding the minimum of ê(r) gives us an approximate Nash
equilibrium

Globally convergent if we use simulated annealing

Approximate Regret
Minimization vs. Iterative BR

The approximate regret
minimization algorithm is
provably convergent

Best response need not
converge

Best response often very
effective in practice

In practice, BR dynamics may be better

Convergent
BR dynamics

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

20 30 40 50 60 70 80 90 100
Number of Deviations

R
e

g
re

t

What Can We Do With Monte-
Carlo Samples?

Estimate a Nash equilibrium from profile - payoff tuples directly
(use the profile in the data set with lowest game theoretic regret)

Machine learning

Learn the payoff function and compute Nash equilibria based
on the learned game model

Learn the regret function and compute Nash equilibria as its
global minima

Empirical Analysis: Learning
Payoffs vs. Direct Estimation

5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Num of strategies in training set

A
ve

ra
ge

 ε

Approximation Quality vs. N (with noise)

Sample best
Separable quadratic
Non−separable quadratic
3rd degree poly
4th degree poly

the method which learns payoff functions from data is substantially better
than direct estimation

Learning Payoffs vs. Learning
Regret

5 10 15 201

1.5

2

2.5

3

3.5

4 x 10−3

Number of strategies in training set

Av
er

ag
e
ε

Target: u(s)
Target: ε(s)
Target: εapprox(s)

5 10 15 200

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Number of strategies in training set

Av
er

ag
e
ε

Target: u(s)
Target: ε(s)
Target: εapprox(s)

without noise with noise

* when payoffs obtained from the payoff simulation contain no noise, using regret
as the learning target is better

* when simulation payoffs do contain noise, using payoff function as the target is
better

Takeaways
Use of stochastic search techniques from OR can be very
effective in estimating best responses and Nash equilibria in
infinite games (e.g., in infinite Bayesian games)

Approximate regret minimization is provably convergent

Stochastic best response dynamics has very good empirical
performance

Once payoff data is obtained, can use machine learning to obtain
better Nash equilibrium estimates than those obtained from data
directly

Outline
Motivating example: strategic procurement in a supply-chain game

The two-stage model of mechanism design

Mechanism design in a supply-chain game

Automated mechanism design on constrained design spaces

Solving simulation-based games

Evolutionary and learning approaches to automated mechanism
design

Evolution of Market
Mechanisms (Cliff)

Single continuous parameter based on continuous double
auction market rules

Uses GA as the parameter optimization routine

Mechanism is evaluated based on the performance of ZIP agents

ZIP agent behavior is co-evolved together with the market
using a GA

Design objective: minimize deviation of transaction prices from
competitive equilibrium

Evolution of CDA Pricing
Rules (Phelps et al.)

Search in the space of pricing rules in CDAs using genetic
programming

Approach 1: co-evolve bidder strategies together with auction
rules

Design objective: a notion of economic efficiency

Approach 2: mechanisms are evaluated w.r.t. the outcome of
reinforcement learning strategies (Erev-Roth)

Objective: maximize efficiency, minimize trader market power

AMD Using “Evolutionary
Game Theory” (Byde)

Search in a one-dimensional space of 1-item auction mechanisms

Design objective: revenue (although, in principle, can be
generalized)

Mechanisms evaluated using evolutionary game theory

Parametrized bid function evolved using a GA using utility
from repeated play joint (with randomly generated types) as
fitness

Breeding between genomes proportional to fitness

Metalearning (Pardoe, et al.)

Assume a fixed population (distribution) of bidders

No bidder participates more than once

Design objective: revenue

Adapt auction design to bidder behavior over a series of single-
item auctions

Learn the parameters of the adaptive learning algorithm using
bidding simulations

Summary
Stochastic search methods effective in parametrized mechanism
design

The key problem is predicting player for a given mechanism
choice

Equilibria can define or form predictions, but are difficult to
compute / approximate (above, one general method for
infinite games is suggested)

No truly principled approach to the prediction problem
besides Nash equilibria

	amd_tutorial_EC08_combined.pdf
	amd_tutorial_PII

