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First half (Vince): overview

• Part I: Mechanism design review
• Part II: Automated mechanism design: the basic 

approach
• Part III: Some variants and applications



Part I: Mechanism design review

• Preference aggregation settings
• Mechanisms
• Solution concepts
• Revelation principle
• Vickrey-Clarke-Groves mechanism(s)
• Impossibility results



Introduction
• Often, decisions must be taken based on the 

preferences of multiple, self-interested agents
– Allocations of resources/tasks
– Joint plans
– …

• Would like to make decisions that are “good”
with respect to the agents’ preferences

• But, agents may lie about their preferences if 
this is to their benefit

• Mechanism design = creating rules for 
choosing the outcome that get good results 
nevertheless



Preference aggregation settings
• Multiple agents…

– humans, computer programs, institutions, …
• … must decide on one of multiple outcomes…

– joint plan, allocation of tasks, allocation of 
resources, president, …

• … based on agents’ preferences over the 
outcomes
– Each agent knows only its own preferences
– “Preferences” can be an ordering ≥i over the 

outcomes, or a real-valued utility function ui
– Often preferences are assumed to be drawn from a 

commonly known distribution



Elections

Outcome space = {            ,             ,             }
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Resource allocation

Outcome space = {               ,               ,             }
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So, what is a mechanism?
• A mechanism prescribes:

– actions that the agents can take (based on their 
preferences)

– a mapping that takes all agents’ actions as input, and 
outputs the chosen outcome

• the “rules of the game”
• can also output a probability distribution over outcomes

• Direct revelation mechanisms are mechanisms in 
which action set = set of possible preferences



Example: plurality voting
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• Every agent votes for one alternative
• Alternative with most votes wins

– random tiebreaking



Some other well-known voting mechanisms
• In all of these rules, each voter ranks all m candidates 

(direct revelation mechanisms)
• Other scoring mechanisms

– Borda: candidate gets m-1 points for being ranked first, m-2 for being ranked 
second, …

– Veto: candidate gets 0 points for being ranked last, 1 otherwise
• Pairwise election between two candidates: see which candidate is 

ranked above the other more often
– Copeland: candidate with most pairwise victories wins
– Maximin: compare candidates by their worst pairwise elections
– Slater: choose overall ranking disagreeing with as few pairwise elections as 

possible
• Other

– Single Transferable Vote (STV):  candidate with fewest votes drops out, 
those votes transfer to next remaining candidate in ranking, repeat

– Kemeny:  choose overall ranking that minimizes the number of 
disagreements with some vote on some pair of candidates



The “matching pennies” mechanism
• Winner of “matching pennies” gets to choose outcome 



Mechanisms with payments

• In some settings (e.g. auctions), it is possible to make 
payments to/collect payments from the agents

• Quasilinear utility functions: ui(o, πi) = vi(o) + πi
• We can use this to modify agents’ incentives



A few different 1-item auction mechanisms
• English auction:

– Each bid must be higher than previous bid
– Last bidder wins, pays last bid

• Japanese auction:
– Price rises, bidders drop out when price is too high
– Last bidder wins at price of last dropout 

• Dutch auction:
– Price drops until someone takes the item at that price

• Sealed-bid auctions (direct revelation mechanisms):
– Each bidder submits a bid in an envelope
– Auctioneer opens the envelopes, highest bid wins

• First-price sealed-bid auction: winner pays own bid
• Second-price sealed bid (or Vickrey) auction: winner pays second 

highest bid



What can we expect to happen?
• In direct revelation mechanisms, will (selfish) agents 

tell the truth about their preferences?
– Voter may not want to “waste” vote on poorly performing 

candidate (e.g. Nader)
– In first-price sealed-bid auction, winner would like to bid 

only ε above the second highest bid

• In other mechanisms, things get even more 
complicated…



A little bit of game theory
• Θi = set of all of agent i’s possible preferences (“types”)

– Notation: ui(θi, o) is i’s utility for o when i has type θi

• A strategy si is a mapping from types to actions 
– si: Θi → Ai
– For direct revelation mechanism, si: Θi →Θi
– More generally, can map to distributions, si: Θi → Δ(Ai)

• A strategy si is a dominant strategy if for every type θi, 
no matter what the other agents do, si(θi) maximizes i’s
utility

• A direct revelation mechanism is strategy-proof (or 
dominant-strategies incentive compatible) if telling the 
truth (si(θi) = θi) is a dominant strategy for all players

• (Another, weaker concept: Bayes-Nash equilibrium)



The Vickrey auction is strategy-proof!

0

b = highest bid 
among other 

bidders

• What should a bidder with value v bid?

Option 1: Win the 
item at price b, get 
utility v - b

Option 2: Lose the 
item, get utility 0

Would like to win if 
and only if v - b > 0

– but bidding 
truthfully 

accomplishes this!



Collusion in the Vickrey auction

0

b = highest bid among 
other bidders

• Example: two colluding bidders

price colluder 1 would pay 
when colluders bid truthfully

v2 = second colluder’s 
true valuation

v1 = first colluder’s true 
valuation

price colluder 1 would pay if 
colluder 2 does not bid

gains to be distributed among colluders



The revelation principle
• For any (complex, strange) mechanism that produces 

certain outcomes under strategic behavior…
• … there exists an incentive compatible direct 

revelation mechanism that produces the same 
outcomes!
– “strategic behavior” = some solution concept (e.g. 

dominant strategies)

mechanism outcome
actions

P1

P2

P3

types

new mechanism



The Clarke mechanism [Clarke 71]
• Generalization of the Vickrey auction to arbitrary 

preference aggregation settings
• Agents reveal types directly

– θi’ is the type that i reports, θi is the actual type
• Clarke mechanism chooses some outcome o that 

maximizes Σi ui(θi’, o)
• To determine the payment that agent j must make:

– Choose o’ that maximizes Σi≠j ui(θi’, o’)
– Make j pay Σi≠j (ui(θi’, o’) - ui(θi’, o))

• Clarke mechanism is:
– individually rational: no agent pays more than the outcome 

is worth to that agent
– (weak) budget balanced: agents pay a nonnegative amount



Why is the Clarke mechanism strategy-proof?
• Total utility for agent j is 

uj(θj, o) - Σi≠j (ui(θi’, o’) - ui(θi’, o)) =
uj(θj, o) + Σi≠j ui(θi’, o) - Σi≠j ui(θi’, o’) 

• But agent j cannot affect the choice of o’
• Hence, j can focus on maximizing uj(θj, o) + Σi≠j ui(θi’, o)
• But mechanism chooses o to maximize Σi ui(θi’, o)
• Hence, if θj’ = θj, j’s utility will be maximized!

• Extension of idea: add any term to player j’s payment 
that does not depend on j’s reported type

• This is the family of Groves mechanisms [Groves 73]

• “The VCG mechanism” usually refers to Clarke, “VCG 
mechanisms” usually refers to Groves



Combinatorial auctions

v( ) = $500

v( ) = $700

v( ) = $300

Simultaneously for sale: ,        ,  
bid 1

bid 2

bid 3

used in truckload transportation, industrial procurement, radio spectrum allocation, …



Clarke mechanism in CA
(aka. Generalized Vickrey Auction, GVA)

v( ) = $500

v( ) = $700

v( ) = $300

$500

$300



Clarke mechanism in CA…

v( ) = $700

v( ) = $300
$700

pays $700 - $300 = $400



The Clarke mechanism is not perfect
• Requires payments + quasilinear utility functions
• In general money needs to flow away from the 

system
• Vulnerable to collusion, false-name manipulation
• Maximizes sum of agents’ utilities (not counting 

payments), but sometimes we are not interested in 
this
– E.g. want to maximize revenue



Impossibility results without payments
• Can we do without payments (voting mechanisms)?
• Gibbard-Satterthwaite [Gibbard 73, Satterthwaite 75]

impossibility result: with three or more alternatives and 
unrestricted preferences, no voting mechanism exists 
that is
– deterministic
– strategy-proof
– non-imposing (every alternative can win)
– non-dictatorial (more than one voter can affect the outcome)

• Generalization [Gibbard 77]: a randomized voting rule is 
strategy-proof only if it is a randomization over 
unilateral and duple rules
– unilateral = at most one voter affects the outcome
– duple = at most two alternatives have a possibility of winning



Single-peaked preferences [Black 48]
• Suppose alternatives are ordered on a line

a1 a2 a3 a4 a5

• Every voter prefers alternatives that are closer to her 
most preferred alternative

• Let every voter report only her most preferred 
alternative (“peak”)

v1v2 v3v4

v5

• Choose the median voter’s peak as the winner
• Strategy-proof!



Impossibility result with payments
• Simple setting:

v( ) = x v( ) = y

• We would like a mechanism that:
– is efficient (trade iff y > x)
– is budget-balanced (seller receives what buyer pays)
– is strategy-proof (or even weaker forms of incentive compatible)
– is individually rational (even just in expectation)

• This is impossible!  [Myerson & Satterthwaite 83]



Part II: Automated mechanism design: 
the basic approach

• General vs. specific mechanisms
• Motivation
• Examples
• Linear/integer programming approaches
• Computational complexity
• More examples



General vs. specific mechanisms

• Mechanisms such as Clarke (VCG) mechanism are 
very general…

• … but will instantiate to something specific in any 
specific setting
– This is what we care about



Example: Divorce arbitration

• Outcomes:

• Each agent is of high type w.p. .2 and low type 
w.p. .8
– Preferences of high type:

• u(get the painting) = 11,000
• u(museum) = 6,000
• u(other gets the painting) = 1,000
• u(burn) = 0

– Preferences of low type:
• u(get the painting) = 1,200
• u(museum) = 1,100
• u(other gets the painting) = 1,000
• u(burn) = 0



Clarke (VCG) mechanism

high

low

lowhigh

Both pay 100Wife pays 200

Husband pays 200Both pay 5,000

Expected sum of divorcees’ utilities = 5,136



“Manual” mechanism design has 
yielded

• some positive results:
– “Mechanism x achieves properties P in any 

setting that belongs to class C”
• some impossibility results:

– “There is no mechanism that achieves 
properties P for all settings in class C”



• Design problem instance comes along
– Set of outcomes, agents, set of possible types for each 

agent, prior over types, …
• What if no canonical mechanism covers this instance?

– Unusual objective, or payments not possible, or …
– Impossibility results may exist for the general class of 

settings
• But instance may have additional structure (restricted preferences 

or prior) so good mechanisms exist (but unknown)

• What if a canonical mechanism does cover the setting?
– Can we use instance’s structure to get higher objective 

value?
– Can we get stronger nonmanipulability/participation 

properties?
• Manual design for every instance is prohibitively slow

Difficulties with manual mechanism design



Automated mechanism design (AMD)  
[C. & Sandholm UAI-02, later papers; for overview, see either Sandholm CP-03 

overview or (more up to date) Chapter 6 of C.’s thesis (2006)]

• Idea: Solve mechanism design as optimization 
problem automatically 

• Create a mechanism for the specific setting at 
hand rather than a class of settings

• Advantages:
– Can lead to greater value of designer’s objective than 

known mechanisms
– Sometimes circumvents economic impossibility results 

& always minimizes the pain implied by them
– Can be used in new settings & for unusual objectives
– Can yield stronger incentive compatibility & 

participation properties
– Shifts the burden of design from human to machine



Classical vs. automated mechanism design

Prove general 
theorems & publish

Intuitions about
mechanism design

Real-world mechanism
design problem appears

Build mechanism 
by hand

Mechanism for
setting at hand

Classical

Build software Automated mechanism
design software(once)

Real-world mechanism
design problem appears

Apply software 
to problem

Automated

Mechanism for
setting at hand



Input
• Instance is given by

– Set of possible outcomes
– Set of agents

• For each agent
– set of possible types
– probability distribution over these types

– Objective function
• Gives a value for each outcome for each combination of agents’

types
• E.g. social welfare, payment maximization

– Restrictions on the mechanism
• Are payments allowed?
• Is randomization over outcomes allowed?
• What versions of incentive compatibility (IC) & individual rationality 

(IR) are used?



Output
• Mechanism

– A mechanism maps combinations of agents’
revealed types to outcomes

• Randomized mechanism maps to probability 
distributions over outcomes

• Also specifies payments by agents (if payments 
allowed)

• … which
– satisfies the IR and IC constraints
– maximizes the expectation of the objective 

function



Optimal BNE incentive compatible deterministic mechanism 
without payments for maximizing sum of divorcees’ utilities 

high

low

lowhigh

Expected sum of divorcees’ utilities = 5,248



Optimal BNE incentive compatible randomized mechanism 
without payments for maximizing sum of divorcees’ utilities 

high

low

lowhigh

.57.43

.55 .45

Expected sum of divorcees’ utilities = 5,510



Optimal BNE incentive compatible randomized mechanism with 
payments for maximizing sum of divorcees’ utilities 

high

low

lowhigh

Expected sum of divorcees’ utilities = 5,688

Wife pays 1,000



Optimal BNE incentive compatible randomized mechanism 
with payments for maximizing arbitrator’s revenue

high

low

lowhigh

Expected sum of divorcees’ utilities = 0      Arbitrator expects 4,320

Both pay 250Wife pays 13,750

Husband pays 11,250



Modified divorce arbitration example

• Outcomes:
• Each agent is of high type with probability 0.2 and of low

type with probability 0.8
– Preferences of high type:

• u(get the painting) = 100
• u(other gets the painting) = 0
• u(museum) = 40
• u(get the pieces) = -9
• u(other gets the pieces) = -10

– Preferences of low type:
• u(get the painting) = 2
• u(other gets the painting) = 0
• u(museum) = 1.5
• u(get the pieces) = -9
• u(other gets the pieces) = -10



Optimal dominant-strategies incentive compatible 
randomized mechanism for maximizing expected 

sum of utilities 

high

low

lowhigh

.96 .04

.96 .04.47 .4 .13



How do we set up the optimization?
• Use linear programming
• Variables: 

– p(o | θ1, …, θn) = probability that outcome o is chosen given types θ1, …, θn

– (maybe) πi(θ1, …, θn) = i’s payment given types θ1, …, θn

• Strategy-proofness constraints: for all i, θ1, …θn, θi’:
Σop(o | θ1, …, θn)ui(θi, o) + πi(θ1, …, θn) ≥
Σop(o | θ1, …, θi’, …, θn)ui(θi, o) + πi(θ1, …, θi’, …, θn)

• Individual-rationality constraints: for all i, θ1, …θn:
Σop(o | θ1, …, θn)ui(θi, o) + πi(θ1, …, θn) ≥ 0

• Objective (e.g. sum of utilities)
Σθ1, …, θnp(θ1, …, θn)Σi(Σop(o | θ1, …, θn)ui(θi, o) + πi(θ1, …, θn))

• Also works for BNE incentive compatibility, ex-interim individual 
rationality notions, other objectives, etc.

• For deterministic mechanisms, use mixed integer programming 
(probabilities in {0, 1})
– Typically designing the optimal deterministic mechanism is NP-hard



Computational complexity of automatically 
designing deterministic mechanisms

• Many different variants
– Objective to maximize: Social welfare/revenue/designer’s 

agenda for outcome
– Payments allowed/not allowed
– IR constraint: ex interim IR/ex post IR/no IR
– IC constraint: Dominant strategies/Bayes-Nash equilibrium

• The above already gives 3 * 2 * 3 * 2 = 36 variants
• Approach: Prove hardness for the case of only 1 

type-reporting agent
– results imply hardness in more general settings



DSE & BNE incentive compatibility constraints 
coincide when there is only 1 (reporting) agent

Dominant strategies:
Reporting truthfully is optimal 

for any types the others 
report

Bayes-Nash equilibrium:
Reporting truthfully is optimal 
in expectation over the other 

agents’ (true) types

o2o3t12

o9o5t11

t22t21

o2o3t12

o9o5t11

t22t21 P(t21)u1(t11,o5) +
P(t22)u1(t11,o9) ≥
P(t21)u1(t11,o3) +
P(t22)u1(t11,o2)

u1(t11,o5) ≥ u1(t11,o3)
AND

u1(t11,o9) ≥ u1(t11,o2)

t21

o3t11

o5t11

u1(t11,o5) ≥ u1(t11,o3)
is equivalent to

P(t21)u1(t11,o5) ≥ P(t21)u1(t11,o3)

With only 1 
reporting agent, 
the constraints are 
the same



Ex post and ex interim individual rationality constraints 
coincide when there is only 1 (reporting) agent

Ex post:
Participating never hurts (for 

any types of the other 
agents)

Ex interim:
Participating does not hurt in 

expectation over the other 
agents’ (true) types

o2o3t12

o9o5t11

t22t21

o2o3t12

o9o5t11

t22t21 P(t21)u1(t11,o5) +
P(t22)u1(t11,o9) ≥ 0

u1(t11,o5) ≥ 0
AND 

u1(t11,o9) ≥ 0

t21

o3t11

o5t11

u1(t11,o5) ≥ 0
is equivalent to

P(t21)u1(t11,o5) ≥ 0

With only 1 
reporting agent, 
the constraints are 
the same



How hard is designing an optimal
deterministic mechanism?

[C. and Sandholm UAI02, ICEC03, EC04]

1. Maximizing social 
welfare (not regarding 
the payments) (VCG)

1. Maximizing social welfare (no 
payments)

2. Designer’s own utility over 
outcomes (no payments)

3. General (linear) objective that 
doesn’t regard payments

4. Expected revenue

Solvable in polynomial 
time (for any constant 
number of agents):

NP-hard (even with 1 reporting 
agent):

1 and 3 hold even with no IR constraints



AMD can create small optimal (expected-
revenue maximizing) combinatorial auctions
• Instance 1

– 2 items, 2 bidders, 4 types each (LL, LH, HL, HH)
– H=utility 2 for that item, L=utility 1
– But: utility 6 for getting both items if type HH (complementarity)
– Uniform prior over types
– Optimal ex-interim IR, BNE mechanism (0 = item is burned):
– Payment rule not shown
– Expected revenue: 3.94 (VCG: 2.69)

• Instance 2
– 2 items, 3 bidders
– Complementarity and substitutability
– Took 5.9 seconds
– Uses randomization

1,1
2,1
2,1
2,0
HL

2,21,20,1LH
2,21,21,0HL

1,1

0,2
LH

1,11,1HH

2,20,0LL
HHLL



Optimal mechanisms for a public good
• AMD can design optimal mechanisms for public goods, taking 

money burning into account as a loss
• Bridge building instance

– Agent 1: High type (prob .6) values bridge at 10. Low: values at 1
– Agent 2: High type (prob .4) values bridge at 11. Low: values at 2
– Bridge costs 6 to build

• Optimal mechanism (ex-post IR, BNE):

• There is no general mechanism that achieves budget balance, 
ex-post efficiency, and ex-post IR

• However, for this instance, AMD found such a mechanism

Outcome 
rule

Payment 
ruleBuildDon’t 

build
Low

Build

High

BuildHigh

Low

0, 60, 0Low
.67, 
5.33

High

4, 2High

Low



Combinatorial public goods 
problems

• AMD for interrelated public goods
• Example: building a bridge and/or a boat

– 2 agents each uniform from types: {None, Bridge, Boat, Either}
• Type indicates which of the two would be useful to the agent
• If something is built that is useful to you, you get 2, otherwise 0

– Boat costs 1 to build, bridge 3

• Optimal mechanism (ex-post IR, dominant strategies):

• Again, no money burning, but outcome not always efficient
– E.g., sometimes nothing is built while boat should have been

Outcome rule
(P(none), P(boat), 
P(bridge), P(both))

(0,0,1,0)
(0,0,1,0)

(0,.5,0,.5)
(1,0,0,0)
Bridge

(0,1,0,0)(0,1,0,0)(.5,.5,0,0)Boat
(0,0,1,0)(0,1,0,0)(1,0,0,0)Bridge

(0,1,0,0)

(0,1,0,0)
Boat

(0,1,0,0)(.5,.5,0,0)Either

(0,1,0,0)(1,0,0,0)None
EitherNone



Additional & future directions
• Scalability is a major concern

– Can sometimes create more concise LP formulations
• Sometimes, some constraints are implied by others

– In restricted domains faster algorithms sometimes exist
• Can sometimes make use of partial characterizations of the optimal 

mechanism (e.g. [C. and Sandholm AAMAS04])
– More heuristic approaches (e.g. [C. and Sandholm IJCAI07])

• Automatically generated mechanisms can be complex/hard to 
understand
– Can we make automatically designed mechanisms more intuitive?  Do 

we need to?
• Settings where communicating entire type (preferences) is 

undesirable
– AMD with partial types [Hyafil & Boutilier IJCAI07, AAAI07, Hyafil thesis proposal]
– AMD for multistage mechanisms [Sandholm, C., Boutilier IJCAI07]

• Using AMD to create conjectures about general 
mechanisms



Part III: Some variants and 
applications

(AMD as a “philosophy”)

• Truthful feedback mechanisms with minimal 
payments

• Auctions with revenue redistribution



Designing truthful feedback 
mechanisms [Jurca & Faltings EC06]

• Say we have a buyer of a product; would like 
her to give feedback

• Quality of her experience is represented by 
signal sj

• She submits a signal sh as her feedback
• If she reports truthfully, her signal is likely to 

match/be close to a “reference” reviewer’s 
feedback sk
– Assume reference reviewer reports truthfully 

(equilibrium reasoning)
• We pay the reviewer τ(sh, sk) 



Linear program for designing truthful 
feedback mechanism with minimal 
expected payment [Jurca & Faltings EC06]

• Δ(sj, sh) is the maximum external incentive to misreport sh given 
true experience sj

• C is the maximum cost for reporting at all

• Jurca and Faltings study a number of related problems [EC06, 
WWW07,EC07, Jurca’s thesis, SIGecom Exchanges 08] 



Auctions with revenue redistribution

Guo and C.,
EC 07, 

Games and Economic Behavior forthcoming



Second-price (Vickrey) auction

v( ) = 2 v( ) = 4 v( ) = 3

v( ) = 2 v( ) = 4 v( ) = 3

pays 3

receives 3



Vickrey auction without a seller

v( ) = 2 v( ) = 4 v( ) = 3

pays 3
(money wasted!) 



Can we redistribute the payment?

v( ) = 2 v( ) = 4 v( ) = 3

pays 3receives 1
receives 1

receives 1

Idea: give everyone 1/n 
of the payment

not strategy-proof
Bidding higher can increase your redistribution payment



Strategy-proof redistribution
[Bailey 97, Porter et al. 04, Cavallo 06]

v( ) = 2 v( ) = 4 v( ) = 3

pays 3receives 1
receives 2/3

receives 2/3

Idea: give everyone 1/n of 
second-highest other bid

strategy-proof
Your redistribution does not depend on your bid;

incentives are the same as in Vickrey

2/3 wasted (22%) 



Bailey-Cavallo mechanism…
• Bids: V1≥V2≥V3≥... ≥Vn≥0
• First run Vickrey auction
• Payment is V2

• First two bidders receive V3/n
• Remaining bidders receive V2/n
• Total redistributed:

2V3/n+(n-2)V2/n

R1 =  V3/n
R2 =  V3/n
R3 =  V2/n
R4 =  V2/n
...
Rn-1= V2/n
Rn =  V2/n

Can we do better?



Desirable properties
Strategy-proofness
Voluntary participation: bidder’s utility always 

nonnegative
Efficiency: bidder with highest valuation gets item
Non-deficit: sum of payments is nonnegative

i.e. total Vickrey payment ≥ total redistribution
(Strong) budget balance: sum of payments is zero

i.e. total Vickrey payment = total redistribution
Impossible to get all
We sacrifice budget balance

Try to get approximate budget balance
Other work sacrifices: strategy-proofness [Parkes 01], 

efficiency [Faltings 04], non-deficit [Bailey 97], budget 
balance [Cavallo 06]



Another redistribution mechanism

• Bids: V1≥V2≥V3≥V4≥... ≥Vn≥0
• First run Vickrey
• Redistribution:

Receive 1/(n-2) * second-
highest other bid, 
- 2/[(n-2)(n-3)] third-highest 
other bid

• Total redistributed:
V2-6V4/[(n-2)(n-3)] 

• Efficient & strategy-proof
• Voluntary participation & non-

deficit (for large enough n) 

R1 =  V3/(n-2) - 2/[(n-2)(n-3)]V4

R2 =  V3/(n-2) - 2/[(n-2)(n-3)]V4

R3 =  V2/(n-2) - 2/[(n-2)(n-3)]V4

R4 =  V2/(n-2) - 2/[(n-2)(n-3)]V3

...
Rn-1= V2/(n-2) - 2/[(n-2)(n-3)]V3

Rn =  V2/(n-2) - 2/[(n-2)(n-3)]V3



Comparing redistributions
• Bailey-Cavallo: ∑Ri =2V3/n+(n-2)V2/n
• Second mechanism: ∑Ri =V2-6V4/[(n-2)(n-3)]
• Sometimes the first mechanism redistributes more
• Sometimes the second redistributes more
• Both redistribute 100% in some cases
• What about the worst case?
• Bailey-Cavallo worst case: V3=0

– fraction redistributed: 1-2/n 
• Second mechanism worst case: V2=V4

– fraction redistributed: 1-6/[(n-2)(n-3)]
• For large enough n, 1-6/[(n-2)(n-3)]≥1-2/n, so 

second is better (in the worst case) 



Generalization: linear
redistribution mechanisms 

• Run Vickrey
• Amount redistributed to bidder i:

C0 + C1 V-i,1 + C2 V-i,2 + ... + Cn-1 V-i,n-1 

where V-i,j is the j-th highest other bid for bidder i
• Bailey-Cavallo: C2 = 1/n
• Second mechanism: C2 = 1/(n-2), C3 = - 2/[(n-2)(n-3)] 

• Bidder’s redistribution does not depend on own bid, so 
strategy-proof

• Efficient
• Other properties?



Recall: R=C0 + C1 V-i,1 + C2 V-i,2 + ... + Cn-1 V-i,n-1 

R1 =  C0+C1V2+C2V3+C3V4+...+CiVi+1+...+Cn-1Vn

R2 =  C0+C1V1+C2V3+C3V4+...+CiVi+1+...+Cn-1Vn

R3 =  C0+C1V1+C2V2+C3V4+...+CiVi+1+...+Cn-1Vn

R4 =  C0+C1V1+C2V2+C3V3+...+CiVi+1+...+Cn-1Vn

...
Rn-1= C0+C1V1+C2V2+C3V3+...+CiVi   +...+Cn-1Vn

Rn =  C0+C1V1+C2V2+C3V3+...+CiVi   +...+Cn-1Vn-1

Redistribution to each bidder



Voluntary participation & non-deficit

• Voluntary participation: 
equivalent to 

Rn=C0+C1V1+C2V2+C3V3+...+CiVi+...+Cn-1Vn-1 ≥0
for all V1≥V2≥V3≥... ≥Vn-1≥0

• Non-deficit: 
∑Ri≤V2 for all V1≥V2≥V3≥... ≥Vn-1≥Vn≥0



Worst-case optimal (linear) 
redistribution

Try to maximize worst-case redistribution %

Variables: Ci, K
Maximize K
Subject to:
Rn≥0 for all V1≥V2≥V3≥... ≥Vn-1≥0
∑Ri≤V2 for all V1≥V2≥V3≥... ≥Vn≥0
∑Ri≥KV2 for all V1≥V2≥V3≥... ≥Vn≥0
Ri as defined in previous slides



Transformation into linear program
• Claim: C0=0
• Lemma: Q1X1+Q2X2+Q3X3+...+QkXk≥0 for 

all X1≥X2≥...≥Xk≥0 
is equivalent to 
Q1+Q2+...+Qi≥0 for i=1 to k

• Using this lemma, can write all constraints 
as linear inequalities over the Ci



Worst-case optimal remaining %

n=5: 27% (40%) 
n=6: 16% (33%) 
n=7: 9.5% (29%) 
n=8: 5.5% (25%) 
n=9: 3.1% (22%) 

n=10: 1.8% (20%) 
n=15: 0.085% (13%) 
n=20: 3.6 e-5 (10%) 
n=30: 5.4 e-8 (7%) 

The data in the parentheses are for the Bailey-Cavallo mechanism



Average-case remaining %
(uniform distribution)

n=5: 8.9% (6.7%) 
n=6: 6.9% (4.8%) 
n=7: 3.6% (3.6%) 
n=8: 2.5% (2.8%) 
n=9: 1.3% (2.2%) 

n=10: 0.8% (1.8%) 
n=15: 3.7 e-4 (0.8%) 
n=20: 1.7 e-5 (0.5%) 
n=30: 2.6 e-8 (0.2%) 

The data in the parentheses are for the Bailey-Cavallo mechanism



m-unit auction with unit demand:
VCG (m+1th price) mechanism

v( ) = 2 v( ) = 4 v( ) = 3

pays 2 pays 2

strategy-proof
Our techniques can be generalized to this setting



m+1th price mechanism

Variables: Ci ,K
Maximize K
subject to:
Rn≥0 for all V1≥V2≥V3≥... ≥Vn-1≥0
∑Ri≤ V2 for all V1≥V2≥V3≥... ≥Vn≥0
∑Ri≥ K V2 for all V1≥V2≥V3≥... ≥Vn≥0
Ri as defined in previous slides

Only need to change V2 into mVm+1



Results

BC = Bailey-
Cavallo

WO = Worst-
case Optimal



Analytical characterization of WO 
mechanism

• Unique optimum
• Can show: for fixed m, as n goes to infinity, worst-case 

redistribution percentage approaches 100% with rate of 
convergence 1/2



Worst-case optimality outside the 
linear family

• Theorem: The worst-case optimal linear redistribution 
mechanism is also worst-case optimal among all VCG 
redistribution mechanisms that are 
– deterministic, 
– anonymous, 
– strategy-proof, 
– efficient, 
– non-deficit

• Voluntary participation is not mentioned
– Sacrificing voluntary participation does not help

• Not uniquely worst-case optimal



Related paper 

• Moulin's working paper “Efficient, strategy-proof and 
almost budget-balanced assignment”
– pursues different worst-case objective (minimize 

waste/efficiency) 
– results in same mechanism in the unit-demand 

setting (!) 
– different mechanism results after removing 

voluntary participation requirement



Additional results on redistribution 

• We generalized the above to multi-unit auctions 
with nonincreasing marginal values [Guo & C. GEB 
forthcoming]

• Maximizing expected redistribution given a prior 
[Guo & C. AAMAS-08a]

• Redistribution mechanisms that are not 
“dominated” by other redistribution mechanisms 
[Guo & C. AAMAS-08b; Apt, C., Guo, Markakis <under construction>]

• Sacrificing efficiency to increase redistribution 
(and, thereby, overall welfare) 

[Guo & C. EC-08! Saturday 10am]



Some additional special-purpose 
AMD directions 

• Sequences of take-it-or-leave-it-offers [Sandholm & 
Gilpin AAMAS06]

• Revenue-maximizing combinatorial auctions 
[Likhodedov & Sandholm AAAI04, AAAI05]

• Online mechanisms [Hajiaghayi, Kleinberg, Sandholm 
AAAI07]

• And: more in the second half of this tutorial…



Automted Mechanism Design: 
Approaches & Applications

PART II

Vincent Conitzer and Yevgeniy Vorobeychik



A Computational Approach to 
Constrained MD

Input: designer objective, design parameters, constraints, game 
model

Output: (nearly) optimal mechanism with respect to the specified 
objective

This is a constrained optimization problem if predictions of the 
strategic choices of players are readily available



Mechanism Design for 
Simulation-Based Games

Players
System

(simulation)...
...

design
parameters

player
strategies must predict

outcome
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Supply-Chain Game 
(TAC/SCM)

TAC/SCM: supply-chain management (SCM) scenario of the 
international Trading Agent Competition (TAC)

Autonomous agents (developed by teams) act as PC 
manufacturers

buy components from suppliers (simulator)

bid on orders from customers (simulator)

In TAC/SCM 2003 agents were observed to make excessive 
component purchases on day 0 (the first simulation day)



Game Master Response

Designers introduced storage cost, charged daily for component 
inventory, to reduce incentives for excessive day-0 procurement

MD Question: how to set the storage cost parameter?

agent behavior extremely complex

payoffs uncertain

My approach: systematic exploration of the parameter and agent 
strategy spaces
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Some Notation

Mechanism parameters: θ

Strategic choice by player i : ri 

strategy profile: r

Objective function: W (θ, r)

Player utility functions: ui (θ,r)



TAC/SCM Example

Mechanism parameter θ is storage cost

A strategic choice ri is the day-0 procurement decision of player i

Player utility functions, ui (θ,r), are expected profits at the end of 
simulation

Objective function, W (θ, r), is an indicator function:

1 if total day-0 procurement (sum of individual procurement 
choices) is below a fixed threshold



Mechanism Design: The Model

W(θ,r),u(θ,r)

D

θ
stage 1: designer chooses the mechanism

players

rstage 2: players choose strategies



Mechanism Design: The Model
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D

θ
stage 1: designer chooses the mechanism
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rstage 2: players choose strategies

* Given the mechanism, stage 2 is a game
* Designer must predict joint strategic choices

by the players in this game



Mechanism Design: The Model

W(θ,r),u(θ,r)

D

θ
stage 1: designer chooses the mechanism

players

rstage 2: players choose strategies

* Given the mechanism, stage 2 is a game
* Designer must predict joint strategic choices

by the players in this game

Formally, can solve this by 
backwards induction:
1. Obtain solutions to 
games in stage 2, r*(θ)
2. Find θ that maximizes 
W(θ, r*(θ))
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General Approach

For each (of a small set of) θ:

Collect payoff samples for a set of strategy profiles r

Approximate (ranges of) N.E. outcomes based on collected 
data

In TAC/SCM, we can summarize N.E. outcomes as total 
day-0 procurement:   φ(r,θ) = ∑i ri (θ)

Generalize solution correspondence to θ outside of the data set



Obtaining N.E. Outcome 
Correspondence
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Obtaining N.E. Outcome 
Correspondence
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Stepping back...

Able to take advantage of structure in the TAC/SCM application

The designer only cares about total day-0 procurement

Can plot the approximate N.E. outcome correspondence in 2D

Very simple objective function

How can we do simulation-based mechanism design in general ?
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Problem Specification and 
Inputs

Constrained, n-dimensional design space, Θ

Each mechanism induces an infinite game (possibly specified 
using simulations)

Black-box specification of the objective and constraints

Suppose we are given a solver for a class of games induced by Θ

SOLVER: S(θ) is a mapping from θ ∈ Θ to a solution r*(θ)



Solution Strategy: Stochastic 
Optimization

Iterative algorithm that explores the mechanism design space

Simulated annealing: 

move to the next mechanism if it is better than current

probabilistically explore inferior mechanism choices

local search algorithm with global convergence properties

Many other alternatives (stochastic approximation, genetic 
algorithms, etc)



Application to Mechanism 
Design in Bayesian Games

Each mechanism induces infinite games of incomplete 
information (i.e., infinite sets of player choices and types)

Joint space of player types T, a profile of types is t ∈ T

Black-box specification of the distribution over T

The solution concept is Bayes-Nash Equilibrium

Thus, S(θ) produces r*(t, θ) s.t. for every player i, ri*(ti, θ) is a 
best response to the strategies of other players



Mechanism Design Problems
Consider two types of mechanism design problems:

Bayesian mechanism design: maxθ Et  [W(r*(t, θ),t,θ)]

Robust mechanism design: maxθ inft  [W(r*(t, θ),t,θ)]

Caveat with Robust MD: cannot computationally take inf (or 
min) of a black box objective function over an infinite type space

Relaxation: probably approximately robust mechanism design

Estimate worst case w.r.t. “large” set of types using n samples



Probably Approximately 
Robust MD

Suppose we select the best of L candidate mechanisms using n 
samples from the type distribution to estimate the worst-case 
outcomes.  In order to attain confidence of at least 1 - α that we 
“ignore” a set of types no larger than a measure p, we need at 
least

samples



Evaluating Constraints

A similar caveat exists in evaluating constraints which are 
conditional on type:

Cannot computationally evaluate such constraints for every type

Relaxation: ensure constraint holds on a “large” set of types (p-
strong constraints hold for a type set with measure at least 1 - p)

constraints
outcome

(θ, t, r(t))
true / false

Example: ex-interim 
individual rationality



Verifying p-strong constraints

Let B be a set on which a probabilistic constraint is violated and 
suppose that there is a uniform prior over [0,1] on the measure 
of B.  We need

samples to verify with confidence at least 1 - α that the constraint 
holds for a set of types with probability at least 1 - p



Applications to Computational 
Auction Design

Several examples of 2-player 1-item auctions

Games solved using the Reeves-Wellman solver (Reeves and 
Wellman, 2004)

Objectives:

Fairness, revenue, welfare

Constraints:

Ex-interim individual rationality



1. Shared-Good Auction

Design space: f(a,a’) = ha + ka’ (two parameters h and k)

 Notation: SGA(h, k)

For 2 players, U[A,B] types, have an analytic expression for BNE

Remark: all SGA(h,k) mechanisms are efficient



Searching for Sharing 
Mechanisms

(h0, k0)start at a random point

(hk, kk)in iteration k,  
probabilistically select the 

next point
...

select the best mechanism 
seen thus far

(hk+1, kk+1)
evaluate (predict 
player strategies)



Objective: Expected 
“Fairness”

Minimize difference in expected utility between winner and loser

Theory: SGA(0, k) optimal for k > 0

Finds the optimal 
mechanism

Applying 
AMD



Maximize Ex Ante Fairness

Minimize expected difference in utility

No analytic characterization

SGA(0.49,1) with value 0.176
could not improve on this

even with known BNE

Applying 
AMD



Robust Fairness

Minimize nearly-maximal difference in utility

Theory: SGA(h, 0) is optimal for h > 0

Finds the optimal 
mechanism

Applying 
AMD



2. “Myerson” Auctions

U1 = q t - p1(t)                             p1(t) = k1 a(t) + k2 a’ (t)+ K1

U2 = (1 - q) t - p2(t)                   p2(t) = k3 a(t) + k4 a’ (t)+ K2

all parameters in [0,1]

winner gets the good with probability q, pays p1(t)



Maximizing Expected Revenue
Theory: optimal incentive compatible* mechanism in this design 
space yields expected revenue of 1/3

*Incentive compatible = it is a Bayes-Nash Equilibrium to bid actual type (value for the item)

finds an auction with expected 
revenue of 0.3

Applying 
AMD



Maximize Expected Welfare

Welfare = sum of player utilities

Theory: monotone strategies suffice; optimal welfare is 2/3

first-price and second-price sealed-bid auctions are efficient

Finds the optimal 
mechanism

Applying 
AMD



Robust Revenue Maximization

Theory: any auction with no fixed transfers and monotone 
increasing BNE strategies yields at most 0 robust revenue (e.g., 
first-price and second-price auctions)

finds an auction with minimum 
revenue > 0

Applying 
AMD



3. “Anti-Social” Auctions

U1 and U2 are like in “Myerson” auctions, but include a 
parameter for the amount of disutility to one agent from the 
other’s utility

Same set of parameters as before



Maximizing Expected Revenue

Theory: 

No known optimum; expected revenue from Vicious Vickrey (VV) auction (the only one 
previously studied) is 0.48

Vicious Vickrey is not ex-interim individually rational

After adjustment for individual rationality, expected revenue of VV falls to 0.438

Using VV as a starting 
point, finds IR auction 
with revenue = 0.49

Applying 
AMD

From a random starting 
point, finds IR auction 
with revenue = 0.44



Takeaways
The mechanism design problem can be modeled as a one-shot 
two-stage game

This game can in principle be solved using backward induction

In practice, we can use an iterative improvement 
algorithm, which runs a game solver as a subroutine, 
evaluating the objective function and constraints on the 
obtained solutions

This is a practical approach for a parameterized design of 
auctions in various settings: a series of positive examples



The Mechanism Design Process
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predicting 
player strategies

predictions

choosing the 
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The “Small” Game Setting
The simplest setting is when we have at least n samples available 
for every joint strategic choice of players in the game (define a 
game comprised of sample mean payoffs)

An “obvious” approach is to compute a Nash equilibrium on this 
empirical game (e.g., using GAMBIT, etc)

Analysis question 1: sensitivity analysis (probabilistic bounds on 
the Nash equilibrium approximation quality)

Analysis question 2: the sequence of sets of equilibria converges 
in several senses to the set of equilibria on the underlying game



The “Small” Game Setting

Row

Column

aR,1

aR,2

aC,1 aC,2
(aR,1, aC,1)

(5, 5)

(6, 5)

(5, 6)

(6, 6)

(5.5, 5.5)

(6.3, 0.5)

(0.5, 6.3)

(2.1, 2.1)



Convergence Results for 
“Small” Games

Result 1: regrets of all mixed strategy profiles converge a.s.

Result 2: The set of N.E. points w.r.t. the estimated game 
converges to the set of actual N.E. in directed Hausdorff distance

Every N.E. of the estimated game is eventually close to some 
N.E. of the underlying game

Result 3: Every N.E. is an approximate N.E. of the estimated 
game for a large enough number of payoff samples



The “Small” Game Setting
Mechanism design result: 

IF

Finite mechanism design space

Each mechanism induces a finite game with a unique N.E.

THEN

Mechanism design choices w.r.t. estimated game converge 
to optimal choices



The “Large” Game Setting

Impossible to take samples for every strategy profile: must 
approximate Nash equilibria based on limited information

Fundamental question: how do we guide the sampling process to 
obtain a set of payoff samples which yields a good Nash 
approximation?

One answer to this is by appealing again to stochastic search 
techniques



Stochastic Search Methods For 
Infinite Games

Let’s focus on some player, i, and fix the strategies of the others

Given the simulation-based game and a fixed r-i, computing a best 
response for player i is a stochastic optimization problem, that is, 
we need to maximize i’s utility given the simulation

We will see that approximating a best response is a key step 
towards Nash equilibrium approximation



Approximating Best Response 
Directly in Bayesian Games

Parameterize the strategy function: r(ti) = f(k, ti), where k is a 
vector of parameters

Find the setting of k which maximizes ui ( f(k, ti) ,  r-i(t-i) )

br(ti) ≈ argmaxk   ui ( f(k, ti) ,  r-i(t-i) )

Can use stochastic search to find an approximately maximizing 
vector k (e.g., simulated annealing is globally convergent)

Call this the “direct” method



Learning Best Response in 
Bayesian Games

Use machine learning techniques to approximate the best response 
strategy as a function of type (value)

t

br(t)

t1

best 
response



Learning Best Response in 
Bayesian Games

Use machine learning techniques to approximate the best response 
strategy as a function of type (value)

t

br(t)

t1 t2 t3 t4



Comparison of Best Response 
Approximation Methods
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all methods perform very well (small error relative to calibration)
“direct” method (search in function space) > learning-based method

simulated annealing > stochastic gradient-descent



From Best Response to a Nash 
Equilibrium

To go from best response to a Nash equilibrium, we can follow 
iterated best response dynamics

1.Start with a profile r

2.Find best response, br(r) to r for all players

3.Set r to br(r) in the next iteration

4.Repeat

Poor convergence properties but performs well in practice



From Best Response to a Nash 
Equilibrium

We propose an alternative algorithm based on minimizing game 
theoretic regret

Game theoretic regret of a strategy profile r (denote ε(r)): 

the most utility any agent i can gain by deviating from ri to 
another strategy

in a Nash equilibrium, no such gain can be obtained; thus, if r 
is Nash equilibrium, ε(r) = 0



Regret Minimization
If a Nash equilibrium r* exists, the function ε(r) has r* as its 
global minimum: ε(r*) = minr ε(r)

Thus, if we actually know the regret function, we could use 
non-linear minimization to approximate a Nash equilibrium

Suppose we have an estimate of ε(r), ê(r)

Finding the minimum of ê(r) gives us an approximate Nash 
equilibrium

Globally convergent if we use simulated annealing



Approximate Regret 
Minimization vs. Iterative BR

The approximate regret 
minimization algorithm is 
provably convergent

Best response need not 
converge

Best response often very 
effective in practice

In practice, BR dynamics may be better

Convergent
BR dynamics
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What Can We Do With Monte-
Carlo Samples?

Estimate a Nash equilibrium from profile - payoff tuples directly 
(use the profile in the data set with lowest game theoretic regret)

Machine learning

Learn the payoff function and compute Nash equilibria based 
on the learned game model

Learn the regret function and compute Nash equilibria as its 
global minima



Empirical Analysis: Learning 
Payoffs vs. Direct Estimation
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the method which learns payoff functions from data is substantially better 
than direct estimation



Learning Payoffs vs. Learning 
Regret
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* when payoffs obtained from the payoff simulation contain no noise, using regret 
as the learning target is better

* when simulation payoffs do contain noise, using payoff function as the target is 
better



Takeaways
Use of stochastic search techniques from OR can be very 
effective in estimating best responses and Nash equilibria in 
infinite games (e.g., in infinite Bayesian games)

Approximate regret minimization is provably convergent

Stochastic best response dynamics has very good empirical 
performance

Once payoff data is obtained, can use machine learning to obtain 
better Nash equilibrium estimates than those obtained from data 
directly
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Evolution of Market 
Mechanisms (Cliff)

Single continuous parameter based on continuous double 
auction market rules

Uses GA as the parameter optimization routine

Mechanism is evaluated based on the performance of ZIP agents

ZIP agent behavior is co-evolved together with the market 
using a GA

Design objective: minimize deviation of transaction prices from 
competitive equilibrium



Evolution of CDA Pricing 
Rules (Phelps et al.)

Search in the space of pricing rules in CDAs using genetic 
programming

Approach 1: co-evolve bidder strategies together with auction 
rules

Design objective: a notion of economic efficiency

Approach 2: mechanisms are evaluated w.r.t. the outcome of 
reinforcement learning strategies (Erev-Roth)

Objective: maximize efficiency, minimize trader market power



AMD Using “Evolutionary 
Game Theory” (Byde)

Search in a one-dimensional space of 1-item auction mechanisms

Design objective: revenue (although, in principle, can be 
generalized)

Mechanisms evaluated using evolutionary game theory

Parametrized bid function evolved using a GA using utility 
from repeated play joint (with randomly generated types) as 
fitness

Breeding between genomes proportional to fitness



Metalearning (Pardoe, et al.)

Assume a fixed population (distribution) of bidders

No bidder participates more than once

Design objective: revenue

Adapt auction design to bidder behavior over a series of single-
item auctions

Learn the parameters of the adaptive learning algorithm using 
bidding simulations



Summary
Stochastic search methods effective in parametrized mechanism 
design

The key problem is predicting player for a given mechanism 
choice

Equilibria can define or form predictions, but are difficult to 
compute / approximate (above, one general method for 
infinite games is suggested)

No truly principled approach to the prediction problem 
besides Nash equilibria


	amd_tutorial_EC08_combined.pdf
	amd_tutorial_PII

