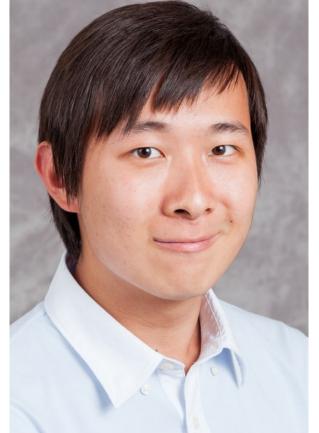
New Directions in Automated Mechanism Design Vincent Conitzer; joint work with:

Michael Albert (Duke \rightarrow UVA)

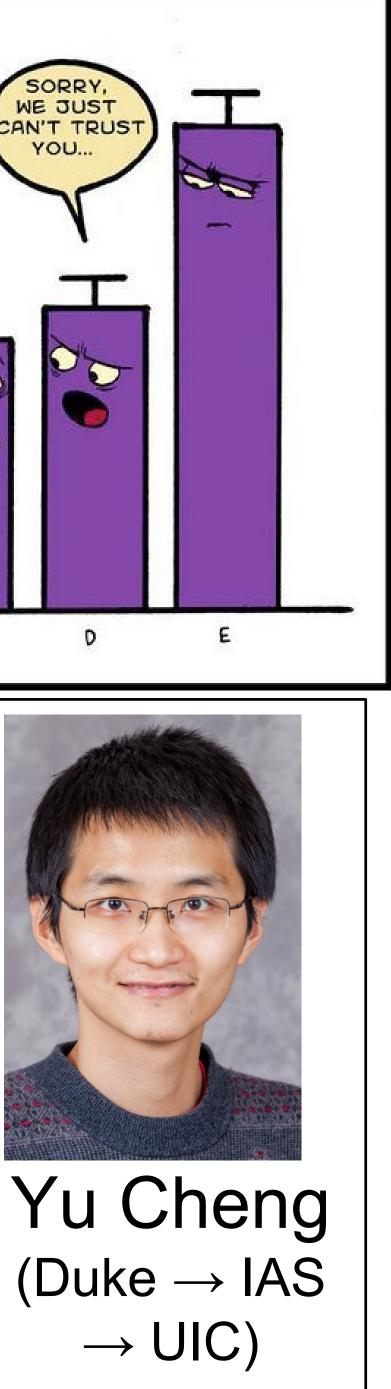
Giuseppe (Pino) Lopomo (Duke)

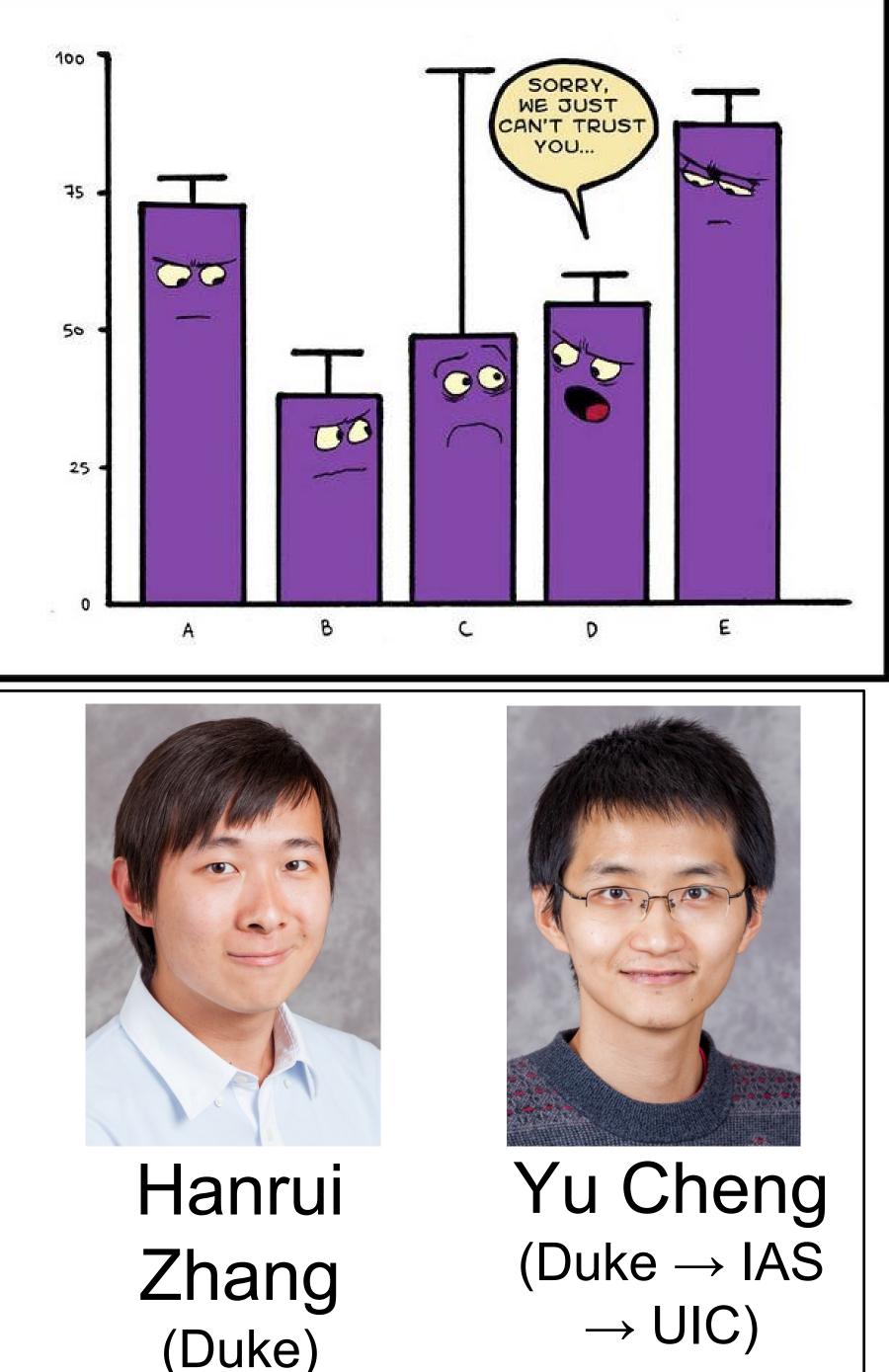
Peter Stone (UT Austin)

Andrew Kephart (Duke \rightarrow KeepTruckin)



Hanru Zhang (Duke)



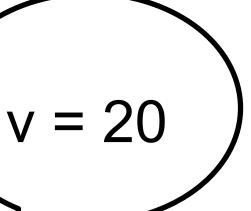


Make decisions based on the preferences (or other information) of one or more agents (as in social choice)

Focus on strategic (game-theoretic) agents with privately held information; have to be incentivized to reveal it truthfully

Popular approach in design of auctions, matching mechanisms, ...

Mechanism design



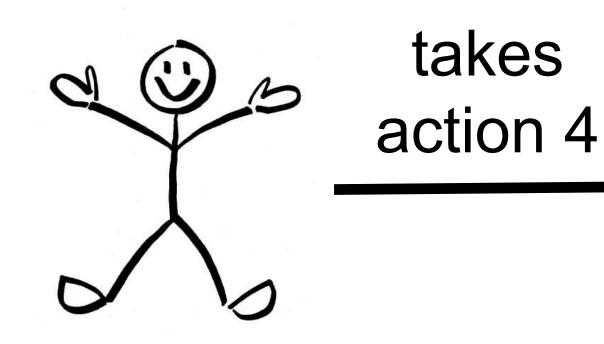
Sealed-bid auctions (on a single item)

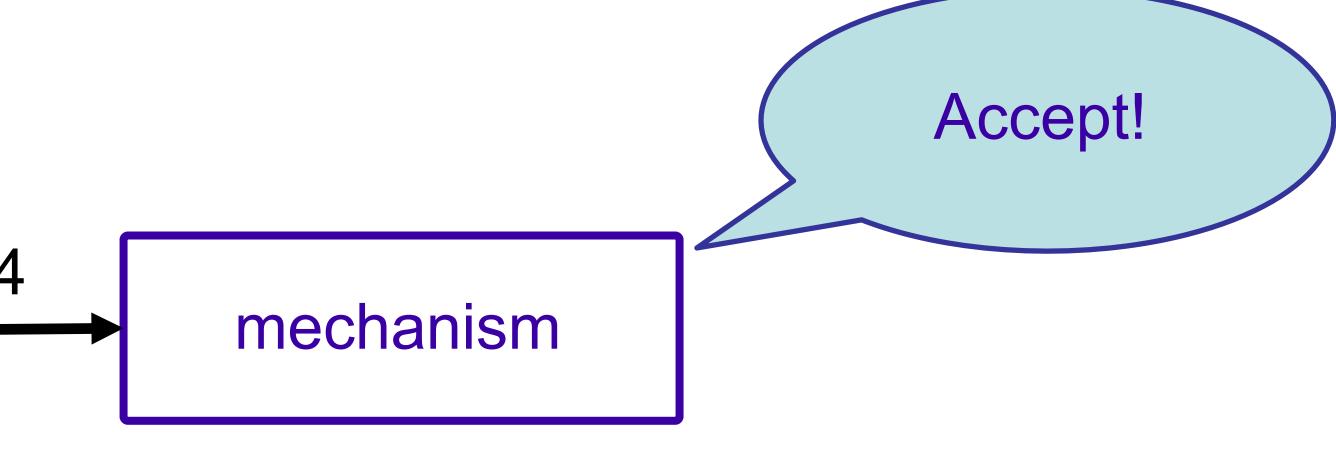
Bidder *i* determines how much the item is worth to her (v_i) Writes a bid (v'_i) on a piece of paper How would you bid? How much would I make? First price: Highest bid wins, pays bid Second price: Highest bid wins, pays next-highest bid next highest bid or r (whichever is higher)

- First price with reserve: Highest bid wins iff it exceeds r, pays bid Second price with reserve: Highest bid wins iff it exceeds r, pays

Revelation Principle

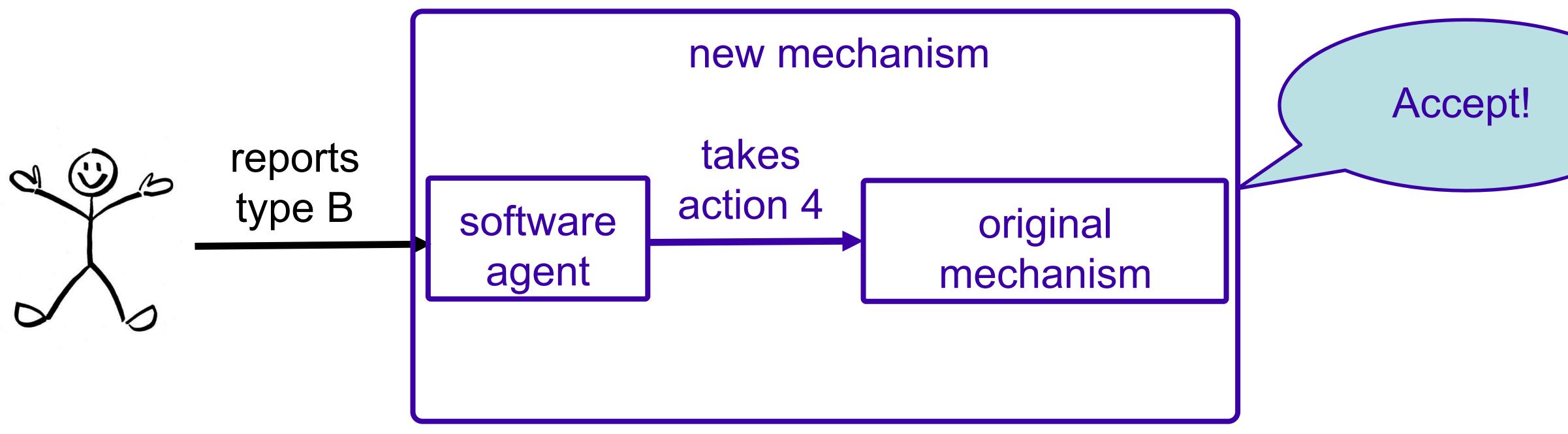
Anything you can achieve, you can also achieve with a truthful (AKA incentive compatible) mechanism.

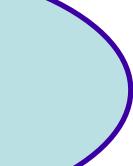




Revelation Principle

Anything you can achieve, you can also achieve with a truthful (AKA incentive compatible) mechanism.





Automated mechanism design input **Instance** is given by Set of possible outcomes Set of agents For each agent set of possible *types* probability distribution over these types **Objective function** Gives a value for each outcome for each combination of agents' types E.g., social welfare, revenue **Restrictions** on the mechanism Are payments allowed? Is randomization over outcomes allowed? What versions of incentive compatibility (IC) & individual rationality (IR) are

- used?

How hard is designing an optimal deterministic mechanism (without reporting costs)? [C. & Sandholm UAI'02, ICEC'03, EC'04]

NP-complete (even with 1 reporting agent):

- 1. Maximizing social welfare (payments)
- 2. Designer's own utility over outcomes (no payments)
- 3.General (linear) objective the time of the second doesn't regard payments
- .Expected revenue

1 and 3 hold even with no IR constraints

	Solvable in polynomial time (for any <i>constant</i> number of agents):
(no	1.Maximizing social welfare (not regarding the payments) (VCG)
hat	

Positive results (randomized mechanisms) [C. & Sandholm UAI'02, ICEC'03, EC'04]

- Use linear programming
- Variables:

 $p(o \mid \theta_1, \dots, \theta_n) = probability$ that outcome o is chosen given types $\theta_1, \dots, \theta_n$ (maybe) $\pi_i(\theta_1, ..., \theta_n) = i$'s payment given types $\theta_1, ..., \theta_n$

- Strategy-proofness constraints: for all i, θ_1 , ..., θ_n , θ_i ': $\Sigma_{o} p(o \mid \theta_{1}, \ldots, \theta_{n}) u_{i}(\theta_{i}, o) + \pi_{i}(\theta_{1}, \ldots, \theta_{n}) \geq$ $\Sigma_{o}p(o \mid \theta_{1}, \ldots, \theta_{i}', \ldots, \theta_{n})u_{i}(\theta_{i}, o) + \pi_{i}(\theta_{1}, \ldots, \theta_{i}', \ldots, \theta_{n})$
- Individual-rationality constraints: for all i, θ_1 , ... θ_n : $\Sigma_{o} p(o \mid \theta_{1}, \ldots, \theta_{n}) u_{i}(\theta_{i}, o) + \pi_{i}(\theta_{1}, \ldots, \theta_{n}) \geq 0$
- Objective (e.g., sum of utilities)

 $\Sigma_{\theta_1,\ldots,\theta_n} p(\theta_1,\ldots,\theta_n) \Sigma_i (\Sigma_o p(o \mid \theta_1,\ldots,\theta_n) u_i(\theta_i,o) + \pi_i(\theta_1,\ldots,\theta_n))$ Also works for BNE incentive compatibility, ex-interim individual rationality notions,

- other objectives, etc.
- For deterministic mechanisms, can still use mixed integer programming: require probabilities in {0, 1}

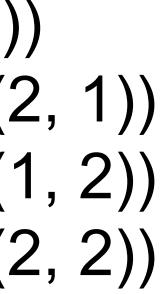
-Remember typically designing the optimal deterministic mechanism is NP-hard

A simpl

One item for sale (free disposal) 2 agents, IID valuations: uniform Maximize expected revenue und IR, Bayes-Nash equilibrium How much can we get? (What is optimal expected welfa

Our old AMD solver [C. & Sandholm, 2002, 2003] gives: Status: Objective: [nonzero varia p_t_1_1_03 p_t_2_1_01 p_t_2_2_02 p_t_2_2_02 pi_2_2_1 pi_2_2_2

le e	xai	mple			
n ove				Agent 2's	valuation
der e	ex-ir	nterim		1	2
		Agent 1's	1	0.25	0.2
are?)		valuation	2	0.25	0.2
_	•	1.5 (MA		num)	bilities
	⊥ 1 1	(probabilit (probabilit	ty 1 ty 2	f disposal fo gets the ite gets the ite	m for (2 m for (2
	1 2 4	(1's paym	ent	gets the ite for (2, 2)) for (2, 2))	m for (2

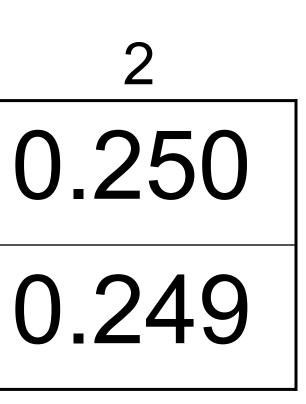


A slightly different distribution One item for sale (free disposal) 2 agents, valuations drawn as on right Agent 2's valuation Maximize expected revenue under ex-interim IR, Bayes-Nash equilibrium 0.251 How much can we get? Agent 1's valuation 0.250 (What is optimal expected welfare?) 2

> Status: OPTIMAL Objective: obj = 1.749 (MAXimum) [some of the nonzero payment variables:] 62501 pi 1 1 2 -62750 pi_2_1_1 2 pi 1 2 2 3.992

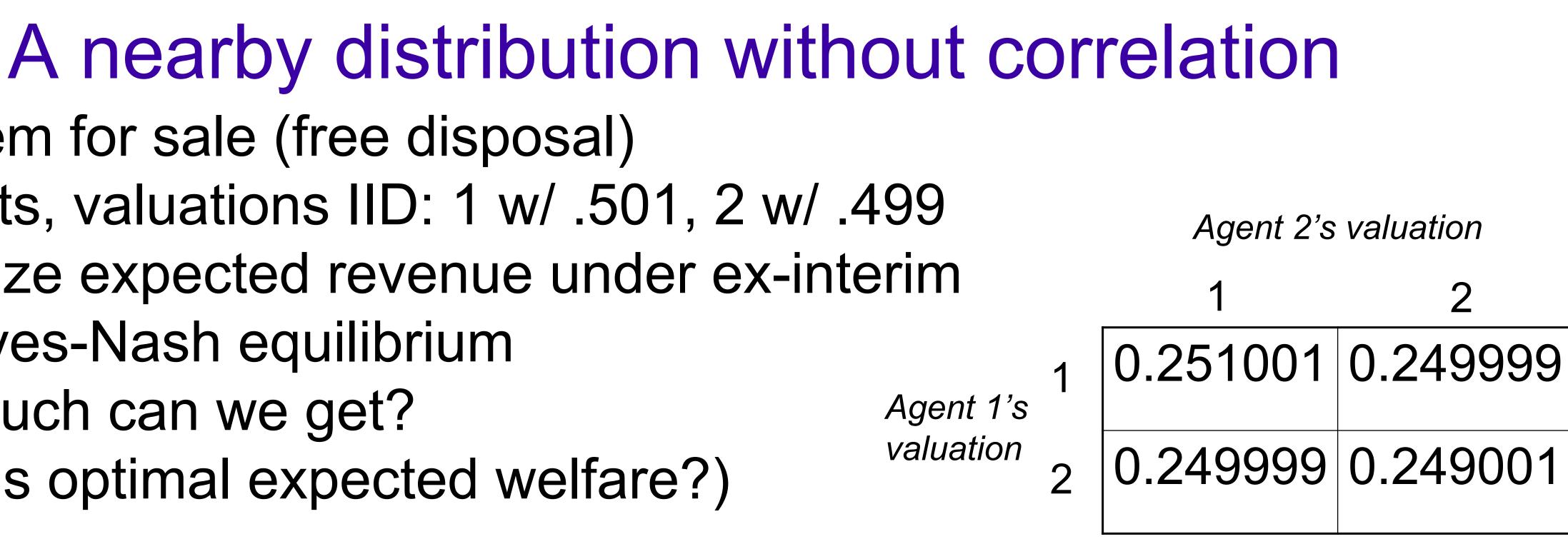
probabilities

You'd better be really sure about your distribution!



One item for sale (free disposal) 2 agents, valuations IID: 1 w/ .501, 2 w/ .499 Maximize expected revenue under ex-interim IR, Bayes-Nash equilibrium How much can we get? (What is optimal expected welfare?)

Status:	OPTIMAL
Objective:	obj = 1.49



probabilities

9 (MAXimum)

Cremer-McLean [1985]

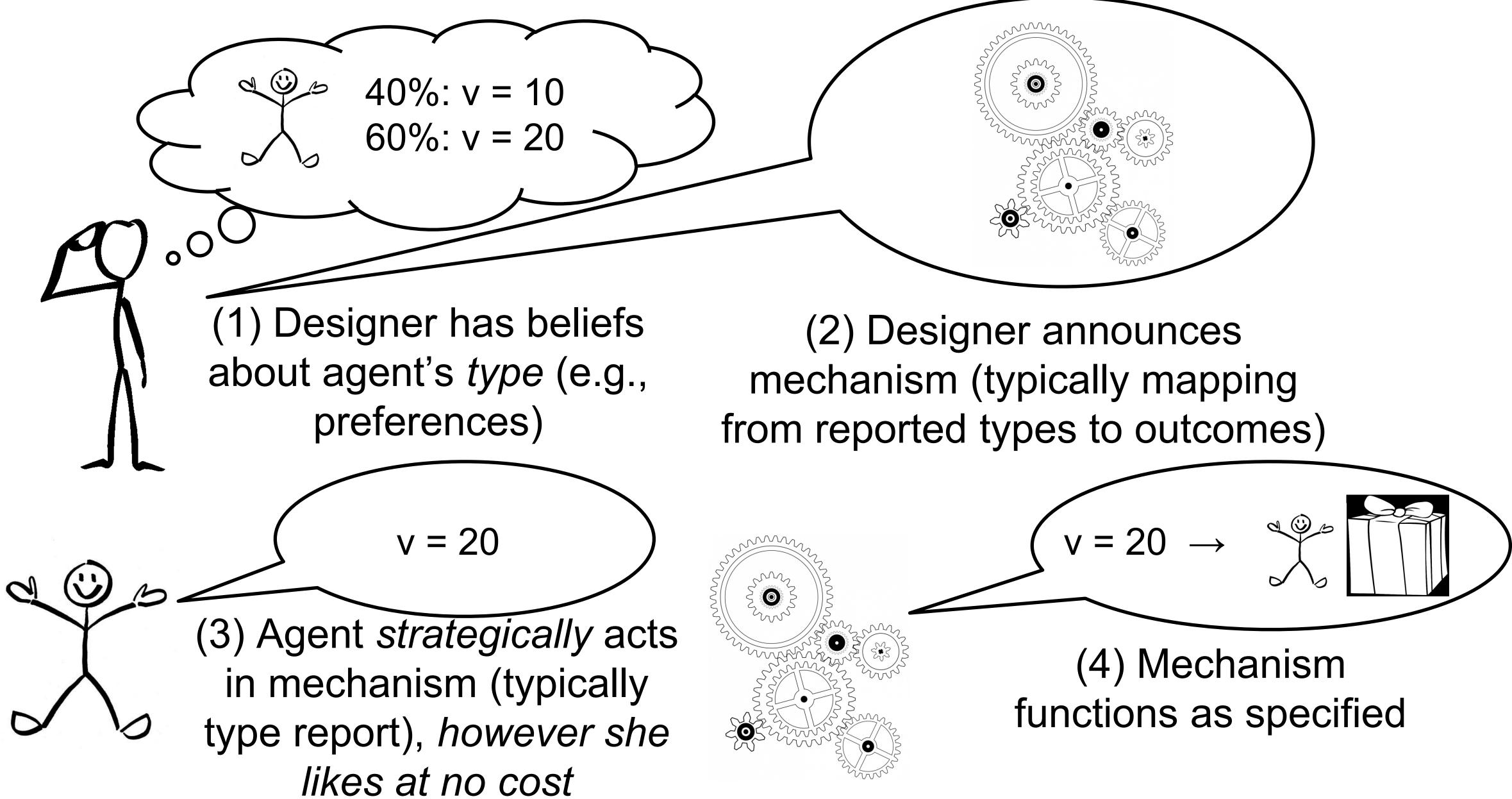
observable to the auctioneer)

 $\mathbf{\Gamma} = \begin{bmatrix} \pi(1|1) & \cdots & \pi(|\Omega||1) \\ \vdots & \ddots & \vdots \\ \pi(1||\Theta|) & \cdots & \pi(|\Omega|||\Theta|) \end{bmatrix}$

For every agent, consider the following matrix Γ of conditional probabilities, where Θ is the set of types for the agent and Ω is the set of signals (joint types for other agents, or something else

- If Γ has rank $|\Theta|$ for every agent then the auctioneer can allocate efficiently and extract the full surplus as revenue (!!)

Standard setup in mechanism design

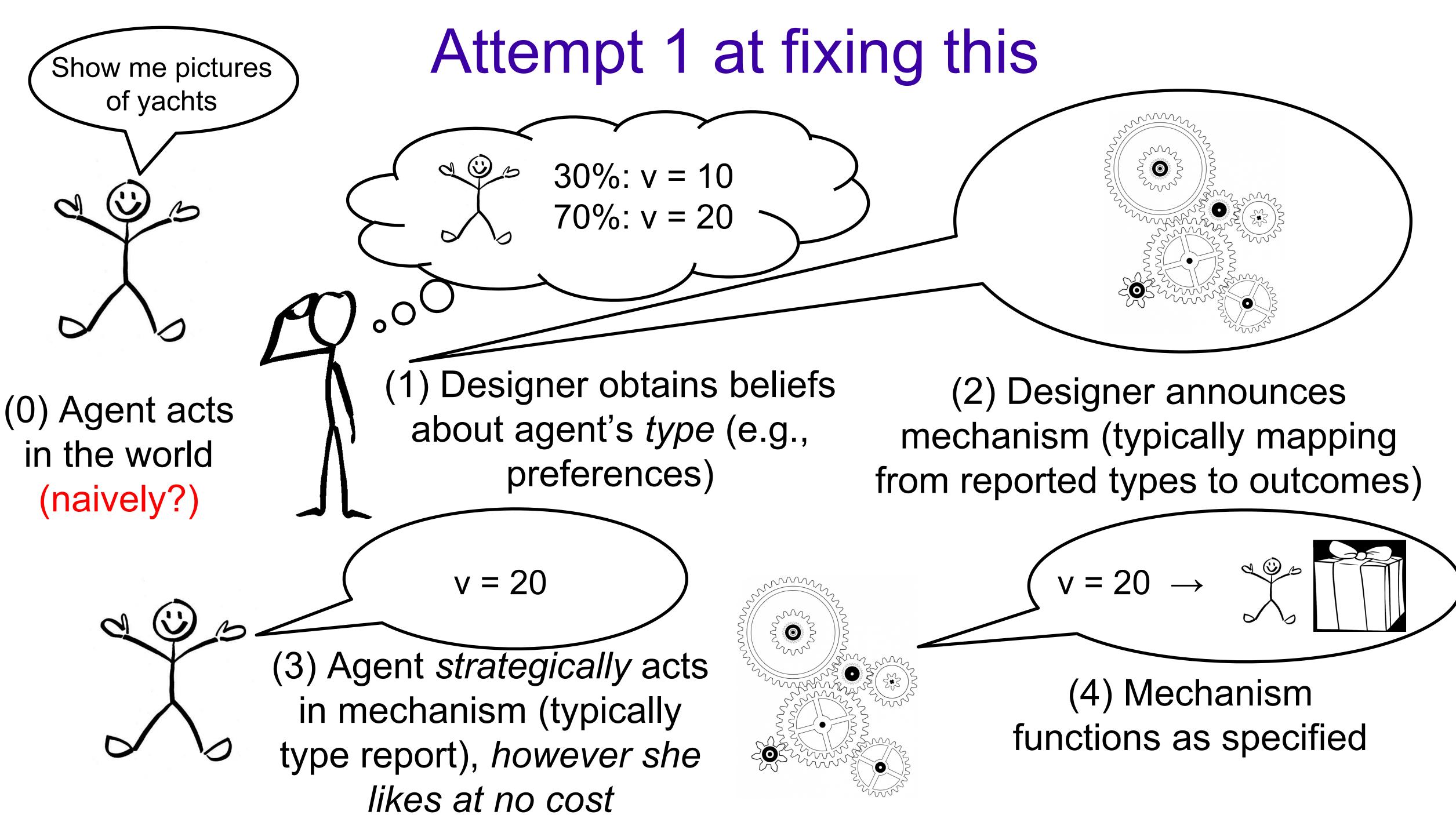


application

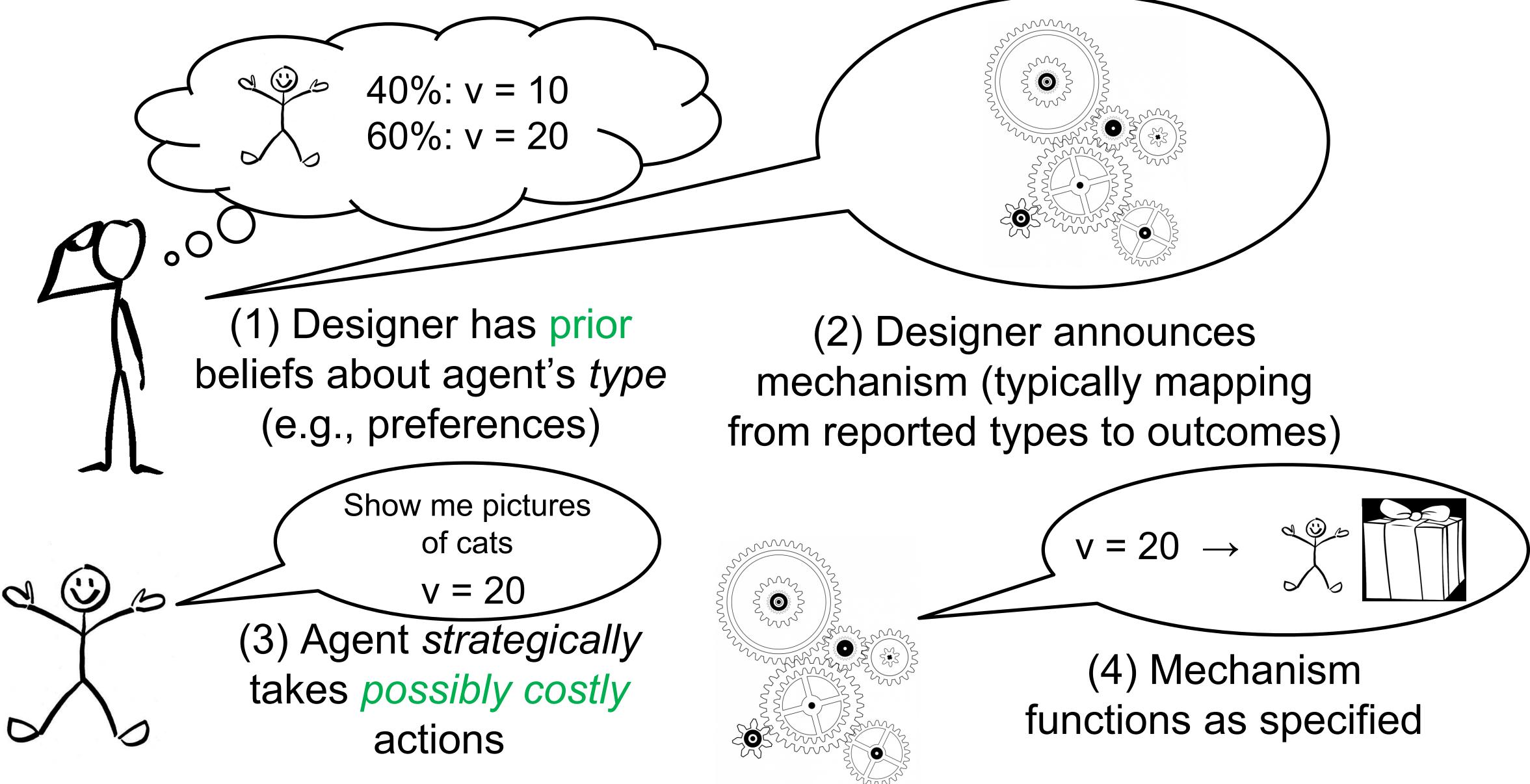
actions taken online online marketplaces selling insurance driving record university admissions courses taken webpage ranking links to page

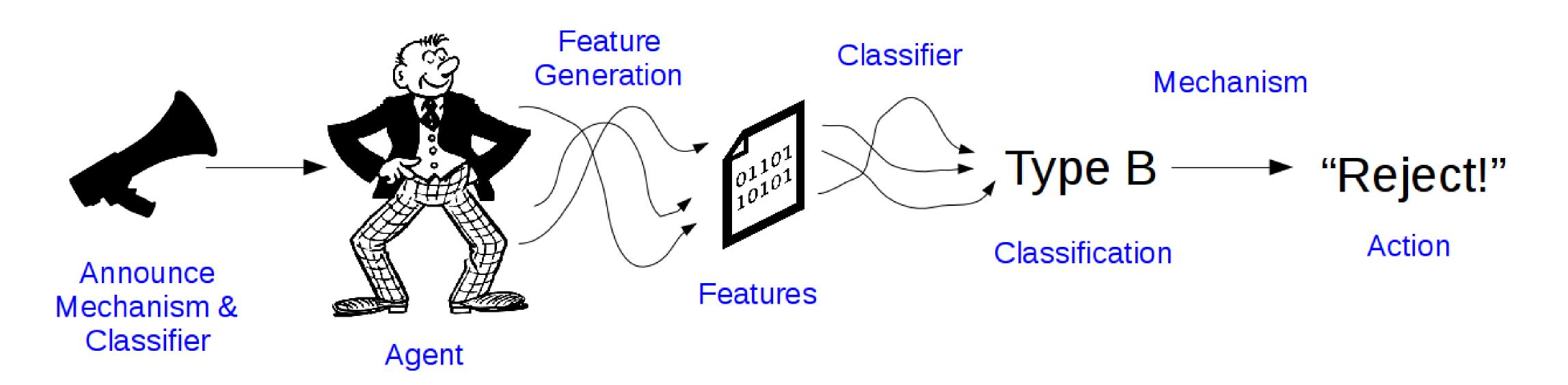
The mechanism may have more information about the specific agent!

information



Attempt 2: Sophisticated agent



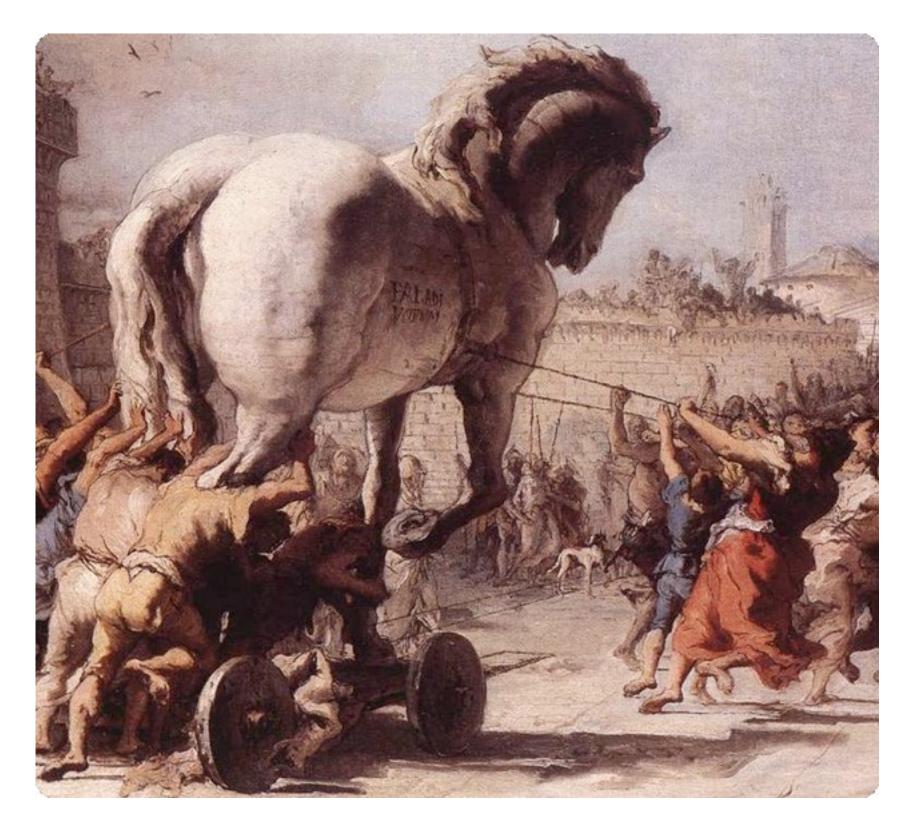


See also later work by Hardt, Megiddo, Papadimitriou, Wootters [2015/2016]

Machine learning view

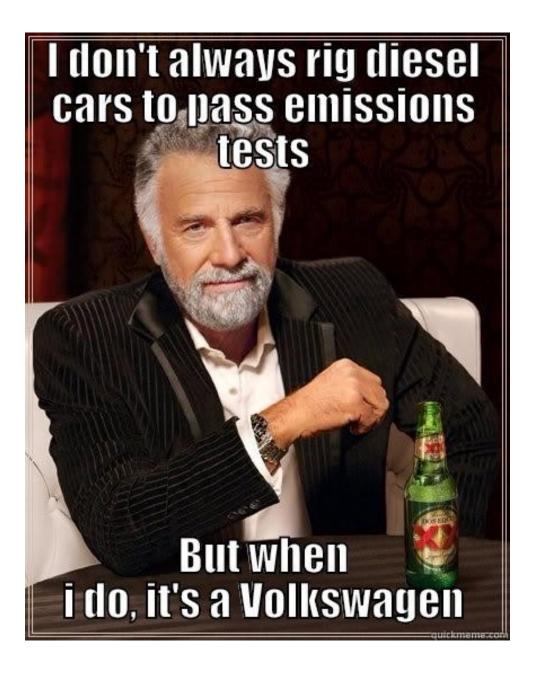
From Ancient Times...

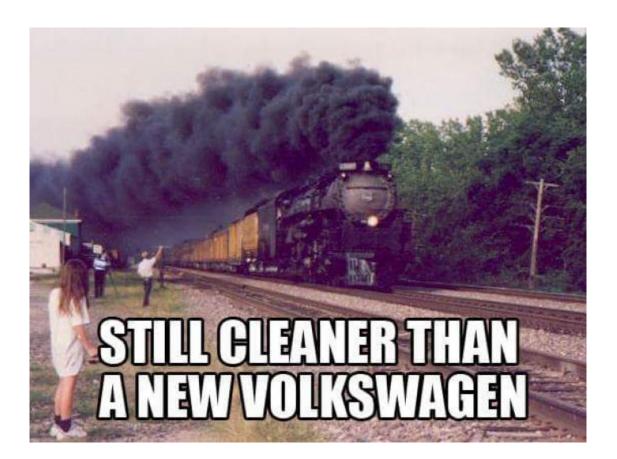
Jacob and Esau



Trojan Horse

... to Modern Times





MEANWHILE AT VW'S EMISSIONS TEST CENTER

THATS ANOTHER PASS 🗸

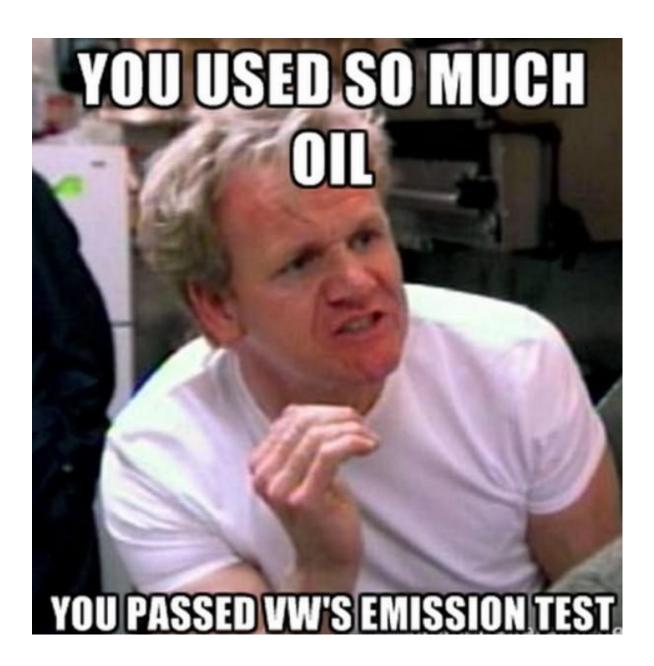


Illustration: Barbara Buying Fish From Fred

Types $(t \in T)$	Actions (a
fresh	accep
ok	reject
rotten	

Classifications $(\hat{t} \in \hat{T})$: \hat{fresh} , \hat{ok} , $rot\hat{t}en$

Choice Function $(F: T \to A)$ $a \in A$) $fresh \rightarrow accept$ pt $ok \rightarrow accept$ et $rotten \rightarrow reject$

... continued

Effort Function $(E: T \times \hat{T} \to \mathbb{R})$:

	\hat{fresh}	\hat{ok}	$rot \hat{t} en$
fresh	0	0	0
ok	10	0	0
rotten	30	10	0

Mechanism $M: \hat{T} \to A$

First Try: $M = fresh \rightarrow accept, \ ok \rightarrow accept, \ rotten \rightarrow reject$

Valuation Function $(V : T \times A \rightarrow \mathbb{R})$:

 $V(\cdot, accept) = 20, V(\cdot, reject) = 0$

... continued

Effort Function $(E: T \times \hat{T} \to \mathbb{R})$:

	\hat{fresh}	\hat{ok}	$rot \hat{t} en$
fresh	0	0	0
ok	10	0	0
rotten	30	10	0

Mechanism $M: \hat{T} \to A$

First Try: $M = fresh \rightarrow accept, \ ok \rightarrow accept, \ rotten \rightarrow reject$ **Better**: $M^* = fresh \rightarrow accept, ok \rightarrow reject, rotten \rightarrow reject.$

Valuation Function $(V : T \times A \rightarrow \mathbb{R})$:

 $V(\cdot, accept) = 20, V(\cdot, reject) = 0$

Comparison With Other Models

	\hat{fresh}	\hat{ok}	$rot \hat{t} en$	
fresh	0	0	0	
ok	0	0	0	
rotten	0	0	0]

	\hat{fresh}	\hat{ok}	$rot \hat{t} en$
fresh	0	∞	0
ok	∞	0	0
rotten	0	0	0

Me	ecl
----	-----

	\hat{fresh}	\hat{ok}	$rot \hat{t} en$
fresh	∞	0	0
ok	1.2	5	$-\infty$
rotten	-3	0	0

Green and Laffont. Partially verifiable information and mechanism design. RES 1986 Auletta, Penna, Persiano, Ventre. Alternatives to truthfulness are hard to recognize. AAMAS 2011

Standard Mechanism Design

hanism Design with Partial Verification

Mechanism Design with Signaling Costs

Question

Given:

Types $(t \in T)$	Actions $(a \in A)$	Choice Function $(F: T \rightarrow A)$
fresh	accept	$fresh \rightarrow accept$
ok	reject	$ok \rightarrow accept$
rotten		$rotten \rightarrow reject$

Classifications $(\hat{t} \in \hat{T})$: \hat{fresh} , \hat{ok} , $rot\hat{t}en$

Effort Function $(E: T \times \hat{T} \to \mathbb{R})$:

freshokrotten

\hat{fresh}	\hat{ok}	$rot \hat{t} en$
0	0	0
10	0	0
30	10	0

Valuation Function $(V : T \times A \rightarrow \mathbb{R})$:

 $V(\cdot, accept) = 20, V(\cdot, reject) = 0$

Auletta, Penna, Persiano, Ventre. Alternatives to truthfulness are hard to recognize. AAMAS 2011

Then:

Does there exist a Mechanism $M: \hat{T} \to A$

which implements the choice function?

NP-complete!

Results

Free Utilities (FU)	Unrestricted Costs (U) $\{0,\infty\}$ Costs (ZI)	NP-c NP-c
Targeted Utilities (TU)	Unrestricted Costs (U) $\{0,\infty\}$ Costs (ZI)	NP-c NP-c

Non-bolded results are from:

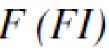
Auletta, Penna, Persiano, Ventre. Alternatives to truthfulness are hard to recognize. AAMAS 2011

Hardness results fundamentally rely on revelation principle failing – conditions under which revelation principle still holds in Green & Laffont '86 and Yu '11 (partial verification), and Kephart & C. EC'16 (costly signaling).

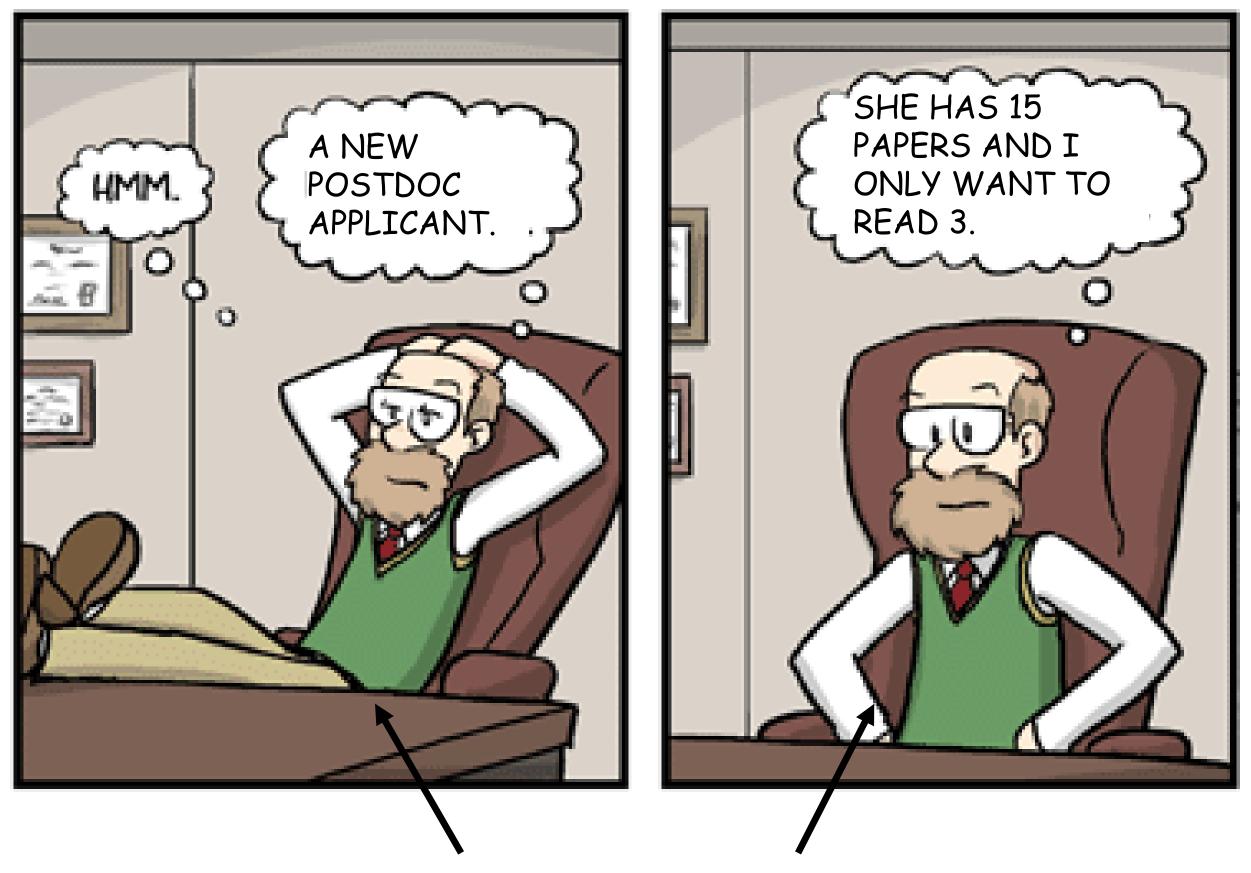
with Andrew Kephart (AAMAS 2015)

Transfers (T) No Transfers (NT) *Two Outcomes (TO)* Injective SCF (FI) Two Outcomes (TO) Injective SCF (FI) NP-c NP-c NP-c NP-c NP-c Р

Р	NP-c	Р
Р	NP-c	Р

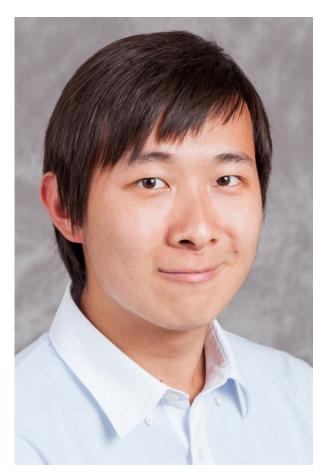


When Samples Are Strategically Selected

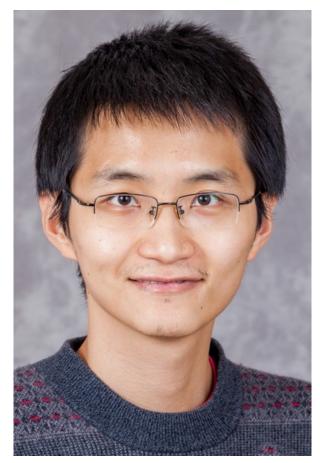


Bob, Professor of Rocket Science

ICML 2019, with

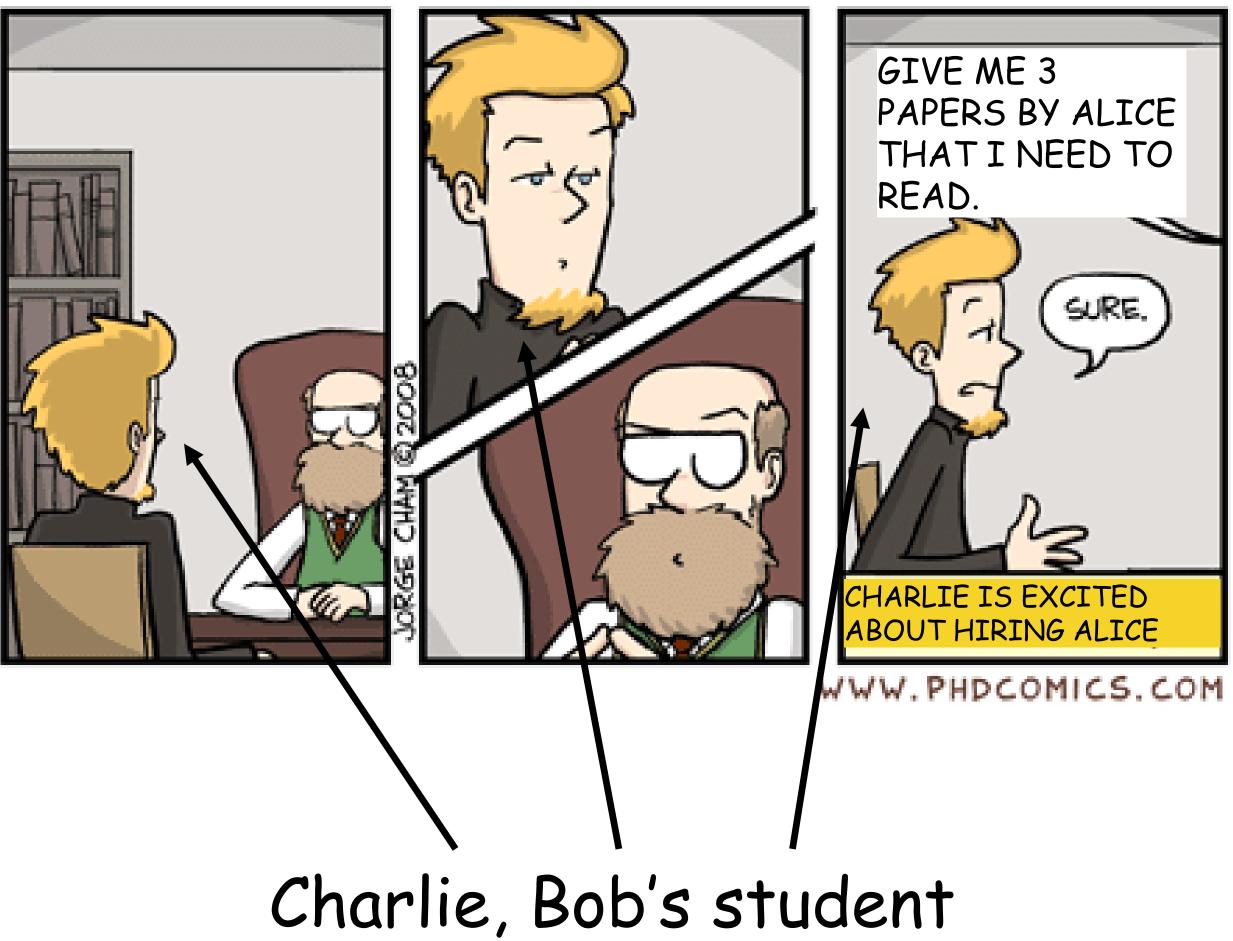


Hanrui Zhang (Duke)



Yu Cheng (Duke \rightarrow IAS \rightarrow UIC)

Academic hiring...



Academic hiring...

I NEED TO CHOOSE THE BEST 3 PAPERS TO CONVINCE BOB, SO THAT HE WILL HIRE ALICE.

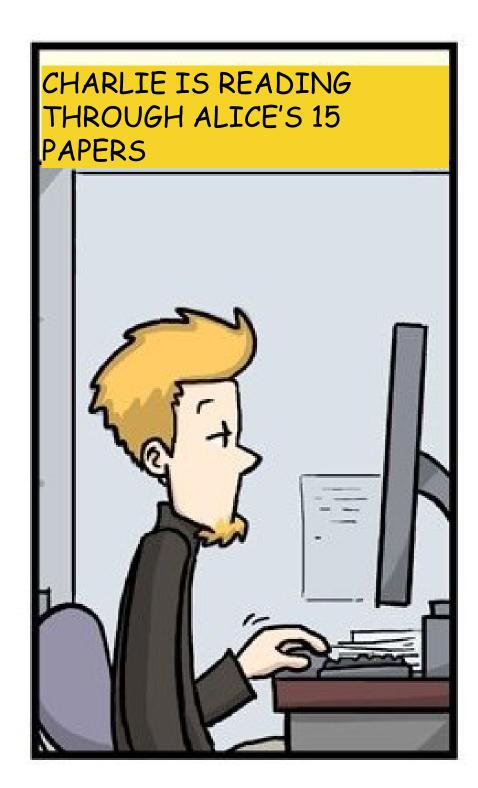
CHARLIE WILL DEFINITELY PICK THE BEST 3 PAPERS BY ALICE, AND I NEED TO CALIBRATE FOR THAT.

The general problem A **distribution (Alice)** over paper qualities $\theta \in \{g, b\}$ arrives, which can be either a good one ($\theta = g$) or a bad one ($\theta = b$)

Alice, the postdoc applicant

The general problem The principal (Bob) announces a policy, according to which he decides, based on the report of the agent (Charlie), whether to accept θ (hire Alice)

The general problem The agent (Charlie) has access to n(=15) iid samples (papers) from θ (Alice), from which he chooses m(=3) as his report

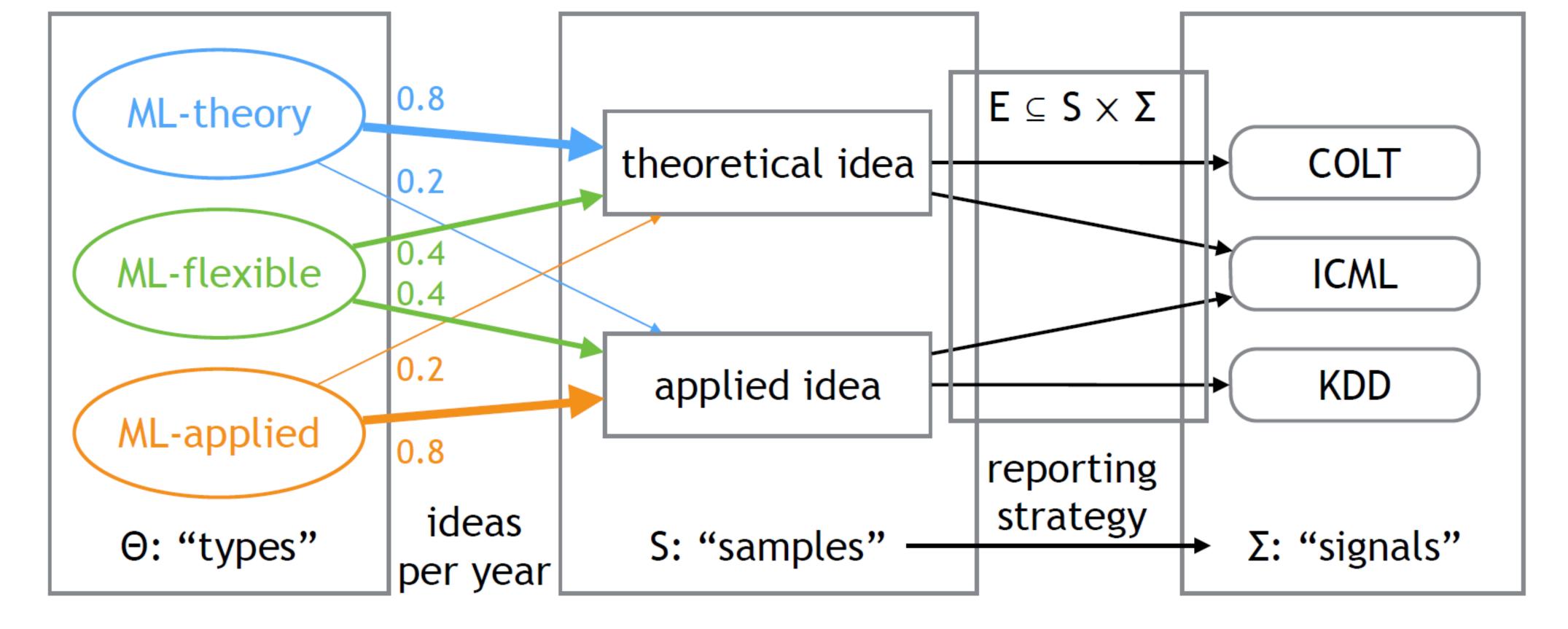


The general problem The agent (Charlie) sends his report to the principal, aiming to convince the principal (Bob) to accept θ (Alice)

The general problem The principal (Bob) observes the report of the agent (Charlie), and makes the decision according to the policy announced

Questions

How does strategic selection affect the principal's policy? Is it easier or harder to classify based on <u>strategic samples</u>, compared to when the principal has access to <u>iid samples</u>? Should the principal ever have a <u>diversity</u> requirement (e.g., at least 1 mathematical paper and at least 1 experimental paper), or only go by total quality according to a single metric?

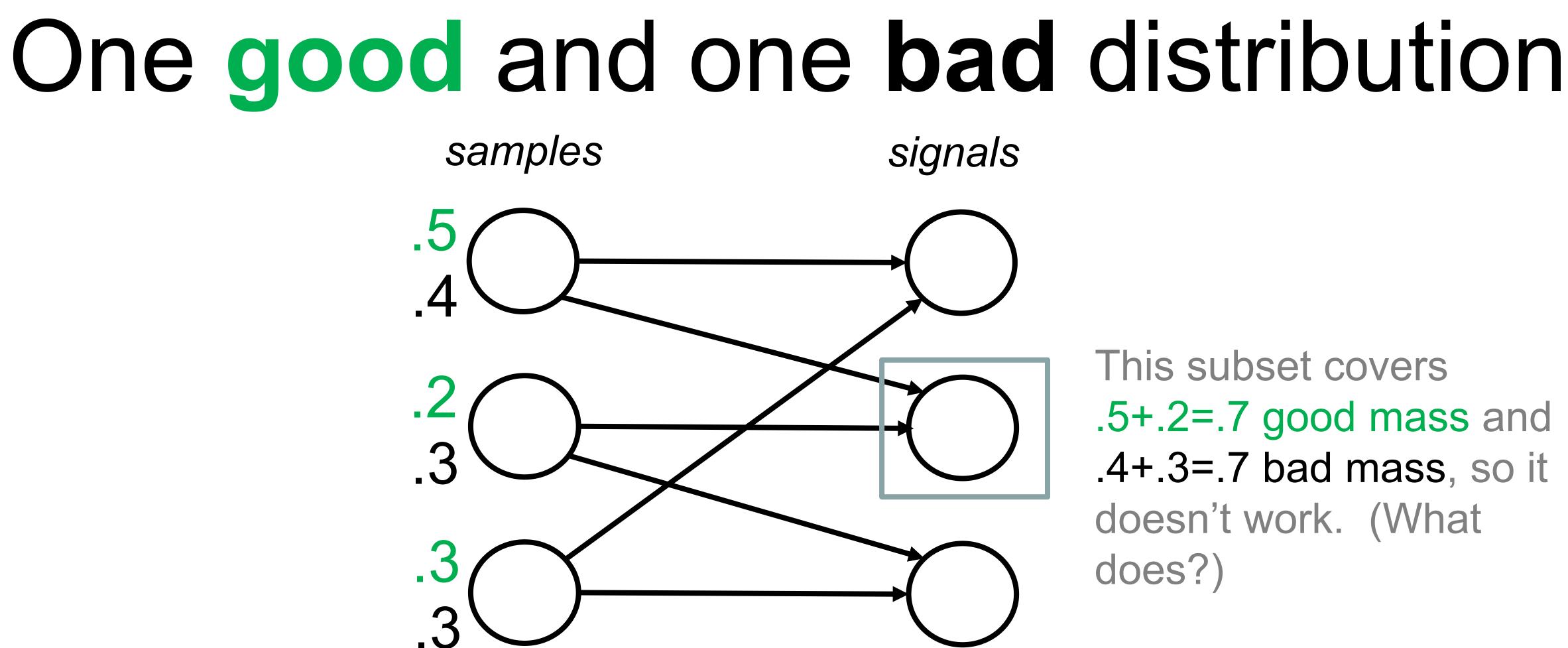


Agent's problem:

- "How do I distinguish myself from other types?"
- "How many samples do I need for that?"

Principal's problem:

- "How do I tell ML-flexible agents from others?"
- "At what point in their career can I reliably do that?"

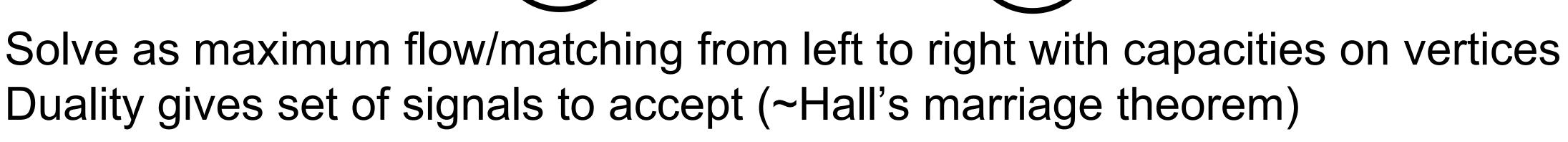


Pick a subset of the right-hand side (to accept) that maximizes (green mass covered - black mass covered) If positive, can (eventually) distinguish; otherwise not. NP-hard in general.

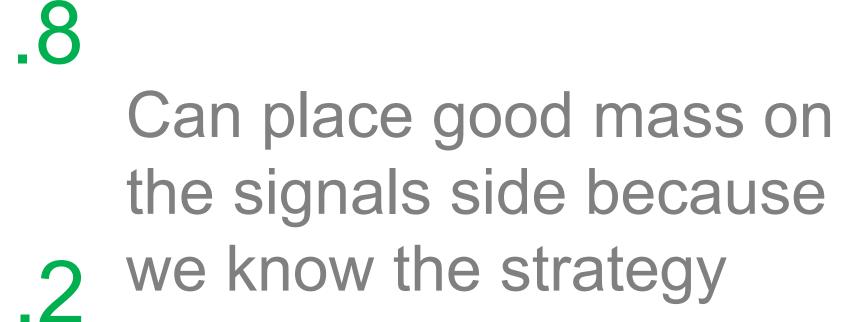
This subset covers .5+.2=.7 good mass and .4+.3=.7 bad mass, so it doesn't work. (What does?)

But if we know the strategy for the good distribution (revelation principle holds):

samples



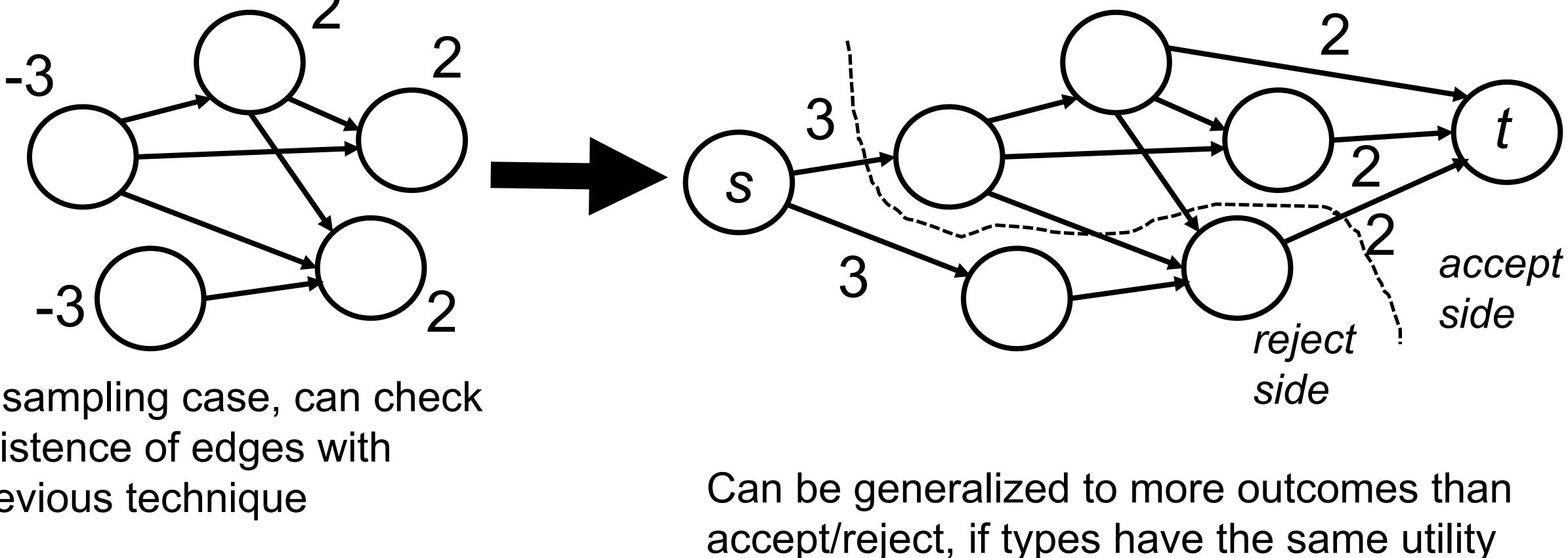
signals



0

Optimization: reduction to min cut (when revelation principle holds)

types are vertices; edges imply ability to (cost-effectively) misreport



In sampling case, can check existence of edges with previous technique

Values are P(type)*value(type)

edges between types have capacity ∞

over them.

Conclusion

First part:

Automatically designing robust mechanisms addresses this Combines well with learning (under some conditions)

V.

0.251	0.250
0.250	0.249

0.251001	0.249999
0.249999	0.249001

Second part:

With costly or limited misreporting, revelation principle can fail Causes computational hardness in general Sometimes agents report based on their samples Some efficient algorithms for the infinite limit case; sample bounds

Effort Function $(E: T \times T \to \mathbb{R})$:

rotten

30

10

 $E \subseteq S \times \Sigma$ ML-theory heoretical idea **ML-flexible** applied idea **ML-applied** reporting strategy Σ: "signals"

