
1

Automatic Generation of System-Level
Dynamic Equations for Mechatronic

Systems

Antonio Diaz-Calderona, Christiaan J. J. Paredis, Pradeep K. Khosla
Institute for Complex Engineered Systems

Carnegie Mellon University
Pittsburgh, PA 15213

Email: adiaz@cs.cmu.edu, cjp@cs.cmu.edu, pkk@cs.cmu.edu
Phone: (412) 268-5214, FAX: (412) 268-5229

Abstract
This paper presents a novel methodology for deriving the dynamic equations of mecha-
tronic systems from component models that are represented as linear graphs. This work is
part of a larger research effort incomposable simulation. In this framework, CAD models
of system components are augmented with simulation models describing the component’s
dynamic behavior in different energy domains. By composable simulation we mean then
the ability to automatically generate system-level simulations through composition of indi-
vidual component models. This paper focuses on the methodology to create the system-
level dynamic equations from a high-level system description within CAD software. In this
methodology, a mechatronic system is represented by a single system graph. This graph
captures the interactions between all the components within and across energy domains —
rigid-body mechanics, electrical, hydraulic, and signal domains. From the system graph,
the system-level dynamic equations can be derived independently of the underlying energy
domains. In the final step, we reduce and order the dynamic equations for efficient compu-
tation. The complete modeling process is illustrated with an example of a missile seeker.

Keywords: mechatronics, composable simulation, system-level modeling, linear graphs.

a. Corresponding author.

2

1.Introduction

The work presented in this paper is part of a larger effort to develop a framework forcom-

posable simulation. By composable simulation we mean the ability to generate system-

level simulations automatically by simply organizing the system components in a CAD

system. A system component can be either a physical component (electrical motor, gear-

box, etc.) or an information technology component (embedded controller or other software

component). Each of these system components has one or more simulation models associ-

ated with it describing its dynamics in multiple energy domains, across energy domains,

and possibly at multiple levels of accuracy (with varying computational requirements).

When these system components are combined into a complete system, our framework will

automatically combine a selection of the associated component models into a system-level

simulation. The user interaction occurs thus at the level of composition ofsystem compo-

nentsrather thansimulation componentsas in most traditional simulation environments

(Matlab/Simulink, Easy5, etc.). These traditional simulation environments do not consider

the mapping from system components to simulation models. This mapping is not one-to-

one. The system-level simulation model is not simply a concatenation of individual com-

ponent models, but may require combining multiple system components into one simula-

tion model (to avoid algebraic loops or index problems) or conversely may require multiple

simulation components for a single physical component (describing its behavior in multiple

energy domains for instance). Raising the level of user interaction to composition of system

components rather than composition of simulation models will result in a significant reduc-

tion of effort in creating and modifying system-level simulations and will reduce the sim-

ulation and modeling expertise required of the user. Our framework for composable

simulation will therefore enable the designers and control engineers to verify their physical

designs and control software with much less effort and time than is required in current sim-

ulation environments.

In this paper, we will address an issue that typically occurs in the simulation of mechatronic

systems, namely, combining software components and symbolic equation manipulation.

Mechatronic systems span multiple energy domains (e.g. mechanical, electrical, hydraulic)

and include information technology components (such as control algorithms or signal pro-

3

cessing). Mathematical models of physical subsystems are in general represented by a set

of symbolic differential-algebraic equations (DAEs) while information technology sub-

systems are usually represented as computer code. From a modeling perspective, informa-

tion technology components can be considered as black boxes, i.e., port-based objects with

multiple inputs and outputs. Within our framework for composable simulation, the infor-

mation technology components will be included in the resultant set of DAEs (we call these

thesystem equations). Some of the inputs to these components may come from the envi-

ronment (e.g. a reference signal) while some others may come from symbolic equations

describing the mechatronic system. Similarly, the outputs of these components may be used

in symbolic equations or by other information technology components. To produce correct

simulation code, we must consider the information technology components while evaluat-

ing the system equations. This is necessary to obtain the evaluation order of the combined

system of equations and information technology components.

To address the composable simulation problems outlined above, we have developed a

methodology based on a system graph representation. We have extended the system graph

to include different energy domains and information technology components through a

combination of linear graphs and block diagrams, resulting in a unified system graph rep-

resentation. The system graph captures the topology of the energy flow in the system, and

is used to generate the set of differential-algebraic equations that describe the system

behavior. The block-diagram component of the system graph represents the signal flow in

the information-technology components. To address the problem of composable simulation

at the software integration level, we have defined a software architecture that supports the

integration of software modules7.

The relationship between physical systems and linear graphs was first recognized by

Trent31 and by Brannin2. Roe26 and Koenig13 apply the theory of linear graphs to the sys-

tems theory and provide important results that can be directly related to the two basic laws

in circuit theory: Kirchhoff’s voltage and current laws. Linear graph theory has been used

in the analysis of rigid body dynamics14,17,18,19,30and in the analysis of other engineering

systems that include interaction between different energy domains21.

4

Besides linear graphs, bond graphs12,27have also been used for system modeling. Bond

graphs are energy-based system descriptions in which energy elements are connected by

energy conserving junction structures. Similar to our approach, bond graphs define a min-

imal set of generalized elements that can be used to model system behavior across energy

domains. Connections between elements are made through power bonds which represent

the power flow in the system. Although bond graphs (with appropriate extensions) can be

used to represent mechatronic systems, we have chosen linear graphs for the following rea-

sons. Linear graphs can be more easily adapted to model 3D rigid body mechanics. Further-

more, linear system graphs reflect the topology of the physical system directly, making it

easier for non-specialists to create system descriptions.

Composition of simulation models can be accomplished by combining fundamental build-

ing blocks described in a high level object-oriented modeling language4,5,11. The object-

oriented approach facilitates model reuse and simplifies maintenance. Using these model-

ing languages, software executables can be generated automatically from individual sub-

models and the interactions between them.

In the commercial world, there are a number of simulation packages specifically designed

for particular application areas. In the area of CAE there exist several packages for rigid

body dynamics such as ADAMS20,23,24, DADS15,22, and Mesa Verde32. The main charac-

teristic of these systems is that the equations of motion are generated numerically from the

geometric description of the mechanism. Some (i.e., ADAMS and DADS) can be inte-

grated with CAD packages such that the geometry of the mechanism is directly derived

from the CAD model.

A second group of commercial simulation packages provides support for general systems

modeling and simulation. We can identify three main approaches: 1) block-diagrams, 2)

object-oriented modeling and 3) bond graphs. Systems belonging to the first category

include EASY53 and Matlab/Simulink16. Both systems are based on an interactive environ-

ment for modeling where the user defines the system as a network of interconnected blocks.

EASY5 however takes the modeling approach a step further in which the system is mod-

5

eled by defining the interactions between components instead of simulation blocks as with

the block-diagram approach.

In the second category we can include Dymola9. Dymola is an object-oriented language

and a program for modeling large systems. Reuse of modeling knowledge is supported by

use of libraries containing model classes and through inheritance. Dymola also supports the

new object-oriented modeling language Modelica10.

Finally, 20-sim6 models systems based on the bond graph approach. Dymola and 20-sim

represent the model dynamics in non-causal form which provides greater modeling flexi-

bility by not forcing the modeler to use predefined input/output relationships when defining

model dynamics.

This paper is organized as follows. In Section 2 we describe the proposed modeling meth-

odology to model mechatronic systems. In Section 3 we present algorithms to synthesize

the system graph from the geometric description of the mechatronic system. We proceed in

Section 4 to present algorithms to derive the governing system equations, and we conclude

in Section 5.

2.Modeling of mechatronic systems

Linear graph theory is a branch of mathematics that studies the algebraic and topological

properties of topological structures known as graphs. In this context, a physical system can

be regarded as a collection of components and terminal points31. Between any two termi-

nals, a pair of oriented measurements can be taken, namelyacrossandthroughmeasure-

ments, as shown in Figure 1. The variables associated with this pair of measurements are

called terminal variables. The mathematical relations between the terminal variables

define the component’s physical characteristics and are calledterminal equations.

The graph representation of the component is a directed edge that joins two terminal points.

This graph representation is calledterminal graphof the component, and thesystem graph

is the collection of terminal graphs connected at the appropriate nodes. In a mechatronic

6

system, the system graph may be non-connected, due to the presence of processes in differ-

ent energy domains.

Based on the type of relationship between the terminal variables, one can distinguish three

classes of elements: passive elements (that can be further divided into dissipative and non-

dissipative elements), generators, and transducers. A dissipative element is one which

cannot supply energy to the system while a non-dissipative element, does not dissipate

energy but can store it for later recovery. These elements can be divided in two categories:

delayelements which store energy by means of their through variables, andaccumulator

elements which store energy by means of their across variables. The second class of com-

ponents contains the generators or drivers. A driver forces an across or through quantity to

follow a prescribed function of time. The third class of elements, the transducers (also

referred to as couplers), transmits energy from one part of the system to another. An ideal

transducer is a transducer that can neither store nor dissipate energy, i.e., there is no energy

loss in the component.

Interactions between different energy domains, cannot be described with a two-terminal

element. It is necessary to introduce elements that have more than two terminals —n-ter-

minal elements. Within this category we find the transducer elements defined previously.

The system graph associated with an n-terminal element will be derived from measure-

ments taken between pairs of terminals. However as is shown by Roe26, we only need

across measurements to completely determine the across variables between any pair of ter-

minals. This number corresponds to the number of branches in a tree selected in the graph:

the terminal graph of ann-terminal element is the treeT of edges connecting then

vertices corresponding to then terminals of the system component. To illustrate this case

consider the electric transformer (a 3-terminal system component) shown in Figure 2. Two

across measurements will completely determine the device giving a terminal graph with

two edges.

As is the case with two-terminal elements, the edges in a terminal graph of ann-terminal

element will be associated with measurements taken between terminal pairs in the physical

system.

n 1–

n 1–

7

In summary, there exists an isomorphism between a linear graph and a physical system pro-

vided that one can define pairs of across and through variables. For a system composed of

m subsystems, thesystem graphis the union of all terminal graphs for all the components

of the system.

Table 1 shows all the various variables associated with the different energy domains con-

sidered.

All derivatives of across or through variables are across or through variables as well. For

example, velocity and acceleration are also across variables.

Let x be a vector of across variables andy a vector of through variables

associated with a system graph ofe edges. The terminal variables are chosen

such that the power of a component is characterized by their product.

2.1 Representation of topology

The topology of the system graph withv vertices andeedges can be represented by an inci-

dence matrix . The incidence matrix is a matrix in which each element can have

the value +1, -1, or 0 if the edgee is negatively, positively, or not incident onto nodev,

respectively. In general, for a graph withp connected components, the incidence matrix is

a direct sum: a matrixM is said to be a direct sum of if for any inM no

nonzero element of lies in a row or column ofM associated with any of the other sub-

matrices. The matrices can be regarded as the incidence matrices of each of thep con-

nected components.

Table 1.Through and across variables for various energy domains

Type of
system

Through Variable Across variable

Name Symbol Name Symbol

General

Electrical Current Voltage

Hydraulic
Fluid
flow

Pressure

Mechanic
Force,
Torque

,
Displacement

,

x t() y t()

i t() v t()

g t() p t()

f t()
τ t()

r t()
θ t()

x1 x2 … xe, , ,

y1 y2 …ye, ,

A v e×

M1 M2 …Mp, , Mk

Mk

Mk

8

As an example consider the mechatronic system shown in Figure 3 for which the system

graph is shown in Figure 4. The mechatronic system consists of two energy domains

(mechanical and electrical) and a number of components within each energy domain.

The incidence matrix for the system graph for the mechatronic system is

(1)

This matrix is a direct sum of the incidence matrices for the mechanical and the electrical

energy domains. It can be shown that for each connected componentk, only rows of

the submatrix are linearly independent. When one node is identified as the datum node

within each energy domain and the corresponding row is deleted from , the resultant

matrix is called thereduced incidence matrixA:

(2)

2.2 Constraint equations

The terminal equations are insufficient to describe the mechatronic system completely. An

additionale equations are required to define a well posed problem:2e equations in2e

unknowns. These additional equations are derived from the connectivity of the components

given by the topology of the system graph. We now regard the system graph as two sub-

graphs; aspanning treeT (or spannig forestif the graph is non-connected) and acotree

A

1 0 0 0 1– 0 0 0 0 0 0 0

0 0 1– 0 1 0 0 0 0 0 0 0

0 1 1 1– 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0

1– 1– 0 0 0 1– 1– 1– 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 1– 1– 1– 1–

A1 0

0 A2

= =

vk 1–

Ak

Ak

A

1 0 0 0 1– 0 0 0 0 0 0 0

0 0 1– 0 1 0 0 0 0 0 0 0

0 1 1 1– 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 1 1

=

9

(coforest.) Without loss of generality, assume that the system graph is connected .

We can identify pairs of terminal variables with thebranchesof the span-

ning tree and terminal variables with thechordsof the cotree. If the

system graph is divided in two non-connected subgraphs by a cut including exactly one

branch ofT and some chords, the cut is unique. It is clear that for a treeT with

branches, there will be as many unique cuts. The sum of the vertex equations for all nodes

within the cut-setb contains only through variables corresponding to the cut-set elements.

The set of all cut-set equations can be written in the form:

(3)

whereUT is a unit matrix of dimension and the cut-set matrix can be

derived by applying row operations on the reduced incidence matrixA.

Each chord in the system graph is uniquely associated with a loop in the system. For a given

loop, its orientation will be determined by the orientation of the defining chord. A new

matrix, namely the circuit matrixB that captures the connectivity relations between circuits

and edges can be defined. The circuit equations associated with each circuit can be written

in the form:

(4)

WhereUC is a square unit matrix with dimensions equal to the number of chords in the

system graph. From theprinciple of orthogonality, which states that the vector space

spanned by the rows of the incidence matrixA and the vector space spanned by the rows

of the circuit matrixB are orthogonal complements13(i.e.,), we

can obtain an expression forBT:

(5)

b. A cut-set is a set of edges that divide the graph into exactly two components.

p 1=()

v 1– xT yT,()

e v– 1+ xC yC,()

v 1–

UT AC

yT

yC

0=

v 1–() UT AC

BT UC

xT

xC

0=

AB T 0 andBA T 0= =

BT A– C
T=

10

2.3 Low-power component modeling

In order to include information technology components as well as other types of low-power

devices in the system graph, it is necessary to extend the system graph representation for

the inclusion of signals. Asignalrepresents the value of some system variable as a function

of time. To introduce signals in the system graph we define the concept ofvariable ele-

ments. A variable element is an element that can have one or more input signals that modify

its response. The simplest variable element is the signal-controlled across or through driver.

In this case, either the across or through variable associated with the terminal graph will be

completely defined by the signal: or wherex andy repre-

sent across and through variables, respectively. Similarly, a variable passive element is also

signal-controlled, but here, the input signal is modulating one of the element parameters

(Figure 5). Output signals are obtained from the system graph as “measurements” of

system variables (Figure 6).

In the context of mechatronics, it is important to have a system representation that is capa-

ble of handling signal elements. Mechatronic systems include information technology

components for which there is no energy flow and that therefore cannot be represented by

a terminal graph. As an example consider an embedded controller. The control algorithms

are provided as algorithmic components that must interact with the rest of the system but

do not generate or transfer power.

To illustrate this consider a portion of a positioning system composed of an angular posi-

tion sensor, a regulator, and a current source (Figure 7). The regulator obtains the signal

input from the position sensor to provide an output signal used to modulate the current

source.

3.Synthesis of the System Graph for Mechatronic
Systems

The system graph for a mechatronic system is constructed with the help of asystem editor

that is tightly integrated with a CAD system. The approach to building a system in the

system editor is calledschematic-diagram.In this approach the modeling is done at the

x t() f s t()()= y t() h s t()()=

11

component level and the interaction between components is defined by connections

betweenterminals. As is shown in Figure 8, the system editor is based on the concept of

modeling layerseach of which represents a different energy domain of the system. The

modeling layer for the mechanical energy domain is implemented in a CAD system. When

a component is brought into the system editor, its constituting models are included in their

respective modeling layers. It is then the task of the user to identify the interactions between

components. Interactions are classified as: 1) mechanical interactions, 2) terminal connec-

tions, and 3) edge associations. Terminal connections and edge associations arise from the

interconnection of elements in non-mechanical modeling layers. On the other hand,

mechanical interactions such as rigid connections, prismatic joints or revolute joints arise

from the interconnection of two rigid bodies.

The data flow diagram illustrating the flow of data through the system is shown in Figure

9. After the design is defined in the system editor, the topology and geometry of the system

is derived from the high-level description given in the system editor. The analysis occurs

in two parts: the analysis of the mechanical domain, and the analysis of the non-mechanical

energy domains. In the mechanical domain, the analysis starts by extracting the kinematic

and geometric information from the CAD model. This information is used in the generation

of the mechanical system graph. The output of this process is passed to Dynaflex to gener-

ate the equations of motion of the mechanism. The analysis of the non-mechanical energy

domains starts by constructing the system graph from the topological information provided

by the system editor. The system graph is then used to write the terminal equations in causal

form from which later a state space form is derived. This set of equations is combined with

the equations derived from Dynaflex and with the equations derived from the signal

domain. This new set of equations is then transformed to a set of differential algebraic equa-

tions which are sorted into a computationally feasible evaluation order8. The output of this

process is a system in Block Lower Triangular (BLT) form which can be simulated by the

simulation kernel. Currently, the BLT form is translated into and simulated in the

ASCEND25 system. Finally, the output of the ASCEND simulation is sent to the visualiza-

tion process.

12

3.1 Synthesis of the system graph for non-mechanical energy domains

Terminal connections represent the interaction between components within the non-

mechanical energy domains. Interactions are non-causal which means that the terminals

involved in the connection do not have a predefined direction. A terminal connection

between two terminals indicates that both terminals are mapped to a single node in the

system graph.

As defined in Section 2, the mathematical model of a component consists of two parts: the

terminal equations (behavior) and the terminal graph (topology). The generation of the

system graph is a two step process. First, the terminal graphs of the individual components

are instantiated to create a disconnected graph withnc components, wherenc is the number

of terminal graphs in the system. Second, the information provided by the terminal connec-

tions is used to reduce the graph to a non-connected graph with components, where

nE is the number of energy domains involved in the design.

We define a topological operatormerge(u, v)as follows: letG be the system graph defined

by whereV is the set of vertices andE is the set of edges represented as

ordered sets . Then,

(6)

The generation of the system graph can be though of as the reduction of a non-connected

graph withnc components to a non connected graph withnE components by a successive

application of the merge operator to the terminal graphs of the components.

Edge associations arise from the energy exchange between different energy domains. They

occur when system variables in the terminal equations of a component are associated with

other edges in the terminal graph. For example consider the terminal equation of the elec-

trical edge of a DC motor:

(7)

nE nc<

G V E,()=

u v,{ }

merge u v,()
u v,{ } V∈ V V v{ },–←⇒

e E∈()∀ v e∈ e e v{ }–() u{ }∪←⇒,
∼

v t() Kmθ̇ t() R L
td

d
i t()+ +=

13

Variable is a system variable that is associated with an edge (in the mechanical system

graph) that is not part of the electrical domain. These types of variables are calledexoge-

noussince they are assumed to be known within that portion of the model. The definition

of exogenous variables within a terminal equation establishes an association between edges

in the system graph.

3.2 Synthesis of the system graph for 3D Mechanics.

The difference between the system graph for non-mechanical energy domains and the

system graph for the mechanical domain lies in the dimensionality of the terminal vari-

ables. Variables in the mechanical domain are elements of whereas variables in the

system graph are elements of (i.e., scalars.) Once the system graph for the mechanical

domain is generated, the dynamic equations of the 3D mechanics of the system are derived

using a sub-module (Dynaflex) which is specifically designed for the analysis of three

dimensional constrained mechanical systems30. Dynaflex is a research system developed

at the University of Waterloo and is based on a graph-theoretic approach in which the con-

nectivity of the bodies in the mechanism and the forces acting on them are represented by

a linear graph (mechanical system graph). Dynaflex is based on the same principles as those

used in the derivation of the system equations for non-mechanical energy domains and can

therefore be seamlessly integrated with our approach.

Our approach is general enough to accept different mechanism analysis tools; however the

only restriction is that it must provide dynamic equations in symbolic form. The reason

being that these equations are to be combined later with the remaining system equations

derived from the other non-mechanical energy domains (see Figure 9.)

The system graph of the mechanical system captures the topology of the mechanism. How-

ever, to have a complete model, geometric and inertial information must be added to the

topology. Our work on kinematic and geometric analysis28 allows us to automatically

determine the instantaneous kinematic relationships between components in the mecha-

nism. This geometric analysis further provides information about the origin of the inertial

frame, center of mass of each body, location of articulation points in each body, type of

joint, and points of application of internal forces. As a result, modifications to the geometry

θ̇ t()

ℜ3

ℜ

14

of a component in a CAD system are automatically updated in the corresponding simula-

tion model.

Similar to the basic modeling elements we defined in Section 2, Dynaflex provides a set of

modeling elements for mechanical systems, including30: body elements, arm elements

(position vectors), motion and force drivers, spring-damper-actuator elements, and joint

elements. This classification of elements is used to assign weights in the normal tree selec-

tion algorithm presented in Section 4. Once the mechanical system graph has been

defined—as indicated later in the section—penalty costs are assigned to the edges of the

system graph based on the type of element they model. This weighted graph is used to find

a tree that will define the causality of the terminal equations associated with the edges in

the mechanical system graph. This tree is then found by applying the minimum cost span-

ning tree to the weighted graph.

The process for obtaining the graph representation suitable for Dynaflex consists of three

steps. First anextendedsystem graph is generated. This step maps the geometry of the

mechanism directly into a linear graph representing its topology. The second step identifies

composite bodies consisting of rigidly connected subcomponents. In a final step, composite

bodies are replaced by single bodies reducing the system graph to a minimal graph with the

same topological properties.

The generation of the system graph involves a direct translation of the kinematic informa-

tion into the linear graph representation. In general, the result of the first stage is an

extended system graph that includes all kinematic information including fixed joints and

redundant joints. However, to avoid structural singularities and indexing problems, and to

improve the efficiency of the symbolic computations in Dynaflex, we simplify this initial

system graph by lumping all rigidly connected bodies into a single composite body.

Composite bodies are identified by performing a depth-first traversal on the extended

system graph. The algorithm explores all paths created by rigid connections and collects all

bodies along the path into a single composite body. The algorithm can be stated as follows:

15

Algorithm A. (Composite body identification). The algorithm takes as an input the sys-

tem graph and generates as output the set of composite bodies. The algorithm uses the fol-

lowing sets to keep track of all nodes in the graph: the set CLOSED, contains all nodes

already visited. The set LUMPS contains all the composite bodies in the system. OPEN is

a set containing all the nodes to-be-visited. contains the bodies to be combined into the

current composite, and SYSTEM is the set of CG nodes of the system graph.

A1. Set ,

A2. While do

A3. Set , ,

A4. ,

A5. While do

A6. ,

A7. ,

A8. Continue A5.

A9. Set

A10. Continue A2.

A11. The algorithm terminates. We have checked all bodies in the system and have

defined the composite bodies that must be created.

ξ

CLOSED ∅← LUMPS ∅←

SYSTEM ∅≠

cg first SYSTEM()← ξ cg{ }←

OPEN sucessors cg() \ CLOSED←

SYSTEM SYSTEM\ cg{ }←

CLOSED CLOSED cg{ }∪←

OPEN ∅≠

cg first OPEN()←

ξ ξ cg{ }∪←

OPEN OPEN\ cg{ }() sucessors cg() \ CLOSED()∪←

SYSTEM SYSTEM\ cg{ }←

CLOSED CLOSED cg{ }∪←

LUMPS LUMPS ξ{ }∪←

16

Algorithm A uses the predicatesuccessors , which given a node in the system graph, it

returns the adjacent nodes if the path to the successors is through a rigid connection.

The last stage in the synthesis of the system graph is to perform the reduction process that

will combine the identified bodies into single composite bodies and remove redundant

joints. Redundant joints are detected by loops where the bodies in the loop appear more

than once. If two joints are found to be redundant, that can be interpreted in two ways. First,

the joint axes may be colinear. This would result in an overconstrained mechanism for

which one of the two joints can be discarded for analysis purposes. The second interpreta-

tion is when the joint axes are not colinear making some angle between them. This con-

figuration results in an overconstrained body for which we cannot discard any of the joints

for analysis purposes. In this event, the algorithm reports the problem to the user stating

that the system is fully constrained.

As an example of how these steps are followed consider the design of a missile seeker

shown in Figure 10.

This design contains 9 bodies: housing, gimbal ring, camera, pitch connector (2) yaw con-

nector (2), shaft (2). A kinematic description of the system reveals that there are a number

of bodies that may be combined to form composites (Table 2).

Table 2.Kinematic description for the seeker system

Type of Joint Reference body Secondary body

FIXED housing pitch connector (a)

FIXED housing pitch connector (b)

REVOLUTE* pitch connector (a) gimbal ring

REVOLUTE pitch connector (b) gimbal ring

FIXED gimbal ring yaw connector (a)

REVOLUTE* yaw connector (a) shaft (a)

FIXED gimbal ring yaw connector (b)

REVOUTE yaw connector (b) shaft (b)

FIXED shaft (a) camera

FIXED shaft (b) camera

α

17

From the kinematic description shown in Table 2, the first stage of our derivation generates

an extended system graph shown in Figure 11. Secondly, Algorithm A identifies the com-

posites listed in Table 3.

Finally, the reduction stage yields the following kinematic relations:

Notice that there are two revolute joints per pair of composite bodies. Kinematic analysis

reveals that the rotation axes of each pair of joints coincide. For the Dynaflex analysis, one

of the two points is removed to avoid concluding overconstrained kinematics; only the

joints marked with an asterisk are considered. At the end of the reduction process, we

obtain the reduced system graph shown in Figure 12.

In addition to the inertial parameters and the kinematic properties, dynamic elements such

as external forces, and forces acting between any two bodies are included in Dynaflex rep-

resentation. For this example, only two force elements are introduced: e8 and e12, which

are the result of the motors built into the corresponding joints. Furthermore, we introduce

gravity forces acting on the bodies at their center of mass. The edges (e1, e3, e5) represent

the weights of BODY_2, BODY_3, and BODY_1, respectively. If the characteristics of the

geometric components are changed, the dynamic model is automatically updated to reflect

those changes.

Table 3. Composite bodies found by Algorithm A

Composite Constituents

BODY_1 shaft (b) camera shaft (a)

BODY_2 housing pitch connector (b) pitch connector (a)

BODY_3 gimbal ring yaw connector (b) yaw connector (a)

Table 4.Kinematic description for the composite bodies in the seeker

Type of Joint Reference body Secondary body

REVOLUTE BODY_2 BODY_3

REVOLUTE* BODY_2 BODY_3

REVOLUTE BODY_3 BODY_1

REVOLUTE* BODY_3 BODY_1

18

4.Synthesis of system equations

Once a mechatronic system has been described as a system graph, the dynamic equations

can be derived from the graph without the need to consider the underlying physics in each

of the energy domains. As mentioned in Section 2, the system equations can be derived by

simultaneously considering thee terminal equations and thee independent topological con-

straints (cut-set and circuit equations). The remaining questions that we will address in this

section are: which topological constraints need to be considered, and which of the two

system variables (across or through) should be the independent variable in each of thee ter-

minal equations? Both of these questions are answered in the normal tree selection algo-

rithm presented in this section.

The terminal equations plus any independent set ofe constraint equations unambiguously

define the dynamics of the system. However, before these equations can be numerically

solved they must be expressed in state space form in which the derivatives of a statex are

expressed as explicit functions of the states and time:

(8)

Expressing the equations of the system in this form implies using the smallest possible

number of equations (equal to the order of the system) and expressing the high order deriv-

atives as a function of low order derivatives of state variables, in each equation

This can be accomplished in the following way. Let us divide the system variables into two

groups: primary variables and secondary variables — one of each for every edge. Assume

now that in the terminal equation of an edge, the highest order derivative of the primary

variablep is expressed as a function of the secondary variable,s:

(9)

On the other hand, assume that in the constraint equations the secondary variables are

expressed as a function of the primary variables:

(10)

ẋ f x t,()=

p
n()

f s()=

s g p()=

19

Then, by substituting the constraint equations (10) into the terminal equations (9), we get a

minimal set of dynamic equations of the form:

(11)

which is exactly the desired state-space representation.

The final step in the derivation of our approach is the selection of the primary and second-

ary variables. According to equations (3) and (4) the dependent variables in the constraint

equations are the through variables in the branches of the tree and the across variables in

the chords of the cotree:

(12)

From equations (10) and (12), we can identify primary variables with the set of across

variables associated with the branches of a forest and the set of through variables

associated with the chords of a coforest. Similarly, the dependent variables in equation (12)

are identified as secondary variablesof the system graph.

Based on the selection of primary and secondary variables, we can obtain dynamic equa-

tions of the form (11) by selecting a tree on the system graph such that the following two

conditions are satisfied: 1) the highest order derivatives of as many primary variables as

possible appear in the terminal equations as functions of secondary variables and low order

derivatives of primary variables, and 2) the terminal equations contain as few derivatives

of secondary variables as possible. The tree that satisfies these two conditions is called a

normal tree of the system graph.

The normal tree of a system graphG is found by defining a real function on

the edges ofG that computes the weight of the edges as follows:

Let and represent the highest derivative order of all accumulator elements and all

delay elements respectively, and be a real function defined on the edges that

computes the highest derivative order of the element associated with edgee. Next, classify

p
n()

f g p()()=

yT ACyC–=

xC BTxT–=

v p–

e v– p+

w: e ℜ+→

κα κτ

O:e ℜ+→

20

the edges ofG as follows: let all across drivers and generalized across drivers belong to the

class , accumulator elements to the classes

, (13)

dissipator elements to class , and delay elements to the classes

. (14)

Finally, all through drivers and generalized through drivers will belong to class . The

weight functionsw defined on the edges ofG are chosen for each class such that

(15)

where is the weight function associated to class , is the weight function associ-

ated to class , is the weight function associated to class , is the weight function

associated with class , and is the weight function associated to class .

In other words, the weight functionw ranks the edges ofG based on their respective classes.

Any weight function that satisfies the ranking in equation (15) is admissible.

The next step in our approach is to find aminimum cost spanning treec that minimizes the

total cost (weight) of the weights assigned to the branches of the tree. Aho et. al.1 shows

that it is always possible to find such a tree based on the following property: letV be the set

of vertices ofG andU be a proper subset ofV. If is an edge of lowest cost

such that and , then there is a minimum cost spanning tree that includes

. The proof of this property is outside the scope of this article but can be found in Aho

et. al.1

Once a normal tree has been selected, we can writee cut-set and circuit equations, ande

terminal equations. The constraint equations together with the terminal equations constitute

the set of equations for the complete solution of the mechatronic system excluding the

mechanical energy domain. To completely specify the mechatronic system, these equations

are combined with the dynamic equations for the 3D mechanism derived by Dynaflex. This

c. A spanning tree forG is a tree that connects all vertices inG.

c∆

ci
α eα O eα() κα i–={ }= i 0 … κα 1–, ,=

cδ eδ O eδ() 0={ }=

ci
τ eτ O eτ() κτ i–={ }= i 0 … κτ 1–, ,=

cΦ

w∆ w0
α w1

α … wκα 1–
α wδ w0

τ w1
τ… wκτ 1–

τ wΦ< < < < < < < < <

w
∆

c
∆

wi
α

c
α

wi
δ

c
δ

wi
τ

c
τ

wi
Φ

c
Φ

emin u v,()=

u U∈ v V U–∈

emin

21

new set of equations will be in general a set of differential algebraic equations (DAE) which

constitute the set of equations for the complete system.

We now revisit the missile seeker example introduced in the previous section. The topolog-

ical information of this design is specified in theSystem Editoras indicated in Figure 13;

the nodes represent components, and edges represent physical connections established

between components. The components in the system are port-based objects7 that have a

well defined interface that prescribes its interaction with the environment. In addition to the

interface each component includes its mathematical model from which the terminal graphs

are instantiated in the system graph with . Terminal connections derived from the

system description are used to perform successive applications of the merge operation to

reduce the electrical system graph to a connected graph with . For instance the

electrical side of thepitch-motor and theamp-voltage-source are connected

through connectionsd (3, 1) and (4,2) which result in two merge operations as indicated in

Figure 14. A similar process occurs with the other two electric components leaving an elec-

tric system graph with two components. However, the terminal connection between the

amp-voltage-sources defines the common ground which merges the ground nodes

of the two components reducing the electrical system graph to a connected graph with a

single component.

This process completely defines the system graph for the system. The system graph is a

non-connected graph with two connected components: one connected component for the

electrical domain and one connected component for the mechanical domain (Figure 15.)

To write a system of differential equations in state space form, we proceed to find the

normal forest (i.e., a normal tree in each connected component of the system graph). This

is accomplished by assigning penalty weights to the edges of the system graph and then

computing the minimum cost spanning tree on each connected component. For the electri-

d. Terminal connections are represented as non-directed edges to reflect the non-causal relation between the
terminals.

nc 4=

nE nc< 1=

22

cal system graph the weights are assigned based on the form of the terminal equation asso-

ciated with the edge which are shown in Table 5:

Following the classification rules defined before, the elements in the electrical system

graph fall in the following classes:

where the weights are selected such that

(16)

A similar approach is applied to the mechanical system graph resulting in the normal forest

shown in Figure 15 and indicated by bold lines. The next step in our derivation is to write

the system of equations from the system graph. We use Dynaflex to derive the equations of

motion of the mechanism while our system takes care of the non-mechanical energy

domain. In this process, the equations are first written in causal form derived from the

normal forest as indicated in Equation (17). The last equation in (17) represents the equa-

tions of motion generated by Dynaflex whereM is the inertia matrix of the system,V is the

Table 5.Terminal equations for the electrical components in the seeker.

Domain Component Edge Terminal equation

Electrical

Pitch motor 18

Yaw motor 15

Controlled voltage
driver

17

Controlled voltage
driver

16

Table 6.Classification of electrical components in the electrical system graph

Edge Class Weight

18 first order delay

15 first order delay

17 signal-controlled across driver

16 signal controlled across driver

v18 t() kmα
θ̇9 t() R18i18 t() L18 td

d
i18 t()+ +=

v15 t() kmβ
θ̇13 t() R15i15 t() L15 td

d
i15 t()+ +=

V17 t() Eα t()=

V16 t() Eβ t()=

w18

w15

w17

w16

wi

w16 w17=() w15 w18=()<

23

vector of centrifugal and coriolis terms,G is the vector of gravity terms, andF is the vector

of external forces such as friction forces or other non-rigid body effects.

(17)

The dynamic equations are augmented using the coupling equations defined by the associ-

ations indicated in the system editor to complete the definition of the system of ODEs. This

system is then transformed into six first order differential equations to which the equations

derived from the signal domain are appended. This last step yields the dynamic equations

that describe the behavior of the seeker including the controllers from the signal domain.

The system of ODEs is then integrated over time to obtain the behavior of the system

(Figure 16.) As an example of the output and one of the visualization options, the system

is presented with step functions as inputs. Figure 17 shows the angular position of the gim-

bal, , and the camera assembly, , when step functions of 0.14 rad and -0.14 rad are

applied to the respective controllers.

5.Conclusions

The composable simulation approach offers new and promising possibilities in the area of

intelligent CAD. By composing simulations of mechatronic systems the designer is able to

explore a larger portion of the design space. This results in improved quality and reduced

costs of the designed artifact. In our framework for composable simulation, the designer

works at the level of system components. These components have multiple mathematical

models associated with them. The mathematical models include CAD models (geometry),

dynamic equations and topological information about the component. The framework for

composable simulation automatically generates system-level simulations from the compo-

nent models and their interactions as described by the user. Inertial and kinematic proper-

ties of the design are automatically derived from the CAD models, so that changes in

geometry are automatically updated in the simulation models.

td
d

i18 t() f α θ̇9 i18 v18, ,()=

td
d

i15 t() f β θ̇13 i15 v15, ,()=

τ M Θ()Θ̇̇ G Θ() V Θ Θ̇,() F Θ Θ̇,()+ + +=

α t() β t()

24

Our approach is based on linear graph theory. We extended the linear graph approach to

include signal elements creating a hybrid representation for mechatronic systems. This rep-

resentation combines linear graphs with block diagrams providing a multi-domain model-

ing framework. Component models of physical components are represented by terminal

graphs with corresponding terminal equations. Terminal equations are expressed in non-

causal form to reflect the fundamental nature of the physics of the modeled component.

This approach provides greater modeling flexibility and promotes model reuse. Terminal

graphs are combined into a system graph, which is a domain independent representation of

the system dynamics. Furthermore, a minimum cost spanning tree algorithm is used to

express the terminal equations and the constraint equations in causal form. A further reduc-

tion process results in dynamic equations in state space form. We illustrated the framework

with an example of a missile seeker.

6.Acknowledgments

Our thanks are due to Dr. John J. McPhee and Dr. Pengfei Shi from the Motion Research

Group in the Department of Systems Design Engineering at the University of Waterloo for

their help in the use of Dynaflex. We would also like to thank the reviewers. Their insight-

ful comments improved the quality of the article significantly.

This research was funded in part by DARPA under contract ONR # N00014-96-1-0854, by

the National Institute of Standards and Technology, by the Pennsylvania Infrastructure

Technology Alliance, by the National Council of Science and Technology of Mexico

(CONACyT), and by the Institute for Complex Engineered Systems at Carnegie Mellon

University.

7.References
[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman,Data structures and algorithms. Read-

ing, Massachusetts: Addison-Wesley, 1987.

[2] F. H. Branin, “The algebraic-topological basis for network analogies and the vector
calculus,” presented at Symposium on Generalized Networks, Polytechnic Institute
of Brooklyn, 1966.

25

[3] The Boeing Company, “Easy5 Engineering analysis system,” 1999.

[4] F. E. Cellier, Continuous system modeling. Springer-Verlag, 1991.

[5] F. E. Cellier, Automated formula manipulation supports object-oriented continuous-
system modeling. IEEE Control Systems, Vol. 2, No. 13, April 1993. pp. 28-38.

[6] Controllab Products B. V., “20-sim,” AE Enschede, the Netherlands, 1999.

[7] A. Diaz-Calderon, C. J. J. Paredis, and P. K. Khosla, “A modular composable soft-
ware architecture for the simulation of mechatronic systems,” presented at ASME
Design Engineering Technical Conference, 18th Computers in Engineering Confer-
ence, Atlanta, GA, September 1998.

[8] A. Diaz-Calderon, C. J. J. Paredis, and P. K. Khosla, “Combining information tech-
nology components and symbolic equation manipulation in modeling and simula-
tion of mechatronic systems,” 1999 IEEE International Symposium on Computer
Aided Control System Design, Island of Hawaii, Hawaii, August 1999.

[9] Dynasim AB, “Dymola,” Lund, Sweden, 1999.

[10] H. Elmqvist, S. E. Mattsson, and M. Otter, “Modelica: The new object-oriented
modeling language,” presented at The 12th European Simulation Multiconference,
Manchester, UK, 1998.

[11] H. Elmqvist, and D. Bruck. “Constructs for object-oriented modeling of hybrid sys-
tems.” In Eurosim Simulation Congress, Vienna, Austria, September 11-15, 1995.

[12] D. C. Karnopp, Margolis, D. L., and R. C. Rosenberg. System dynamics: A unified
approach. John Wiley & Sons, Inc. New York, NY, 1990.

[13] H. E. Koenig, Tokad, Y., Kesavan, H. K., and H. G. Hedges, Analysis of discrete
physical systems. New York: MacGraw-Hill, 1967.

[14] T. W. Li, and G. C. Andrews, “Application of the vector-network method to con-
strained mechanical systems,”Mechanisms, Transmissions, and Automation in
Design, vol. 108, pp. 471-480, 1986.

[15] LMS CADSI, “DADS,” 1999.

26

[16] The Mathworks Inc., “Matlab/Simulink,” 1999.

[17] J. J. McPhee, “On the use of linear graph theory in multibody system dynamics,”
Nonlinear Dynamics, vol. 9, pp. 73-90, 1996.

[18] J. J. McPhee, M. G. Ishac, and G. C. Andrews, “Wittenburg's formulation of multi-
body dynamics equations from a graph-theoretic perspective,”Mechanism and
Machine Theory, vol. 31, pp. 202-213, 1996.

[19] J. J. McPhee, “Automatic generation of motion equations for planar mechanical sys-
tems using the new set of “branch coordinates”,”Mechanism and Machine Theory,
vol. 33, pp. 805-823, 1998.

[20] Mechanical Dynamics Inc., “ADAMS,” 1999.

[21] B. J. Muegge, “Graph-theoretic modeling and simulation of planar mechatronic sys-
tems,” MA. Sc. Thesis, Systems Design Engineering, University of Waterloo,
Waterloo, 1996.

[22] P. E. Nikravesh and I. S. Chung, “Application of euler parameters to the dynamic
analysis of three-dimensional constrained mechanical systems,”Journal of Mechan-
ical Design, vol. 104, pp. 785-791, 1982.

[23] N. Orlandea, M. A. Chace, and D. A. Calahan, “A sparsity-oriented approach to the
dynamic analysis and design of mechanical systems - Part 1,”Journal of Engineer-
ing for Industry, August, 1977.

[24] N. Orlandea, M. A. Chace, and D. A. Calahan, “A sparsity-oriented approach to the
dynamic analysis and design of mechanical systems - Part 2,”Journal of Engineer-
ing for Industry, August, 1977.

[25] P. C. Piela, T. G. Epperly, K. M. Westerberg, and A. W. Westerberg, “ASCEND: An
object oriented computer environment for modeling and analysis. 1 - The modeling
language,”Comput. Chem Engng, vol. 15, no. 1, pp. 53-72, 1991.

[26] P. H. O’n. Roe,Networks and systems. Reading, Massachusetts: Addison-Wesley,
1966.

[27] R. C. Rosenberg, and D. C. Karnopp. Introduction to physical system dynamics.
McGraw-Hill, New York, NY, 1983.

27

[28] R. Sinha, C. J. J. Paredis; S. K. Gupta; and P. K. Khosla, “Capturing Articulation in
Assemblies from Component Geometry,” Proceedings of the ASME Design Engi-
neering Technical Conference, September 1998, Atlanta, Georgia, USA.

[29] S. Seshu and M. B. Reed,Linear graphs and electrical networks. Reading, Massa-
chusetts: Addison-Wesley, 1961.

[30] P. Shi. “Flexible multibody dynamics: A new approach using virtual work and graph
theory,” Ph. D. Thesis, Systems Design Engineering, University of Waterloo, Water-
loo, Canada, 1998.

[31] H. M. Trent, “Isomorphisms between oriented linear graphs and lumped physical
systems,”The Journal of the Acoustical Society of America, vol. 27, pp. 500-527,
1955.

[32] J. Wittenburg and U. Wolz, “MESA VERDE: A symbolic program for nonlinear
articulated-rigid-body dynamics,” presented at ASME Design Engineering Confer-
ence, Cincinnati, OH, 1985.

8.Appendix

(18)β̇̇ t() 0.18419821 10
6–() α t()()cos β̇ t()

2
α t()()sin–

0.42128079 10
6–()β̇ t()α̇ t() α t()()cos

0.31596059 10
6–()β̇ t()α̇ t() α t()()sin 0.1579803 10

6–()α̇ t()
2 α t()()sin

0.1579803 10
6()β̇ t()

2
α t()()sin 0.63153674 10

6–() α t()()sin
2β̇ t()

2

0.00032463Tmα t() 0.00032463Tmβ t() 0.2106404 10
6–()β̇ t()

2

α t()() 0.00048665 α t()()cos Tmβ t()– 0.00064886 α t()()Tmβ t()sin

0.31576837 10
6–()β̇ t()

2
0.2106404 10

6–()α̇ t()
2 α t()()cos–+

–cos

–+–

–

+ +

+

–

(

)

0.63153674 10
6–()

α t()() α t()()cossin 0.12389914 10
5–() 0.18419821 10

6–() α t()()sin
2

–+

–(

)

⁄

=

28

(19)

(20)

(21)

(22)

(23)

(24)

(25)

α̇̇ t() 0.36839643 10
6–()β̇ t()

2
α t()()sin 0.42128079 10

6–()β̇ t()α̇ t()

α t()() 0.31596059 10
6–()β̇ t()α̇ t() α t()() 0.63153673 10

6–()β̇ t()

α̇ t() 0.18419821 10
6–() α t()()sin α̇ t()

2 α t()()cos 0.12630735 10
5–()

α t()()sin
2β̇ t()α̇ t() 0.1579803 10

6–()α̇ t()
2 α t()()sin

0.237036 10
5–()β̇ t()

2
α t()()sin 0.12630735 10

5–() α t()()sin
2β̇ t()

2

0.00032463Tmα t() 0.00487079Tmβ t()

0.00048665 α t()()cos Tmα t() 0.63153674 10
6–() α t()()sin

2α̇ t()
2

0.31576837 10
6–()α̇ t()

2
0.316048 10

5–()β̇ t()
2

α t()()cos–

0.0009733 α t()()cos Tmβ t() 0.00129773 α t()()sin Tmβ t()–

0.36839643 10
6–() α t()()sin β̇ t()α̇ t() α t()()cos 0.63153674 10

6–()β̇ t()
2

0.2106404 10
6–()α̇ t()

2 α t()()cos– 0.00064886 α t()()sin Tmα t()

+ +

+

–

+

–

+

+

–

–

+

+

–+

+sin+cos

–(

)

0.63153674 10
6–()

α t()() α t()()cossin 0.12389914 10
5–() 0.18419821 10

6–() α t()()sin
2

–+

–(

)

⁄

=

td
d

iα t()
Eα t() 0.000813α̇ t() 0.2iα t()+ +–

200 10
6–()

---–=

td
d

iβ t()
Eβ t() 0.00008β̇ t() 0.2iβ t()+ +–

200 10
6–()

---–=

Tmα t() 0.0813iα t()=

Tmβ t() 0.032iβ t()=

Eα t() PID uα t() α t(),()=

Eβ t() PID uβ t() β t(),()=

29

Captions
Figure 1.Through and across measurements on a general two-terminal element and its terminal graph.

Figure 2.n-terminal component

Figure 3.Positioning system

Figure 4.System graph for the positioning system

Figure 5.Terminal graph of variable elements.

Figure 6.Reading values from a terminal graph

Figure 7.A positioning system. The system graph shows the interaction between the signal block and the
terminal graph.

Figure 8.Modeling layers of a mechatronic system.

Figure 9.System data flow diagram.

Figure 10.Missile seeker

Figure 11.Extended system graph. Only joint and body elements are shown for clarity.

Figure 12.Reduced system graph.

Figure 13.System editor.

Figure 14.Topological operations to a connected electrical system graph.

Figure 15.System graph for the missile seeker.

Figure 16.Screen shoot of the complete CAD environment.

Figure 17.System response as a function of time.

30

Journal of Computer Aided Design.
Author: Antonio Diaz-Calderon Illustration #: 1

yComponent
A B

+
x

+

Across meter

Through meter

a

b

x,y

31

Journal of Computer Aided Design.
Author: Antonio Diaz-Calderon Illustration #: 2

A B

C

a b

c

32

Journal of Computer Aided Design.
Author: Antonio Diaz-Calderon Illustration #: 3

5

124

6

7 8

9

3

Controller

v9 R8,L8

N5

N6

K3 K4
B2

J1
Shaft

Rot. Inertia
Rot. Damper

Sensor

Shaft

θ7

θ0

vREF

R11

i10

9

33

Journal of Computer Aided Design.
Author: Antonio Diaz-Calderon Illustration #: 4

1245

6

78

9

3

e1

e2e3 e4

e5
e6

e8

e7e9
e10e11 e0

v(t)
vREF

Controller

34

Journal of Computer Aided Design.
Author: Antonio Diaz-Calderon Illustration #: 5

a

b

x,y f(t)

35

Journal of Computer Aided Design.
Author: Antonio Diaz-Calderon Illustration #: 6

a

b

x y

36

Journal of Computer Aided Design.
Author: Antonio Diaz-Calderon Illustration #: 7

regulator i(t)

a

b

c

d

θ t()

37

Journal of Computer Aided Design.
Author: Antonio Diaz-Calderon Illustration #: 8

mechanical

therm
al

hydraulic

algorith
mic

m
od

el
in

g
di

m
en

si
on

s

Mechatronic
model

38

Journal of Computer Aided Design.
Author: Antonio Diaz-Calderon Illustration #: 9

System
Editor

Reduction to
StateSpace Form

Causality
Assignment

Mechanic
System Graph

Synthesis

Geometric &
Kinematic
Analysis

System Graph
Synthesis

Equation
Sorting

Dynaflex

Simulation
Kernel

Visualization

State
Augmentation

Model
Fragments

geometry
system

topology

system graph
kinematic &

geometric properties

dynamic equations
3D system graph

ODE
equations
of motion

block diagram
equations

DAE

BLT form

simulation
output

model
fragments

39

Journal of Computer Aided Design.
Author: Antonio Diaz-Calderon Illustration #: 10

Housing

Gimbal ring

Camera

Pitch connector (a)

Pitch connector (b)

Yaw connector (a)

Yaw connector (b)

Shaft (a)

Shaft (b)

α

β

40

Journal of Computer Aided Design.
Author: Antonio Diaz-Calderon Illustration #: 11

n0

n1

n2

n3
n4

n5

n6
n7

n9

n8

housing

gim
bal ring

camerapitch connector (a)

pitch connector (b)

ya
w

co
nn

ec
to

r
(a

)

ya
w

 c
on

ne
ct

or
 (b

)
sh

aft
 (a

)

shaft (b
) W

RV

W: Fixed joint

RV: Revolute joint

W

W

W

W

W

RV

RV

RV

41

Journal of Computer Aided Design.
Author: Antonio Diaz-Calderon Illustration #: 12

e1 e2 e3 e4

e5

e6

e7

e8

e9
e10

e11

e12

n0

n1

n2

n3

n4

n5 n6

n7

e0

e14

e13

42

Journal of Computer Aided Design.
Author: Antonio Diaz-Calderon Illustration #: 15

e1 e2 e3
e4

e5

e6
e7

e8

e9

e10
e11

e12

n0

n1

n2

n3n4

n5 n6

n7

e0

e14

e13

e16
e15

n9

e18
e17

n8

n10

v (t)β

β(t)

Tm (t)β

u (t)β

v (t)α

α(t)

u (t)α

Tm (t)α

43

Journal of Computer Aided Design.
Author: Antonio Diaz-Calderon Illustration #: 13

44

Journal of Computer Aided Design.
Author: Antonio Diaz-Calderon Illustration #: 14

n10

e17 e18 e15 e16

n8 na

nb

n9 nd

nc nfmerge(n8, na)

merge(n10, nb)

merge(n9, nd)

merge(nc, nf)

n10

e17

e18

n8

e15

e16

n9

merge(n10, nc)

45

Journal of Computer Aided Design.
Author: Antonio Diaz-Calderon Illustration #: 16

46

Journal of Computer Aided Design.
Author: Antonio Diaz-Calderon Illustration #: 17

0 0.1 0.2 0.3
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time

P
itc

h
an

gl
e

0 0.1 0.2 0.3

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

Time

Y
aw

 a
ng

le

