One Equilibrium Is Not Enough: Computing Game-Theoretic Solutions to Act Strategically

0,0	$-1,2$
$-1,1$	0,0
2,2	$-1,0$
$-7,-8$	0,0

0,0	$-1,1$
$1,-1$	$-5,-5$
1,1	3,0
0,0	2,1

Vincent Conitzer Duke University

My wonderful co-authors (alphabetically):
Krzysztof Apt, CWI Amsterdam. Sayan Bhattacharya, Duke. Craig Boutilier, U. Toronto. Andrew Davenport, IBM Research. Jonathan Derryberry, CMU. Bruce Donald, Duke. Joseph Farfel, Duke. Nikesh Garera, Johns Hopkins. Andrew Gilpin, CMU. Mingyu Guo, Liverpool. Erik Halvorson, Duke. Paul Harrenstein, TU Munich. Ryo Ichimura, Kyushu U. Nicole Immorlica, Northwestern. Atsushi Iwasaki, Kyushu U. Kamal Jain, MSR. Manish Jain, USC. Jayant Kalagnanam, IBM Research. Christopher Kiekintveld, UT EI Paso. Dmytro Korzhyk, Duke. Jerome Lang, U. ParisDauphine. Joshua Letchford, Duke. Vangelis Markakis, Athens U. Econ. and Business. Kohki Maruono, Kyushu U. Kamesh Munagala, Duke. Yoshifusa Omori, Kyushu U. Naoki Ohta, Kyushu U. Ron Parr, Duke. Michal Pechoucek, Prague TU. Ariel Procaccia, Harvard U. Daniel Reeves, Yahoo! Research. Matthew Rognlie, MIT. Jeff Rosenschein, Hebrew U. Yuko Sakurai, Kyushu U. Tuomas Sandholm, CMU. Paolo Santi, IIT CNR. Yasufumi Satoh, Kyushu U. Peng Shi, MIT. Milind Tambe, USC. Taiki Todo, Kyushu U. Ondrej Vanek, Prague TU. Liad Wagman, Illinois Institute of Technology. Toby Walsh, NICTA and UNSW. Mathijs de Weerdt, TU Delft. Lirong Xia, Duke. Zhengyu Yin, USC. Makoto Yokoo, Kyushu U. Michael Zuckerman, Hebrew U.

Multiple entities with

 different interests
Multiple entities with

different interests

How can AI help?

Multiple entities with

different interests

How can Al help?

Multiple entities with

different interests

Auctions

Kidney exchanges How can Al help?

Multiple entities with

 different interests

Auctions

Kidney exchanges

How can AI help? Prediction markets

Multiple entities with

 different interests

Auctions

Kidney exchanges

Intrade elections futures as of July 12, 2008 source: Intrade.com
 How can Al help? Prediction markets

Double Your Donation
it IID ${ }^{\text {ana }}$
Donation matching

Multiple entities with

 different interests

Auctions

Kidney exchanges

Intrade elections futures as of July 12, 2008 source: Intrade.com

Security How can AI help? Prediction markets

Multiple entities with different interests

Auctions

Kidney exchanges

Intrade elections futures as of July 12, 2008 source: Intrade.com

How can Al help? Prediction markets

Multiple entities with different interests

Auctions
3. Rakingi 4.3F/P (13 yotes cast)

4, Reterg
Rating/voting systems

Security

THIS TALK

Kidney exchanges

How can AI help? Prediction markets

CACM March 2010

Closer to home...

Game playing

Closer to home...

Game playing

Closer to home...

Game playing

Closer to home...

Game playing

Closer to home...

Game playing

Closer to home...

Multiagent systems

Microdiconovic

Theoris

ANDREU MAS-COLELL MICHAEL D. WHINSTON ANI JERRYB.GREEN

Microbconovic

Tlieozis

ANDREU MAS-COLELL MICHAEL D. WHINSTON

AND JERRY R.GREEN

Some microeconomic theory tools for Al

GAME THEORY

Josh Letchford

Some microeconomic theory tools for Al

GAME THEORY

Josh Letchford

SOCIAL CHOICE $A>B>C$ $B>A>C$ C>B>A

Lirong Xia

B wins

Some microeconomic theory tools for Al

GAME THEORY SOCIAL CHOICE

2,2	$-1,0$
$-7,-8$	0,0

B wins

MECHANISM DESIGN

$$
\begin{aligned}
& v_{1}=42 \\
& v_{2}=30
\end{aligned} \rightarrow \begin{gathered}
1 \text { wins, } \\
\text { pavs } 30
\end{gathered}
$$

Some microeconomic theory tools for Al

Penalty kick example

Penalty kick example

Penalty kick example

Penalty kick example

Penalty kick example

Penalty kick example

Penalty kick example

Penalty kick

(also known as: matching pennies)

Penalty kick

(also known as: matching pennies)

Security example

BCN terminal 2B

Security example

Security game

Security game

Recent deployments in security

- Tambe's TEAMCORE group at USC
- Airport security

- Where should checkpoints, canine units, etc. be deployed?
- Deployed at LAX and another US airport, being evaluated for deployment at all US airports
- Federal Air Marshals
- Coast Guard

"Should I buy an SUV?"

(also known as the Prisoner's Dilemma)

purchasing + gas cost

"Should I buy an SUV?"
(also known as the Prisoner's Dilemma)
purchasing + gas cost

cost: 5
\rightarrow cost: 3
accident cost

cost: $5=\frac{2}{}=\frac{3}{4}$

"Should I buy an SUV?"

 (also known as the Prisoner's Dilemma)purchasing + gas cost

cost: 5
cost: 3
accident cost
cost: 5 cont: 5

$$
\begin{array}{l|l}
-10,-10 & -7,-11
\end{array}
$$

$$
\begin{array}{l|l}
-11,-7 & -8,-8
\end{array}
$$

"Should I buy an SUV?"

 (also known as the Prisoner's Dilemma)purchasing + gas cost

accident cost
cost: 5 6

$$
\begin{array}{c|c}
-10,-10 & -7,-11 \\
\hline-11,-7 & -8,-8
\end{array}
$$

"Should I buy an SUV?"

 (also known as the Prisoner's Dilemma)purchasing + gas cost

Computational aspects of dominance: Gilboa, Kalai, Zemel Math of OR ‘93; C. \& Sandholm EC '05, AAAI'05; Brandt, Brill, Fischer, Harrenstein TOCS ‘11

"Chicken"

- Two players drive cars towards each other
- If one player goes straight, that player wins
- If both go straight, they both die

Nash equilibrium [Nash ‘50]

Nash equilibrium [Nash ‘50]

Nash equilibrium [Nash ‘50]

Nash equilibrium [Nash ‘50]

Nash equilibrium [Nash ‘50]

- A profile (= strategy for each player) so that no player wants to deviate

Nash equilibrium [Nash ‘50]

- A profile (= strategy for each player) so that no player wants to deviate

\[

\]

Nash equilibrium [Nash ‘50]

- A profile (= strategy for each player) so that no player wants to deviate

$$
D \quad S
$$

$$
\begin{array}{l|l|l|}
\cline { 2 - 3 } & 0,0 & -1,1 \\
\mathrm{~S} & 1,-1 & -5,-5 \\
\cline { 2 - 3 } & &
\end{array}
$$

- This game has another Nash equilibrium in mixed strategies - both play D with 80\%

The presentation

game

The presentation

game

Do not pay
attention (NA)

Put effort into
presentation (E)
Do not put effort into
presentation (NE)

2,2	$-1,0$
$-7,-8$	0,0

- Pure-strategy Nash equilibria: (E, A), (NE, NA)

The presentation

game

Do not pay
attention (NA)

Put effort into
presentation (E)
Do not put effort into
presentation (NE)

2,2	$-1,0$
$-7,-8$	0,0

- Pure-strategy Nash equilibria: (E, A), (NE, NA)
- Mixed-strategy Nash equilibrium:

The presentation

game

Do not pay
attention (NA)

Put effort into
presentation (E)
Do not put effort into
presentation (NE)

2,2	$-1,0$
$-7,-8$	0,0

- Pure-strategy Nash equilibria: (E, A), (NE, NA)
- Mixed-strategy Nash equilibrium: ((4/5 E, 1/5 NE), (1/10 A, 9/10 NA))

The presentation

game

Do not pay
attention (NA)

Put effort into
presentation (E)
Do not put effort into
presentation (NE)

2,2	$-1,0$
$-7,-8$	0,0

- Pure-strategy Nash equilibria: (E, A), (NE, NA)
- Mixed-strategy Nash equilibrium: ((4/5 E, 1/5 NE), (1/10 A, 9/10 NA))
- Utility -7/10 for presenter, 0 for audience

Modeling and representing games THIS TALK (unless specified otherwise)

2,2	$-1,0$
$-7,-8$	0,0

normal-form games

$\begin{array}{ll} \text { row player } & \mathrm{U} \\ \text { type } I(\text { prob. } 0.5) \\ \mathrm{D} \end{array}$	L	R	$\begin{aligned} & \text { column player } \mathrm{U} \\ & \text { type } 1 \text { (prob. } 0.5 \text {) } \end{aligned}$	L	R
	4	6		4	6
	2	4		4	6
	L	R		L	R

row player
type 2 (prob. 0.5) D

2	4					
4	2		column player		U	2
:---	:---	:---				
type $2($ prob. 0.5$)$	D	2				
4	2					

Bayesian games

graphical games
[Kearns, Littman, Singh UAI'01]

Modeling and representing games THIS TALK (unless specified otherwise)
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">2,2</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">$-1,0$</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">$-7,-8$</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">0,0</td>
</tr>
</tbody>
</table>
<table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">2</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">4</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| | 2 | 4 |
| :---: | :---: |</table-markdown></div>
 row player
 type $2($ prob. 0.5$) \mathrm{D}$
 Bayesian games
 stochastic gamés

 MAIDs

action-graph games
graphical games [Leyton-Brown \& Tennenholtz IJCAI’03 [Kearns, Littman, Singh UAI'01]
[Bhat \& Leyton-Brown, UAI'04] [Jiang, Leyton-Brown, Bhat GEB'11]

Computing a single Nash equilibrium

Christos Papadimitriou, STOC'01

Computing a single Nash equilibrium

Christos Papadimitriou, STOC'01

- PPAD-complete to compute one Nash equilibrium, even in a two-player game [Daskalakis, Goldberg, Papadimitriou STOC'06; Chen \& Deng FOCS'06]
- still holds for FPTAS / smoothed poly [Chen, Deng, Teng FOCS'06]

Computing a single Nash equilibrium

Christos Papadimitriou, STOC'01

- PPAD-complete to compute one Ñash equilibrium, even in a two-player game [Daskalakis, Goldberg, Papadimitriou STOC'06; Chen \& Deng FOCS'06]
- still holds for FPTAS / smoothed poly [Chen, Deng, Teng FOCS'06]

Computing a single Nash equilibrium

Christos Papadimitriou, STOC'01

- PPAD-complete to compute one Nash equilibrium, even in a two-player game [Daskalakis, Goldberg, Papadimitriou STOC'06; Chen \& Deng FOCS'06]
- still holds for FPTAS / smoothed poly [Chen, Deng, Teng FOCS‘06]

Computing a single Nash equilibrium

Christos Papadimitriou, STOC’01

- PPAD-complete to compute one Ñash equilibrium, even in a two-player game [Daskalakis, Goldberg, Papadimitriou STOC'06; Chen \& Deng FOCS'06]
- still holds for FPTAS / smoothed poly [Chen, Deng, Teng FOCS'06]
- Is one Nash equilibrium all we need to know?

A useful reduction (SAT \rightarrow game)

[C. \& Sandholm IJCAl'03, Games and Economic Behavior '08]
(Earlier reduction with weaker implications: Gilboa \& Zemel GEB ‘89)
Formula: $\quad\left(x_{1}\right.$ or $\left.-x_{2}\right)$ and ($-\mathrm{x}_{1}$ or x_{2})
Solutions:
$x_{1}=$ true, $x_{2}=$ true
$x_{1}=$ false, $x_{2}=$ false

A useful reduction (SAT \rightarrow game)

[C. \& Sandholm IJCAl'03, Games and Economic Behavior '08]
(Earlier reduction with weaker implications: Gilboa \& Zemel GEB ‘89)

Formula:	$\left(x_{1}\right.$ or $\left.-x_{2}\right)$ and $\left(-x_{1}\right.$
Solutions:	$x_{1}=$ true,$x_{2}=$ true
	$x_{1}=$ false,$x_{2}=$ false

Game:	x_{1}	x_{2}	+ x_{1}	- x_{1}	+ ${ }_{2}$	$-\mathrm{x}_{2}$	(x_{1} or $-\mathrm{x}_{2}$)	(- x_{1} or x_{2})	default
x_{1}	-2,-2	-2,-2	0,-2	0,-2	2,-2	2,-2	-2,-2	-2,-2	0,1
x_{2}	-2,-2	-2,-2	2,-2	2,-2	0,-2	0,-2	-2,-2	-2,-2	0,1
+ x_{1}	-2,0	-2,2	1,1	-2,-2	1,1	1,1	-2,0	-2,2	0,1
-x ${ }_{1}$	-2,0	-2,2	-2,-2	1,1	1,1	1,1	-2,2	-2,0	0,1
+x ${ }_{2}$	-2,2	-2,0	1,1	1,1	1,1	-2,-2	-2,2	-2,0	0,1
$-x_{2}$	-2,2	-2,0	1,1	1,1	-2,-2	1,1	-2,0	-2,2	0,1
(x_{1} or $-\mathrm{x}_{2}$)	-2,-2	-2,-2	0,-2	2,-2	2,-2	0,-2	-2,-2	-2,-2	0,1
(-x or x_{2})	-2,-2	-2,-2	2,-2	0,-2	0,-2	2,-2	-2,-2	-2,-2	0,1
default	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	\&, ε

A useful reduction (SAT \rightarrow game)

[C. \& Sandholm IJCAl'03, Games and Economic Behavior '08]
(Earlier reduction with weaker implications: Gilboa \& Zemel GEB ‘89)

Formula:	$\left(x_{1}\right.$ or $\left.-x_{2}\right)$ and $\left(-x_{1}\right.$
Solutions:	$x_{1}=$ true,$x_{2}=$ true
	$x_{1}=$ false,$x_{2}=$ false

Game:	x_{1}	x_{2}	+ x_{1}	- x_{1}	+ ${ }_{2}$	$-\mathrm{x}_{2}$	(x_{1} or $-\mathrm{x}_{2}$)	(- x_{1} or x_{2})	default
x_{1}	-2,-2	-2,-2	0,-2	0,-2	2,-2	2,-2	-2,-2	-2,-2	0,1
x_{2}	-2,-2	-2,-2	2,-2	2,-2	0,-2	0,-2	-2,-2	-2,-2	0,1
+ x_{1}	-2,0	-2,2	1,1	-2,-2	1,1	1,1	-2,0	-2,2	0,1
-x ${ }_{1}$	-2,0	-2,2	-2,-2	1,1	1,1	1,1	-2,2	-2,0	0,1
+ x_{2}	-2,2	-2,0	1,1	1,1	1,1	-2,-2	-2,2	-2,0	0,1
$-x_{2}$	-2,2	-2,0	1,1	1,1	-2,-2	1,1	-2,0	-2,2	0,1
(x_{1} or $-\mathrm{x}_{2}$)	-2,-2	-2,-2	0,-2	2,-2	2,-2	0,-2	-2,-2	-2,-2	0,1
(-x x_{1} or x_{2})	-2,-2	-2,-2	2,-2	0,-2	0,-2	2,-2	-2,-2	-2,-2	0,1
default	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	¢, ε

- Every satisfying assignment (if there are any) corresponds to an equilibrium with utilities 1,1
- Exactly one additional equilibrium with utilities ε, ε that always exists

Some algorithm families for computing Nash

 equilibria of 2-player normal-form games

Lemke-Howson [J. SIAM '64]
Exponential time due to Savani \& von Stengel [FOCS'04 / Econometrica'06]

Some algorithm families for computing Nash

equilibria of 2-player normal-form games

Lemke-Howson [J. SIAM '64]
Exponential time due to Savani \& von Stengel [FOCS'04 / Econometrica'06]

- for both i, for any $s_{1} \in S_{1}-X_{1}, p_{i}\left(s_{i}\right)=0$
- for both i, for any $s_{i} \in X_{i}, \sum p_{-i}\left(s_{-i}\right) u_{i}\left(s_{i}, s_{-i}\right)=u_{i}$
- for both i, for any $\mathbf{s}_{i} \in \mathrm{~S}_{\mathrm{i}}-\mathrm{X}_{\mathrm{i}}, \sum \mathbf{p}_{-\mathrm{i}}\left(\mathbf{s}_{\mathrm{j}}\right) \mathrm{u}_{\mathrm{i}}\left(\mathbf{s}_{\mathrm{i}}, \mathbf{s}_{-i}\right) \leq \mathbf{u}_{\mathrm{i}}$

Search over supports / MIP
[Dickhaut \& Kaplan, Mathematica J. '91]
[Porter, Nudelman, Shoham AAAl'04 / GEB'08]
[Sandholm, Gilpin, C. AAAl'05]

Some algorithm families for computing Nash

equilibria of 2-player normal-form games

Lemke-Howson [J. SIAM '64] Exponential time due to Savani \& von Stengel [FOCS'04 / Econometrica'06]

Special cases / subroutines
[C. \& Sandholm AAAl'05, AAMAS'06; Benisch, Davis, Sandholm AAAl'06 / JAIR'10; Kontogiannis \& Spirakis APPROX'11; Adsul,

Garg, Mehta, Sohoni STOC'11; ...]

- for both i, for any $s_{i} \in S_{i}-X_{i}, p_{i}\left(s_{i}\right)=0$
- for both i, for any $s_{i} \in X_{i}, \sum p_{-i}\left(s_{-i}\right) u_{i}\left(s_{i}, s_{-i}\right)=u_{i}$
- for both i, for any $s_{i} \in S_{i}-X_{i}, \sum p_{-i}\left(s_{-i}\right) u_{i}\left(s_{i}, s_{-i}\right) \leq u_{i}$

Search over supports / MIP
[Dickhaut \& Kaplan, Mathematica J. '91]
[Porter, Nudelman, Shoham AAAl'04 / GEB’08]
[Sandholm, Gilpin, C. AAAI'05]

Some algorithm families for computing Nash

equilibria of 2-player normal-form games

image from von Stengel
Lemke-Howson [J. SIAM '64] Exponential time due to Savani \& von Stengel [FOCS'04 / Econometrica'06]

Special cases / subroutines

- for both i, for any $s_{i} \in S_{i}-X_{i}, p_{i}\left(s_{i}\right)=0$
- for both i, for any $s_{i} \in X_{i}, \sum p_{-i}\left(s_{-i}\right) u_{i}\left(s_{i}, s_{-i}\right)=u_{i}$
- for both i, for any $s_{i} \in S_{i}-X_{i}, \sum p_{-i}\left(s_{-i}\right) u_{i}\left(s_{i}, s_{-i}\right) \leq u_{i}$

Search over supports / MIP

[Dickhaut \& Kaplan, Mathematica J. '91]
[Porter, Nudelman, Shoham AAAl'04 / GEB’08] [Sandholm, Gilpin, C. AAAI'05]

[Brown '51 / C. '09 / Goldberg, Savani, Sørensen, Ventre '11; Althöfer '94, Lipton, Markakis, Mehta '03, Daskalakis, Mehta, Papadimitriou ‘06, ‘07, Feder, Nazerzadeh, Saberi ‘07, Tsaknakis \& Spirakis ‘07, Spirakis ‘08, Bosse, Byrka, Markakis ‘07, ...]

Sidestepping the problems

Sidestepping the problems

(one solution concept is not enough...?)

Nash is not optimal if one player can commit

von Stackelberg

Nash is not optimal if one player can commit

von Stackelberg

Nash is not optimal if one player can commit

- Suppose the game is played as follows:

von Stackelberg

Nash is not optimal if one player can commit

- Suppose the game is played as follows:

von Stackelberg
- Player 1 commits to playing one of the rows,

Nash is not optimal if one player can commit

- Suppose the game is played as follows:

- Player 1 commits to playing one of the rows,
- Player 2 observes the commitment and then chooses a column

Nash is not optimal if one player can commit

- Suppose the game is played as follows:

- Player 1 commits to playing one of the rows,
- Player 2 observes the commitment and then chooses a column
- Optimal strategy for player 1: commit to Down

Commitment to mixed strategies

Commitment to mixed strategies

$$
\begin{array}{l|l|l|}
\cline { 2 - 3 } & 1,1 & 3,0 \\
\cline { 2 - 3 } & 1,1 & 2,1 \\
\cline { 2 - 3 } & 0,0 & \\
\hline
\end{array}
$$

Commitment to mixed strategies

\[

\]

Commitment to mixed strategies

- Sometimes also called a Stackelberg (mixed) strategy

Observing the defender's

distribution in security

BCN terminal 2A

BCN terminal 2B

observe
Mo

Observing the defender's

 distribution in security
BCN terminal 2A

BCN terminal 2B

observe

We
Th
Fr
Sa

Observing the defender's

 distribution in security
BCN terminal 2A

BCN terminal 2B

observe

We
Th
Fr
Sa

Observing the defender's

distribution in security

BCN terminal 2A

BCN terminal 2B

observe

Th
Fr

Observing the defender's

distribution in security

BCN terminal 2 A

BCN terminal 2B

observe

Fr

Observing the defender's

distribution in security

BCN terminal 2A

BCN terminal 2B

observe

Fr

Observing the defender's

 distribution in security
BCN terminal 2 A

BCN terminal 2B

observe

Sa

Observing the defender's

distribution in security

BCN terminal 2 A

BCN terminal 2B

observe

Mo

Tu

We

Th

Fr

Sa
This argument is not uncontroversial... [Pita, Jain, Tambe, Ordóñez, Kraus AIJ'10; Korzhyk, Yin, Kiekintveld, C., Tambe JAIR'11; Korzhyk, C., Parr AAMAS'11]

Computing the optimal mixed

 strategy to commit to[C. \& Sandholm EC'06, von Stengel \& Zamir GEB'10]

Computing the optimal mixed

 strategy to commit to[C. \& Sandholm EC'06, von Stengel \& Zamir GEB'10]

- Separate LP for every column c^{*} :

Computing the optimal mixed

 strategy to commit to[C. \& Sandholm EC'06, von Stengel \& Zamir GEB'10]

- Separate LP for every column $c *$:
maximize $\Sigma_{r} p_{r} u_{R}\left(r, c^{*}\right)$
subject to
for all $c, \Sigma_{r} p_{r} u_{C}(r, c) \leq \Sigma_{r} p_{r} u_{C}\left(r, c^{*}\right)$
$\Sigma_{r} p_{r}=1$

Computing the optimal mixed

 strategy to commit to[C. \& Sandholm EC'06, von Stengel \& Zamir GEB'10]

- Separate LP for every column c^{*} :
maximize $\Sigma_{r} p_{r} u_{R}\left(r, c^{*}\right)$
subject to
for all $c, \Sigma_{r} p_{r} u_{C}(r, c) \leq \Sigma_{r} p_{r} u_{C}\left(r, c^{*}\right)$
$\Sigma_{r} p_{r}=1$ distributional constraint

Computing the optimal mixed

 strategy to commit to[C. \& Sandholm EC'06, von Stengel \& Zamir GEB'10]

- Separate LP for every column $c *$:
maximize $\Sigma_{r} p_{r} u_{R}\left(r, c^{*}\right)$
subject to
for all $c, \Sigma_{r} p_{r} u_{C}(r, c) \leq \Sigma_{r} p_{r} u_{C}\left(r, c^{*}\right)$

$$
\Sigma_{r} p_{r}=1 \quad \text { distributional constraint }
$$

Computing the optimal mixed

 strategy to commit to[C. \& Sandholm EC'06, von Stengel \& Zamir GEB'10]

- Separate LP for every column $c *$:
maximize $\Sigma_{r} p_{r} u_{R}\left(r, c^{*}\right) \quad$ leader utility subject to for all $c, \Sigma_{r} p_{r} u_{C}(r, c) \leq \Sigma_{r} p_{r} u_{C}\left(r, c^{*}\right)$

$$
\Sigma_{r} p_{r}=1 \quad \text { distributional constraint }
$$

Other nice properties of commitment to mixed strategies

Other nice properties of

 commitment to mixed strategies- Agrees w. Nash in zero-sum games

Other nice properties of

 commitment to mixed strategies- Agrees w. Nash in zero-sum games

- Leader's payoff at least as good as any Nash eq. or even correlated eq. (von Stengel \& Zamir [GEB '10]; see also C.

\& Korzhyk [AAAI '11], Letchford \& C. [draft])

Other nice properties of

 commitment to mixed strategies- Agrees w. Nash in zero-sum games

- Leader's payoff at least as good as any Nash eq. or even correlated eq. (von Stengel \& Zamir [GEB '10]; see also C.

\& Korzhyk [AAAI '11], Letchford \& C. [draft])
- No equilibrium selection problem

Some other work on commitment in

learning to commit [Letchford, C., Munagala SAGT'09] uncertain observability [Korzhyk, C., Parr AAMAS'11] correlated strategies [C. \& Korzhyk, AAAI'11]

Some other work on commitment in

learning to commit [Letchford, C., Munagala SAGT'09] uncertain observability [Korzhyk, C., Parr AAMAS'11]
correlated strategies [C. \& Korzhyk, AAAI'11]

$\begin{array}{ll} \text { row player } & \mathrm{U} \\ \text { type } 1(\text { prob. } 0.5) \\ \mathrm{D} \end{array}$	L	R	$\begin{array}{ll} \text { column player } & \mathrm{U} \\ \text { type } 1 \text { (prob. } 0.5 \text {) } \mathrm{D} \end{array}$	L R	
	4	6		4	6
	2	4		4	6
	L	R		L	R
row player U	2	4	column player U	2	2
type 2 (prob. 0.5) D	4	2	type 2 (prob. 0.5) D	4	2

commitment in Bayesian games
[C. \& Sandholm EC'06; Paruchuri, Pearce, Marecki, Tambe, Ordóñez, Kraus AAMAS’08; Letchford, C., Munagala SAGT'09; Pita, Jain, Tambe, Ordóñez, Kraus AIJ' 10; Jain, Kiekintveld, Tambe AAMAS'11]

Some other work on commitment in

Unrestr

2,2	$-1,0$
$-7,-8$	0,0
normal-form games	

learning to commit [Letchford, C., Munagala SAGT’09] uncertain observability [Korzhyk, C., Parr AAMAS' 11] correlated strategies [C. \& Korzhyk, AAAI' 11]

$\begin{array}{ll} \text { row player } & \mathrm{U} \\ \text { type } 1 \text { (prob. } 0.5)_{\mathrm{D}} \end{array}$	L	R	$\begin{aligned} & \text { column player } \quad \mathrm{U} \\ & \text { type } 1 \text { (prob. } 0.5 \text {) } \mathrm{D} \end{aligned}$	L R	
	4	6		4	6
	2	4		4	6
	L	R		L	R
row player U	2	4	column player U	2	2
type 2 (prob. 0.5) D	4	2	type 2 (prob. 0.5) D	4	2

commitment in Bayesian games

[C. \& Sandholm EC'06; Paruchuri, Pearce, Marecki, Tambe, Ordóñez, Kraus AAMAS’08; Letchford, C., Munagala SAGT'09; Pita, Jain, Tambe, Ordóñez, Kraus AIJ' 10; Jain, Kiekintveld, Tambe AAMAS'11]

Some other work on commitment in

unrestricted games

2,2	$-1,0$
$-7,-8$	0,0

normal-form games learning to commit [Letchford, C., Munagala SAGT’09] uncertain observability [Korzhyk, C., Parr AAMAS' 11] correlated strategies [C. \& Korzhyk, AAAI' 11]

$\begin{array}{ll} \text { row player } & \mathrm{U} \\ \text { type } 1 \text { (prob. } 0.5 \text {) } \mathrm{D} \end{array}$	L	R	$\begin{aligned} & \text { column player } \\ & \text { type } 1 \text { (prob. } 0.5 \text {) } \mathrm{D} \end{aligned}$	L R	
	4	6		4	6
	2	4		4	6
	L	R		L	R
row player U	2	4	column player U	2	2
type 2 (prob. 0.5) D	4	2	type 2 (prob. 0.5) D	4	2

commitment in Bayesian games
[C. \& Sandholm EC'06; Paruchuri, Pearce, Marecki, Tambe, Ordóñez, Kraus AAMAS’08; Letchford, C., Munagala SAGT'09; Pita, Jain, Tambe, Ordóñez, Kraus AIJ' 10; Jain, Kiekintveld, Tambe AAMAS'11]

Security resource allocation games
[Kiekintveld, Jain, Tsai, Pita, Ordóñez, Tambe AAMAS'09]

Security resource allocation games

[Kiekintveld, Jain, Tsai, Pita, Ordóñez, Tambe AAMAS'09]

- Set of targets T

$\bigcirc t_{2} \bigcirc t_{3}$

Security resource allocation games [Kiekintveld, Jain, Tsai, Pita, Ordóñez, Tambe AAMAS'09]

- Set of targets T
- Set of security resources Ω available to the defender (leader)

Security resource allocation games

[Kiekintveld, Jain, Tsai, Pita, Ordóñez, Tambe AAMAS'09]

- Set of targets T
- Set of security resources Ω available to the defender (leader)
- Set of schedules $S \subseteq 2^{T}$

Security resource allocation games

[Kiekintveld, Jain, Tsai, Pita, Ordóñez, Tambe AAMAS’09]

- Set of targets T
- Set of security resources Ω available to the defender (leader)
- Set of schedules $S \subseteq 2^{T}$
- Resource ω can be assigned to one of the schedules in $A(\omega) \subseteq S$

Security resource allocation games

[Kiekintveld, Jain, Tsai, Pita, Ordóñez, Tambe AAMAS'09]

- Set of targets T
- Set of security resources Ω available to the defender (leader)
- Set of schedules $S \subseteq 2^{T}$
- Resource ω can be assigned to one of the schedules in $A(\omega) \subseteq S$
- Attacker (follower) chooses one target to attack

Security resource allocation games

 [Kiekintveld, Jain, Tsai, Pita, Ordóñez, Tambe AAMAS’09]- Set of targets T
- Set of security resources Ω available to the defender (leader)
- Set of schedules $S \subseteq 2^{T}$
- Resource ω can be assigned to one of the schedules in $A(\omega) \subseteq S$
- Attacker (follower) chooses one target to attack
- Utilities: $U_{d}^{c}(t), U_{a}^{c}(t)$ if the attacked target is defended, $U_{d}^{u}(t), U_{a}^{u}(t)$ otherwise
- $U_{d}^{c}(t) \geq U_{d}^{u}(t) ; U_{a}^{c}(t) \leq U_{a}^{u}(t)$

Game-theoretic properties of security resource allocation games [Korzhyk, Yin, Kiekintveld, c., Tambe JAIR'11]

Game-theoretic properties of security resource allocation games [Korzhyk, Yin, Kiekintveld, C., Tambe JAIR'11]

- For the defender:

Stackelberg strategies are also Nash strategies

- minor assumption needed
- not true with multiple attacks

Game-theoretic properties of security resource allocation games [Korzhyk, Yin, Kiekintveld, C., Tambe JAIR'11]

- For the defender:

Stackelberg strategies are also Nash strategies

- minor assumption needed
- not true with multiple attacks
- Interchangeability property for Nash equilibria ("solvable")
- no equilibrium selection problem
- still true with multiple attacks
[Korzhyk, C., Parr IJCAI'11 - poster W.
3:30pm, talk F. 10:30am]

Game-theoretic properties of security resource allocation games [Korzhyk, Yin, Kiekintveld, C., Tambe JAIR'11]

- For the defender:

Stackelberg strategies are also Nash strategies

- minor assumption needed
- not true with multiple attacks
- Interchangeability property for Nash equilibria ("solvable")
- no equilibrium selection problem
- still true with multiple attacks [Korzhyk, C., Parr IJCAI'11 - poster W. 3:30pm, talk F. 10:30am]

1,2	1,0	2,2
1,1	1,0	2,1
0,1	0,0	0,1

Game-theoretic properties of security resource allocation games [Korzhyk, Yin, Kiekintveld, C., Tambe JAIR'11]

- For the defender:

Stackelberg strategies are also Nash strategies

- minor assumption needed
- not true with multiple attacks
- Interchangeability property for Nash equilibria ("solvable")
- no equilibrium selection problem
- still true with multiple attacks
[Korzhyk, C., Parr IJCAI'11 - poster W.
3:30pm, talk F. 10:30am]

Scalability in security games

[Kiekintveld, Jain, Tsai, Pita, Ordóñez, Tambe
AAMAS'09; Korzhyk, C., Parr, AAAI'10; Jain,
Kardeş, Kiekintveld, Ordóñez, Tambe
AAAI'10; Korzhyk, C., Parr, IJCAI'11]

Scalability in security games

basic model
[Kiekintveld, Jain, Tsai, Pita, Ordóñez, Tambe AAMAS'09; Korzhyk, C., Parr, AAAI'10; Jain, Kardeş, Kiekintveld, Ordóñez, Tambe AAAI'10; Korzhyk, C., Parr, IJCAI'11]

(usually zero-sum)
[Halvorson, C., Parr IJCAI'09; Tsai, Yin, Kwak, Kempe, Kiekintveld, Tambe AAAI'10; Jain, Korzhyk, Vaněk, C., Pěchouček, Tambe AAMAS'11]; ongoing work with Letchford, Vorobeychik

Scalability in security games

basic model
[Kiekintveld, Jain, Tsai, Pita, Ordóñez, Tambe AAMAS'09; Korzhyk, C., Parr, AAAI'10; Jain, Kardeş, Kiekintveld, Ordóñez, Tambe AAAI'10; Korzhyk, C., Parr, IJCAI'11]

(usually zero-sum)
[Halvorson, C., Parr IJCAI'09; Tsai, Yin, Kwak, Kempe, Kiekintveld, Tambe AAAI'10; Jain, Korzhyk, Vaněk, C., Pěchouček, Tambe AAMAS'11]; ongoing work with Letchford, Vorobeychik

Techniques:

Scalability in security games

basic model
[Kiekintveld, Jain, Tsai, Pita, Ordóñez, Tambe AAMAS'09; Korzhyk, C., Parr, AAAI' 10; Jain, Kardeş, Kiekintveld, Ordóñez, Tambe AAAI'10; Korzhyk, C., Parr, IJCAI'11]

(usually zero-sum)
[Halvorson, C., Parr IJCAI'09; Tsai, Yin, Kwak, Kempe, Kiekintveld, Tambe AAAI'10; Jain, Korzhyk, Vaněk, C., Pěchouček, Tambe AAMAS'11]; ongoing work with Letchford, Vorobeychik

Techniques:

compact linear/integer programs

$\operatorname{Maximize} U_{d}^{c}\left(t^{*}\right) \sum_{\omega} \sum_{s z^{*} \in s} c_{\omega, s}+U_{d}^{u}\left(t^{*}\right)\left(1-\sum_{\omega} \sum_{s i^{*} \in s} c_{\omega, s}\right)$
Subject to

Marginal probability of t^{*} being defended (?)
Distributional constraints

Attacker optimality

Scalability in security games

[Kiekintveld, Jain, Tsai, Pita, Ordóñez, Tambe AAMAS'09; Korzhyk, C., Parr, AAAI'10; Jain, Kardeş, Kiekintveld, Ordóñez, Tambe AAAI'10; Korzhyk, C., Parr, IJCAI'11]

(usually zero-sum)
[Halvorson, C., Parr IJCAI'09; Tsai, Yin, Kwak, Kempe, Kiekintveld, Tambe AAAI'10; Jain, Korzhyk, Vaněk, C., Pěchouček, Tambe AAMAS'11]; ongoing work with Letchford, Vorobeychik

Techniques:

compact linear/integer programs

$\operatorname{Maximize} U_{d}^{c}\left(t^{*}\right) \sum_{\omega} \sum_{s z^{*} \in s} c_{\omega, s}+U_{d}^{u}\left(t^{*}\right)\left(1-\sum_{\omega} \sum_{s z^{*} \in s} c_{\omega, s}\right)$
Defender utility
Subject to

strategy generation

In summary: Al pushing at some

 of the boundaries of game theory
(e.g., equilibrium selection)

Funding

Any opinions, conclusions or recommendations are mine and do not necessarily reflect the views of the funding agencies

Academic family

Mike Benisch

Andrew Gilpin

Dima Korzhyk
(Ph.D. student)

Josh Letchford
(Ph.D. student) (Ph.D. student, starting postdoc

Lirong Xia
 at Harvard)

AI at Duke

Family

