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This article presents a new approach to designing brain–computer interfaces (BCIs)
that explicitly accounts for both the uncertainty of neural signals and the important
role of sensory feedback. This approach views a BCI as the means by which users
communicate intent to an external device and models intent as a string in an ordered
symbolic language. This abstraction allows the problem of designing a BCI to be refor-
mulated as the problem of designing a reliable communication protocol using tools
from feedback information theory. Here, this protocol is given by a posterior match-
ing scheme. This scheme is not only provably optimal but also easily understood
and implemented by a human user. Experimental validation is provided by an inter-
face for text entry and an interface for tracing smooth planar curves, where input is
taken in each case from an electroencephalograph during left- and right-hand motor
imagery.

1. INTRODUCTION

A brain–computer interface (BCI) is a direct communication pathway between a
human user and an external device (Hatsopoulos & Donoghue, 2009; Wolpaw,
2007). It has three principal components: a sensor that measures the user’s neu-
ral activity, an algorithm that maps these measurements to control signals for
the external device, and a mechanism that provides feedback to the user about
the device’s resulting state. The measurements may come from noninvasive
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6 Omar et al.

sensors like an electroencephalograph (EEG) that observes the gross electri-
cal activity of many neurons (Fabiani, McFarland, Wolpaw, & Pfurtscheller,
2004), or they may come from more invasive sensors like an electrocorticograph
(Leuthardt, Miller, Schalk, Rao, & Ojemann, 2006) or intracortical electrodes,
often placed in the primary motor cortex, which can observe ensemble spiking
of individual neurons (Carmena et al., 2003; Kemere, Shenoy, & Meng, 2004;
Schwartz, 2004; Serruya, Hatsopoulos, Paninski, Fellows, & Donoghue, 2002).
The feedback may be provided by a graphical display, by vibrotactile arrays
(Chatterjee, Aggarwal, Ramos, Acharya, & Thakor, 2007), by physical coupling
with the external device, or by direct cortical stimulation (Dhillon & Horch,
2005; Inmann & Haugland, 2004; Sinkjaer, Haugland, Inmann, Hansen, & Nielsen,
2003). BCIs have been used to control a growing array of external devices that
include computer cursors (Fabiani et al., 2004), text spellers (Sellers, Kubler,
& Donchin, 2006), artificial limbs (Kuiken et al., 2009), humanoid robots (Bell,
Shenoy, Chalodhorn, & Rao, 2008), and wheelchairs (Iturrate, Antelis, Kubler, &
Minguez, 2009).

As implied by the sampling of work just given, the past two decades have seen
tremendous excitement and progress in the study of BCIs. In addition to funda-
mental advances in neuroscience and to improvements in brain imaging technol-
ogy, this progress has been driven in part by the application of statistical signal
processing and optimal estimation algorithms that more systematically compute
the mapping from neural activity to control signals. For example, it has become
more common to model the desired control signal (imagined by the user) as a
random process (e.g., a Markov process) and to model neural activity as a noisy
measurement of this process. This approach allows the use of recursive estima-
tion algorithms (e.g., Kalman, particle, or point process filters) to infer the desired
control signal, which is then used to drive the external device (Brockwell, Rojas,
& Kass, 2004; Eden, Frank, Barbieri, Solo, & Brown, 2004; Wu, Gao, Bienenstock,
Donoghue, & Black, 2006). This approach can also be extended to consider higher
levels of user intent, for example, as might be associated with goal-directed reach-
ing movements (Srinivasan & Brown, 2007; Srinivasan, Eden, Willsky, & Brown,
2006).

However, these existing approaches fail to consider how desired control signals
change in response to sensory feedback. Assume that the user has some high-level
intent (e.g., to type the word raindrop), which is unknown to the external device.
Because mistakes will inevitably be made in the interpretation of neural activity,
the operation of the external device may deviate from this high-level intent (e.g.,
by instead producing the word ruin). At this point, the user’s control strategy may
change and subsequent control signals may follow a completely different pattern
(e.g., by trying to correct the error before proceeding). In this context, it is critically
important that the user and the external device agree on a protocol that specifies
both what sensory feedback is provided to the user and how the user should react
to this feedback in pursuit of his or her high-level intent.

A general way to design such a protocol begins by modeling a BCI as two agents
cooperating to achieve a common goal. The user is one agent and the external
device is the other. Both agents have a common objective (e.g., move the cursor
to a goal position in minimum time) but have access to different pieces of infor-
mation (e.g., only the user knows where the goal position actually is). This type of
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Feedback Information-Theoretic Approach to BCI 7

“sequential, non-classical, team decision problem” (Ho & Chu, 1971) is notoriously
difficult to solve (Papadimitriou & Tsitsiklis, 1986).

There are many commonly used BCIs, however, for which this difficult team
decision problem can be expressed more simply as the problem of communication
over a noisy channel with feedback. The following two BCIs are representative
members of this class with broad applicability, and are used as examples through-
out this article: (a) an interface for text entry, where an entire string of text is
specified before it is expressed by, for instance, a speech synthesizer, and (b) an
interface for tracing smooth planar curves, where the entire curve is specified
before it is followed by, for instance, a powered wheelchair.

For both of these BCIs, we derive communication protocols—saying exactly
how to choose desired control signals in response to sensory feedback—that not
only are provably optimal but also are easy for a human user to implement. These
protocols are based on a recently discovered principle in the information theory
literature called posterior matching (Coleman, 2009; Shayevitz & Feder, in press),
which we have already suggested may be applicable to BCI (Akce, Johnson, &
Bretl, 2010; Omar, Johnson, Bretl, & Coleman, 2008a, 2008b). A key property of
the posterior matching scheme is that it requires the user only to compare their
intent with the external device’s best estimate of this intent—presented as sensory
feedback—to choose a desired control signal.

It is important to emphasize that BCIs are complex systems that involve a num-
ber of design choices. It is often difficult to understand how these choices interact
and in particular how to decide which choices are most critical to performance.
The appeal of our approach is that it leads to a systematic procedure for making
design choices that are, at least in principal, provably optimal. Even if the two
BCIs we present here (interfaces for text entry and for tracing smooth curves) do
not yet provide superior performance, we hope that our underlying philosophy—
making design more systematic and theoretically well grounded using tools from
stochastic optimal control and information theory—is adopted and generalized by
the broader community.

In this article we first present the theory behind our approach to designing
BCIs (section 2), then describe a set of experiments with human subjects that vali-
date this approach for two example BCIs (sections 3 and 4), and finally address a
number of questions raised by these experiments that may impact future studies
(section 5).

2. THEORY

In this section we reformulate the problem of BCI design as the problem of deriv-
ing an optimal communication protocol. This approach will tell us, in a systematic
way, exactly how measurements of neural activity should be mapped to control
signals for the external device and exactly what type of sensory feedback should
be provided to the user. It has application when (a) the communication of intent
can be separated from the execution of intent and (b) intent can be modeled as a
string in an ordered symbolic language. These two conditions are satisfied by a
wide class of BCIs, including the ones for text entry and for tracing smooth planar
curves that are considered in this article.
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8 Omar et al.

2.1. Notation

In the remainder of this section we use standard notation from the theory of prob-
ability and random processes, which we collect here for convenience (Grimmett &
Stirzaker, 2001). We are given a probability space (!, F , P(·)) that consists of a
sample space !, a set F of subsets (events) of !, and a probability measure P(·)
that maps events in F to points on the [0, 1] line. With respect to this proba-
bility space, we denote random variables by uppercase letters X taking values
in some set X , and we denote specific realizations of these variables by lower-
case letters x ∈ X . The cumulative distribution function (CDF) FX of a random
variable X is

FX(x) = P(X ≤ x).

The probability mass function PX(x) for a discrete random variable and the pro-
bability density function fX(x) for a continuous random variable are

PX(x) = P(X = x) and fX(x) = lim
"→0

P(X ∈ [x, x + "))
"

,

respectively. Given another random variable Y, the conditional probability mass
function and probability density function are

PX|Y(x|y) = P(X = x|Y = y) and fX|Y(x|y) = lim
"→0

P(X ∈ [x, x + ")|Y = y)
"

,

respectively. We denote an infinite sequence of random variables by

X = (X1, X2, . . .)

and a finite subsequence by

Xj
i = (Xi, . . . , Xj).

We also abbreviate

Xn = Xn
1 = (X1, . . . , Xn).

We use this same notation for a sequence of specific realizations, e.g., x, xj
i, and

xn. Finally, we recall the following formula from the chain rule for conditional
probability:

PXn (xn) =
n∏

i=1

PXi|Xi−1 (xi|xi−1). (1)
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Feedback Information-Theoretic Approach to BCI 9

2.2. Problem Formulation

In both of the BCIs we consider, it is reasonable for the external device to wait until
the user’s intent is clear before taking action. If the device is a speech synthesizer,
intent is a string of text that must be understood by the interface before it is spoken.
If the device is a powered wheelchair, intent is a desired path that must be specified
before it is followed. We therefore view the purpose of these BCIs as communica-
tion and proceed to show how they can be modeled formally as communication
channels.

Model intent as a discrete random process. We describe intent as a
sequence Z = (Z1, Z2, . . .), where each Zi lies in a finite alphabet

∑ = {σ1, . . . , σm}.
It is clear that any string of text can be expressed as a sequence of symbols from the
usual finite alphabet in which σ 1 = a, σ 2 = b, and so on. Similarly, any smooth two-
dimensional curve can be approximated by a sequence of arcs with fixed length d
and constant curvature κ i chosen from a finite set {c1, . . . , cm}, where d and m are
parameters (Figure 1a). If we associate the symbol σ i with the arc generated by

FIGURE 1 Illustration of the interface for tracing smooth planar curves.
Note. (a) The alphabet used to express smooth planar curves. (b) Three example curves,
z < z′ < z′′, to illustrate the lexicographic ordering on curves. (c) Three snapshots of the inter-
face. The interface maintains a posterior distribution over the unit interval and displays the path
corresponding to the median of this distribution. The user responds by comparing the desired
path to the median path using lexicographic ordering. See text for details.
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10 Omar et al.

each ci, then this curve—just like text—can be expressed as a sequence of symbols
from the resulting alphabet %.

To capture the fact that not all strings of text and not all curves are equally
likely, we further assume that the user’s intent Z is a random process generated
by a given statistical model PZ(z). Following from (1), this model provides the
length-n statistics

PZn (zn) =
n∏

i=1

PZi|Zi−1 (zi|zi−1) (2)

for any n. For convenience, we often assume a k th-order Markov model in which

PZi|Zi−1 (zi|zi−1) =
n∏

i=1

PZi|Zi−1
i−k

(zi|zi−1
i−k). (3)

In practice, we compute such a model from data using prediction by partial match-
ing (Begleiter, El-Yaniv, & Yona, 2004; Cleary & Witten, 1984; Moffat, 1990). Note
that Z only appears random to the interface—to the user, intent is a specific,
known realization z to be communicated (i.e., a particular string of text or desired
curve).

A key property of the alphabets % we consider—which is very important in
the implementation of our solution approach—is that they admit a natural lexico-
graphic ordering on sequences Z. In particular, given the ordering σ1 < σ2 < · · · <

σm on %, we define the usual lexicographic ordering on Z as follows:

z < z′ if zi < z′ at the first index i for which zi &= z′
i

z > z′ if zi > z′
i at the first index i for which zi &= z′

i
z = z′ otherwise.

For text, this ordering corresponds to alphabetization. For curves, this order-
ing has an equally natural interpretation (Figure 1b)—we say z < z′ if the curve
specified by z turns left at the first point at which it differs from the curve
specified by z′

Model motor imagery in EEG as a binary symmetric channel. The BCIs
we consider use EEG signals to get input from the human user. A binary classifier
attempts to distinguish between left- and right-hand motor imagery in the brain
based on these signals, with some chance of making a mistake. We model this
process as a binary symmetric channel, a standard communication channel model
from information theory (Cover & Thomas, 2006). The kth input to this channel is
a random variable Xk ∈ {0, 1} that reflects the user’s motor imagery, where xk = 0
corresponds to left motor imagery and xk = 1 corresponds to right motor imagery.
The kth output is a random variable Yk ∈ {0, 1} that reflects the classifier’s attempt
to infer the user’s motor imagery, where xk = yk is a correct inference and xk &= yk
is an incorrect inference. The probability of error is given by
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Feedback Information-Theoretic Approach to BCI 11

P Yk|Yk−1, Xk (yk
∣∣ yk−1, xk) = P Yk|Xk (yk

∣∣ xk) =
{

1 − ε if yk = xk
ε otherwise,

where ε is a parameter that can be computed from training data. Note that
the channel inputs (X1, X2, . . .) are not the same as the sequence of symbols
(Z1, Z2, . . .) that describe intent. The former are the means for communicating the
latter.

Model the graphical display as noiseless feedback. The BCIs we con-
sider provide visual feedback with a graphical display. This feedback is helpful
because it allows the user both to correct errors made by the BCI in the classi-
fication of motor imagery and to avoid needless redundancy if errors were not
made. We will say precisely how the user should do this in the sequel (Solution
Approach), but for now we simply point out that knowledge of the previous
channel outputs y1, y2, . . . , yk provides sufficient information to choose the next
channel input xk+1. Even though EEG classification errors cause each output yk to
be a noisy reflection of the input xk, it is reasonable to assume that the graph-
ical display can perfectly convey this output to the user—for example, simply
by showing a left- or right-facing arrow. In practice, the information provided by
y1, y2, . . . , yk is difficult for the user to interpret, so we show a candidate sequence
ẑ instead (e.g., a candidate string of text or a candidate curve) that reflects the
BCI’s current belief about the user’s intent z. In either case, the feedback—in
contrast to the classification of EEG signals—can be assumed to be causal and
noiseless.

2.3. Solution Approach

For both BCIs of interest in this article, we have shown that it is reasonable to com-
municate intent before taking action, to model intent as a discrete random process,
and to model the EEG sensor and the graphical display as a binary symmetric
channel with noiseless feedback. The problem of interface design has therefore
been recast as the problem of constructing an optimal communication protocol
(Figure 2). We can think of this protocol as having two parts, a source code and
a channel code, which jointly describe how the user should select motor imagery
(i.e., inputs Xk) in response to feedback from the display (i.e., some reflection of
the outputs Yk) in order to most efficiently convey their underlying intent (i.e., the
sequence Z).

Source code. Although we have seen that Z can represent both a string of
text and a two-dimensional curve in the same way, it might have very different
statistical properties in each case. The purpose of a source code is to provide
a universal representation of Z with a common statistical model. It particular,
our source code puts the random process Z, distributed according to PZ(z), in
one-to-one correspondence with a single, continuous random variable W that is
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12 Omar et al.

FIGURE 2 Feedback information-theoretic paradigm for designing brain-machine
interfaces.
Note. It models the user’s intent as a sequence Z, the motor imagery in EEG as a binary sym-
metric channel with input Xk and output Yk, and the graphical display as a noiseless feedback
providing a candidate sequence to the user.

uniformly distributed on the interval [0, 1]. It is characterized by the invertible
mapping W = φ( Z ).

We construct φ using a method of lossless data compression called arithmetic
coding (Witten, Neal, & Cleary, 1987). This method is both optimal (i.e., it guaran-
tees that W is indeed uniformly distributed on [0,1]) and has the useful property
that it preserves ordering, so that z < z′ if and only if w = ϕ(z ) < w′ = ϕ(z′).
An arithmetic code maps each length-i sequence zi to a subinterval [lzi , rzi) ⊂ [0, 1]
that is computed recursively from the one [lzi−1 , rzi−1 ) ⊃ [lzi , rzi) associated with its
prefix. Given that the alphabet % is of length m, then [lzi−1 , rzi−1 ) is divided into
m subintervals arranged in the same order as % and with size proportional to
P Zi|Zi−1 (zi| zi−1). By a similar recursion we may construct the inverse φ−1 that maps
W to its representation as a sequence Z.

The source code described by φ allows us henceforth to ignore differences in the
structure and statistics of Z, making it much easier to derive an optimal channel
code. User intent is given equivalently by W, which always has the same statistical
distribution (uniform) and the same domain (the interval [0, 1]). This distinction,
however, is completely transparent to the user. Because φ preserves ordering and
because φ−1 allows us to reconstruct Z for the purposes of display, our source code
does not in any way change how the user interacts with the BCI.

Channel code. The purpose of a channel code is to specify the sequence of
channel inputs Xk that the user should generate to ensure a vanishing probability
of error in the BCI’s reconstruction of W based on the channel outputs Yk. A rate
R is achievable if the resulting estimate Ŵk computed by the BCI after k inputs
satisfies

P ( |W − Ŵk| > 2−kR) → 0. (4)

A channel code is optimal if any rate R < C is achievable, where C is the
information capacity of the channel.
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Feedback Information-Theoretic Approach to BCI 13

In the absence of feedback, forward error correction (i.e., adding a special pat-
tern of redundant inputs) is a standard approach to deriving an optimal channel
code (Cover & Thomas, 2006). However, this type of channel code is very hard for
a human user to implement. In the presence of feedback—that is, assuming the
user knows the previous channel outputs Yk when choosing Xk+1—it is possible
to reduce the complexity of coding and to increase the rate at which the error prob-
ability decreases, even though C remains constant. Classical examples of feedback
coding include Horstein (1963) and Schalkwijk and Kailath (1966). Recently, these
approaches have been unified as the posterior matching scheme, which provides
both an optimal channel code and a simple recursive framework for both analy-
sis and implementation (Coleman, 2009; Shayevitz & Feder, in press). Because the
posterior matching scheme requires only a comparison between W and the current
estimate Ŵk to generate the next input Xk+1, it is easy to implement by a human
user and is thus an ideal channel code for BCI.

Posterior matching specifies the input at time k + 1 according to

Xk+1 = F−1
X (F W|Yk (W|Yk)) ,

where FX(x) is the optimal input CDF for the channel (known a priori) and
F W|Yk (w | yk) is the posterior conditional CDF over intent (computed by the BCI
based on the channel outputs—note that Ŵk is derived from this CDF). The essence
of this scheme is that Xk+1 is statistically independent of all previous Yk. Hence,
there exists no more informative channel input for reducing ambiguity in W.

For a binary symmetric channel—our model of EEG-based BCI in this article—
the posterior matching scheme has a simple interpretation. Assume that after time
step k, the BCI computes F W|Yk (w| yk) according to Bayes’s rule and selects the
median of the posterior as the estimate Ŵk. This estimate is presented as feedback
to the user, who selects the next input according to the simple comparison

Xk+1 =
{

1 if W ≥ Ŵk,
0 otherwise. (5)

Remarkably, this simple comparison is not only optimal but also easy for a human
user to implement. Recall that we can reconstruct an estimate of Z using the
inverse mapping

Ẑ = φ−1(Ŵk).

Further recall both that sequences Z admit an intuitive lexicographic ordering and
that φ−1 preserves this ordering. If the graphical display shows Ẑ, manifested
either as a string of text or as a smooth planar curve, then it is easy for the user to
decide if Z ≥ Ẑ (i.e., if W ≥ Ŵk). If so, then the user thinks “right” (i.e., xk+1 = 1);
if not, then the user thinks “left” (i.e., xk+1 = 0).

Figure 1c shows an example. Initially, the posterior is uniform and the estimate
ŵ0 corresponds to the straight path given by ẑ. Because z > ẑ, the user thinks
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14 Omar et al.

“right” and x1 = 1. After observing a channel output of y1 = 1, the BCI recom-
putes the posterior—increasing the probability of all points to the right of ŵ0 and
decreasing the probability of all points to the left of ŵ0—and generates a new esti-
mate ŵ1. In this case, ẑ′ = φ−1(ŵ1) moves to the right of z, so the user thinks “left”
and x2 = 0. After observing a channel output of y2 = 0, the BCI again recom-
putes the posterior and the process repeats. It is important to emphasize again
that, during this entire process of communication, the user’s intent Z is assumed
to be constant and known a priori to the user (but not to the BCI). In contrast, the
input sequence X is a response to feedback and may change depending on the
(noisy) output sequence Y.

3. METHODS

This study has been approved by the Institutional Review Board of the University
of Illinois, Urbana-Champaign. In total nine healthy, able-bodied subjects (two
female) participated in this study. All subjects were right-handed, were between
the ages of 20 to 30, and had normal or corrected-to-normal vision. Eight of the
subjects had limited exposure to EEG motor imagery, ranging from 6 to 8 hr, as part
of another study. Subject 500 had several more hours of experience from previous
studies. In the current study, each subject participated in three to four experimental
sessions.

3.1. Experimental Protocol

Figure 3 shows the stages of an experimental session. Each session consists of an
optional practice phase followed by a training phase and then a series of tasks dur-
ing the testing phase. In the practice phase, subjects were given time to practice
using a keyboard to familiarize themselves with the task. In the training phase,

FIGURE 3 The schematic showing the stages of an experimental session and the
target sequences for each task.
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Feedback Information-Theoretic Approach to BCI 15

FIGURE 4 Experimental interface and performance results.
Note. (a), (b), and (c) show screenshots of the interface taken during the training phase, the text
spelling task, and the path specification task, respectively. (d), (e), and (f) show the performance
obtained in successful tasks in terms of the input classification accuracy, the mean number of
symbols specified per minute, and the information transfer rate, respectively.

the motor imagery classifier is trained. The subject was instructed to imagine
movement of their left or right hand in response to directional prompts from the
computer display (Figure 4a). After the classifier is initialized, audio feedback is
provided following each presentation to indicate correct or incorrect classification.
This phase lasts until the classifier has been trained to obtain an accuracy of at
least 75%. In the testing phase, the subject is presented with two kinds of tasks.
In text spelling tasks, the subject is asked to spell a target sentence, and in path
specification tasks, the subject is asked to trace a target path. In each session, the
subject is presented with at most four text spelling tasks and four path specifica-
tion tasks, in a fixed alternating order. We allow the subject to leave a session early
if the training phase or the execution of tasks cannot be completed within 15 min.

In addition to the target sequence, the subject is presented with a candidate
sequence. The subject’s instructions are simple: If the target sequence is ordered to
the left of the candidate sequence, the subject should provide a “left” command.
Otherwise, the subject should provide a “right” command. Upon observation of
the command, the interface updates its posterior estimate and produces a new
candidate sequence and displays it to the subject.

There are two practical issues that might affect the behavior of the interface and
the subject. First, the interface freezes a prefix of the candidate sequence perma-
nently if its posterior probability is greater than a threshold Tfreeze. Consequentially,
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16 Omar et al.

if the interface freezes a prefix that does not correspond to the target, the sub-
ject cannot modify it to correct his or her mistake. When this occurs, we say
that the task has failed and the interface moves on to the next task. A success-
ful task is one in which the entire target sequence has been frozen. Certainly, we
can define success and failure in a task only when the target sequence is known to
the interface.

The second issue is that the true candidate sequence can be computed to
arbitrary length, but the displayed candidate sequence must be truncated. The
displayed candidate sequence is chosen to be the longest prefix of the true can-
didate sequence with a posterior probability greater than a threshold, Tdecode.
Consequentially, if the displayed candidate sequence completely overlaps with,
but is shorter than, the target, the subject has no basis for providing commands. If
such a situation occurs, the subjects are instructed to provide a “right” command.

Text spelling task. The interface uses the alphabet
∑ = { A, B, C, . . . , Z, _ },

where ‘_’ represents a space and is ordered to the right of ‘Z’. The statistical lan-
guage model was obtained from a corpus using the prediction by partial matching
algorithm implemented in Begleiter et al. (2004). The training corpus was the one
developed by Dasher (Ward & MacKay, 2002). The target sentences do not appear
in the corpus, although each word appears at least once.

Figure 4b shows an intermediate state of the interface while the subject
is spelling the target sentence “I_LIKE_READING”. The display appends the
sequence “_END” to help subjects when candidate sequence overlaps with the
target, but its posterior probability is not high enough to freeze the sequence. Just
below the target sentence shown in gray, the interface displays the candidate sen-
tence “I LIKE RECX” with the frozen prefix in black and the remaining in red. In
this state, the subject performs left motor imagery since the target sentence comes
before the candidate sentence in lexicographic ordering.

Path specification task. During a path specification task, the subject traces
a smooth curve using an alphabet composed of 11 symbols,

∑ = {σ1, σ2, . . . , σ11},
where σ i corresponds to a circular arc as shown in Figure 1a. The statistical lan-
guage model was a fixed zeroth-order Markov model given by a discrete Gaussian
kernel centered on the symbol σ 6, corresponding to the notion that a straight arc
has the highest probability.

Figure 4c shows an intermediate state of the interface while the subject is tracing
the target path shown in gray. The candidate path is superposed on the target path,
with the frozen prefix shown in black and the remaining in red. In this state, the
subject performs right motor imagery because the target path is ordered to the
right of the candidate path.

3.2. EEG Signal Processing

EEG signals were collected by an Electro-Cap through eight channels (F3, F4,
C3, C4, T7, T8, P3, P4; Nunez & Srinivasan, 2006). Fpz was used as ground,
and Cz was used as reference. Voltages were amplified by a low noise amplifier
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(James Long Co., Caroga Lake, NY), low-pass filtered to 100Hz (antialiasing) and
synchronously sampled at a 400 Hz sample rate by an Iotech Personal Daq 3000
A/D array. The exact mu-rhythm frequency varies among individuals, so the
subject-specific mu-rhythm peak was estimated from the average power spectrum.

The feature extraction procedure, Common Spatial Analytic Patterns
(McCormick, Ma, & Coleman, 2010) uses labeled training data to perform blind
source separation and recover these source signals for a specific subject. The
log-magnitude of each recovered source signal sample is modeled as a specific
weighted sum of recently evolving binary-valued motor imagery. The classifica-
tion step is based on a Hidden Markov Model of the binary-valued motor imagery
(McCormick et al., 2010). The probability of the category of motor imagery is esti-
mated and updated regularly for each new EEG sample. When the probability of
left or right motor imagery exceeds a certain threshold Tclass, a new classification is
generated and passed to the BCI applications. This method significantly improves
the information transfer rate (ITR) for BCI applications–from the highest rate of
37.5 bits/min previously documented (Blankertz, Dornhege, Krauledat, Müller, &
Curio, 2007) to our highest rate of 60.9 bits/min.

3.3. Artifacts

We also simultaneously recorded electrooculography (EOG) and arm electromyo-
graphy (EMG) on the subjects to statistically verify that eye or muscle movement
signals are not correlated with the control signals. We used methods analogous to
Vaughan, Miner, McFarland, and Wolpaw (1998) to discard data sets that had sig-
nificant EOG or EMG artifacts. We computed the biserial correlation coefficients
between the classifier outputs and the desired commands as well as that between
the EOG/EMG and the desired commands. The biserial correlation coefficients is
defined as

r =
√

N+ · N−

N+ + N− · mean
[
S+]

− mean
[
S−]

std[S+ ∪ S−]
,

where S+ and S– are the signal samples (EEG, EOG, or EMG) associated with left-
or right-hand motor imagery, and N+ and N– are the number of samples of the cor-
responding classes (Blankertz et al., 2007). We have verified that the EOG and EMG
artifacts were not significantly correlated with the classifier outputs. For example,
to demonstrate the order of magnitude difference in r2 for artifacts versus desired
commands, subject 500 had r2 values as follows: 0.0037 for left eye EOG, 0.0051
for right eye EOG, 0.0096 for left arm EMG, and 0.0062 for right arm EMG; in
comparison, the r2 value for the EEG classifier outputs was 0.2510.

3.4. Parameter Selection

! Tclass, the threshold for classification decision, was empirically set to 0.99.
! Taccuracy, the minimum accuracy required to pass the training phase, was set

to 0.75.
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! ε, the crossover probability, was computed from the accuracy observed in
the last training cycle individually for each experiment. We used a slightly
larger ε for text spelling because of the additional cognitive load it requires
as reported by our subjects.

! Tdecode, the parameter that determines the length of the candidate sequence,
was experimentally chosen to be 0.01 so that it is usually four to six symbols
long.

! Tfreeze, the parameter that determines when to freeze a prefix, was set to 0.995
to avoid frequent task failures.

3.5. Performance Measures

Averaged accuracy in a task P̂. Suppose the subject conveyed n0 + n1
motor imageries in total during a task, n1 of which were classified as the correct,
desired control commands at the corresponding step, the accuracy is defined as
the proportion of the correct control commands P̂ = n 1

n 0+n 1
.

ITR R̂ (bits/minute). The ITR is defined as the amount of information
conveyed reliably per minute—as defined by the capacity of the associated
binary symmetric channel with crossover probability given by our empirical
accuracy P̂:

R̂ = 1 − HBSC(P̂)
d

where average trial length is d = T/ (n0 + n1) and HBSC(P̂) = −P̂ log(P̂) −
(1 − P̂) log(1 − P̂).

Rate of spelling q̂ (symbols/minute). Suppose the subject spelled out a
sequence of symbols of length N using in total T minutes in a task, the rate of
spelling is defined as the number of symbols spelled per minute q̂ = N

T .

4. EXPERIMENTAL RESULTS

Figure 4d presents each subject’s input classification accuracy during the last
training cycle and during successfully completed tasks. The average classification
accuracy was 0.71 during text spelling tasks, and 0.82 during path specification.
The best classification accuracy was 0.80 during text spelling tasks, and 0.92 during
path specification—both for subject 537.

Figure 4e shows system performance during successful tasks, as measured by
the number of symbols specified per minute. The highest spelling rate was six
characters per minute (char./min.), and the highest rate of tracing a planar curve
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Feedback Information-Theoretic Approach to BCI 19

was 12.5 segments per minute (seg./min.), both achieved by subject 537 during the
first task of each type.

Figure 4f presents the ITR in successful tasks. The average ITR was 6.7
bits/minute during text spelling and 15.2 bits/minute during path specification.
The best ITR was 17.2 bits/minute during text spelling and 39.8 bits/minute during
path specification—both performed by subject 537.

5. DISCUSSION

5.1. Comparison of System Performance

Another recently demonstrated BCI speller utilizes the Dasher interface, which
also incorporates insights from information theory, to achieve a maximum rate
of seven characters per minute (Felton, Lewis, Wills, Radwin, & Williams, 2007).
Several fundamental distinctions hinder direct comparison with such a system.
First, we were able to utilize a simpler discrete, binary control signal, as opposed
to a continuous control signal modulated by motor imagery. Second, Felton et al.
(2007) used a training text corpus consisting of only 200 short phrases. Target sen-
tences were generated by choosing from among these phrases. Consequently, the
log likelihood of the test sentences was much higher than those used in this study,
which will result in higher average system performance. By employing a much
larger corpus and not testing with complete sentences drawn directly from the
training text, we better emulate usage in a free-spelling task. Despite these differ-
ences, our performance was comparable. This can be explained in part by our use
of statistically sound methods for both source and channel coding to design our
behavioral and feedback protocols. We expect future results from our lab and oth-
ers to take this fundamental observation into consideration to obtain significantly
higher (i.e., orders of magnitude) spelling rates in systems constrained by such
noisy, low bandwidth signals.

5.2. Performance Differences in Text Spelling Versus Path Specification

According to the results, it was generally easier for the subjects to trace smooth
planar curves than to spell text. The relative ease of path-tracing is unlikely to
be caused by the difference in the likelihood of sequences, since the negative
log-likelihoods were comparable in both cases: They ranged from 43 to 58 for sen-
tences and from 57 to 73 for paths. As can be seen, the paths were actually less
likely to be encountered given the statistical models used in our study. A plausi-
ble explanation for this is that the subjects can better perform direct lexicographic
ordering on paths—based on spatial perception—as compared to alphabetization.
The latter perhaps imposed heavier cognitive load on the subjects, requiring more
reaction time to choose desired control commands. This implies that in the future
researchers may want to develop more intuitive visual interfaces to reduce the
difficulty in lexicographical ordering of texts.
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5.3. Error Correction

Although feedback information theory for binary-symmetric channels with noise-
less feedback guarantees exponential convergence onto the desired sequence, the
experiments still showed that our system is susceptible to errors. The reasons for
this are as follows: First, the assumption of a binary-symmetric channel may not
hold strictly in practice. The system may have bias for one of the motor imageries.
Second, the cross-over probability is hard to estimate accurately, and it may vary
over time with the mental status of the subjects or changes in the sensor.

Due to these issues, the system can sometimes assign high probabilities to
sequences that do not correspond to the target sequence. Although a backtracking
mechanism may be useful for such situations, it is difficult to implement. The rea-
son for this is that the representation of the probability distribution (a continuous
function) requires arbitrary precision. To proceed in a computationally tractable
way, we have to freeze the spelled sequence at some threshold, which means infor-
mation about the history is intentionally discarded. Moreover, a system that uses
“finished” sequences to drive a device, such as a voice synthesizer or motorized
wheelchair, may be unable to reasonably backtrack. As a workaround, we chose
a stringent threshold for freezing a prefix. As a future direction, detecting error-
related potentials immediately after updating the frozen prefix may allow us to
correct many such errors. An error-related potential could be incorporated proba-
bilistically within our framework, for example, by decreasing the posterior for the
prefix when such a signal is detected.

5.4. Future Directions

Learning and neurofeedback training. A learning effect is observed across
different experiments on the same subject. Certain subjects (e.g., subjects 535 and
566) were not able to start spelling in the first couple of experiments. In addition,
the daily condition of the subjects might have played an important role because
the experiment requires a high level of concentration over a relatively long period
and consumes significant mental energy. Better strategies for training subjects are
needed to enhance the subjects’ fluency in generating motor imagery, such as the
neurofeedback training suggested by Hwang, Kwon, and Im (2009).

Formulation in terms of decentralized control. It can be shown (Coleman,
2009) that the feedback communication problem is a simple instantiation of the
more general class of sequential, nonclassical, team decision problems (Chu, 1971;
Ho & Chu, 1971; Witsenhausen, 1971). We plan to address problems within this
more general context—it will be critically important to do this, for example, to
address BCIs where the external device has constrained dynamics. As these prob-
lems are notoriously difficult to solve (Papadimitriou & Tsitsiklis, 1986), we plan
to carefully construct meaningful yet tractable problems that have closed-form
optimal solutions and whose optimal policies are easy for the user to behaviorally
implement.
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6. CONCLUSION

This article has demonstrated an information-theoretic approach to design BCIs
that explicitly takes feedback into consideration. This approach is particularly
important for BCIs with inherently noisy, low bandwidth neural sensors (e.g.,
noninvasive EEG-based systems). What is remarkable about this approach is
that, subject to statistical assumptions, it is both optimal from a communications
perspective and easily implementable by the user. We have demonstrated this
approach in two representative interfaces, one for text entry and the other for
tracing smooth planar curves. Experimental results with nine human subjects,
using a binary motor imagery EEG-based paradigm, showed promising results
in performance as measured both by the information transfer rate and by the sym-
bols per second conveyed. Perhaps more important than these initial results, we
consider the merit of our work as pushing the broader community toward for-
mal consideration of feedback protocols in BCIs. In particular, we hope that this
underlying philosophy—making design more systematic and theoretically well
grounded using tools from stochastic optimal control and information theory—are
adopted and generalized.
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