
Flexible and Safe Resolution of File Conflicts

Puneet Kumar and M. Satyanarayanan
Carnegie Mellon University

Abstract
In this paper we describe the support provided by the
Coda File System for transparent resolution of conflicts
arising from concurrent updates to a file in different
network partitions. Such partitions often occur in mo-
bile computing environments. Coda provides a frame-
work for invoking customized pieces of code called
application-specific resolvers (ASRs) that encapsulate
the knowledge needed for file resolution. If resolu-
tion succeeds, the user notices nothing more than a
slight performance delay. Only if resolution fails does
the user have to resort to manual repair. Our design
combines a rule-based approach to ASR selection with
transactional encapsulation of ASR execution. This
paper shows how such an approach leads to flexible
and efficient file resolution without loss of security or
robustness.

1 Introduction

Optimistic replication has been shown to be a viable
approach to high availability in distributed Unix file
systems [15, 3]. It is especially valuable in mobile
computing environments, where voluntary and invol-
untary disconnections are the norm rather than the ex-
ception [7]. The Achilles heel of optimistic replication
is the need to cope with conflicts caused by concurrent
updates in different network partitions. Such conflicts
can hurt usability if they require frequent manual in-
tervention by users.

In this paper we show how the Coda File System ad-
dresses this problem by providing for transparent han-

This researchhasbeensupportedby the Air Force Material Com-
mand (AFMC) and the AdvancedResearch Projects Agency(ARPA)
under Contract F19628-93-C-0193. Support also came from IBM
Corporation, Digital Equipment Corporation, and Intel Corporation.

Authors’ addresses: School of Computer Science, Carnegie
Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213-
3891. e-mail: pkumar@cs.cmu.edu, satya@cs.cmu.edu.

dling, or resolution, of file conflicts. The essence
of our approach is to provide a framework for in-
stalling and invoking customized pieces of code called
application-specific resolvers (ASRs). Each ASR encap-
sulates knowledge specific to its application. If reso-
lution succeeds, the user notices nothing more than a
slight performance delay. Only if resolution fails does
the user have to resort to manual repair.

Many practical considerations complicate realization
of this simple idea. Users need to be able to con-
trol which ASR gets invoked for a specific application.
Considerations of security imply the need to restrict
the scope of damage caused by an errant ASR. Since
intermittent connectivity is common in wireless com-
munication, it is necessary to anticipate failures during
the execution of an ASR and to encapsulate its effects in
a way that permits easy cleanup. The Coda ASR mech-
anism addresses these and other related concerns by
combining a rule-based approach to ASR selection with
transactional encapsulation of ASR execution. Our
implementation confirms that flexible and efficient file
resolution is indeed possible without sacrificing secu-
rity or robustness.

We begin the paper with an overview of Coda and
a more detailed rationale for an application-specific
approach to file resolution. The bulk of the paper
consists of an overview of the ASR mechanism and
details on how it achieves flexibility while preserving
safety. To illustrate the use of the ASR mechanism,
we describe some example ASRs that we have built.
We conclude with an evaluation of performance and a
discussion of related work.

2 Coda File System

Coda is a descendant of AFS-2 [4] that has high data
availability as its main goal. Like AFS, it is based
on the client-server model, provides a single shared,

location transparent name space, and maintains cache
coherence across clients using callbacks. Files are
stored in volumes, each forming a partial subtree of
the name space. Volumes are administrative units,
typically created for individual users or projects. At
each client, a user-level process called Venus manages
a file cache on the local disk.

Coda uses two complementary strategies, both based
on optimistic replication, to achieve high data avail-
ability: server replication and disconnected opera-
tion. Server replication allows volumes to be stored
at a group of servers called the volume storage group
(VSG). At any time, the subset of those servers avail-
able is called the accessible volume storage group
(AVSG). Disconnected operation arises when the
AVSG becomes empty. To prepare for disconnection,
users may hoard data in the cache by providing a pri-
oritized list of files. Venus combines explicit hoard in-
formation with LRU information to implement a cache
management policy that addresses both performance
and availability concerns.

Earlier papers [15, 7] provide more details on server
replication and disconnected operation. Other pa-
pers [8, 10, 11] discuss broader aspects of Coda’s ap-
proach to conflict resolution, and provide details on
mechanisms such as directory resolution that are not
covered here.

3 Motivation and Goals

An update conflict arises due to write-sharing of an
object from partitioned clients. There is considerable
anecdotal evidence and some quantitative evidence [7]
to confirm that the average level of write-sharing in
personal computing environments is low. This is, of
course, what makes optimistic replication viable in
such environments.

Unfortunately, certain applications can exhibit much
higher than average levels of write-sharing. One ex-
ample is the use of an online appointment calendar
(such as Aldus Datebook [13]) by an executive and
her secretary. Another example is the use of an online
checkbook (such as Quicken [6]) for a joint account
by a couple. Other examples can be drawn from the
emerging body of software (such as Lotus Notes or
DEC LinkWorks [2]) for computer-supported cooper-
ative work. It is important to note that all of these
examples are personal-computing applications; they
are not drawn from the online transaction processing
domain, where optimistic replication would clearly be
inappropriate.

The importance of application assistance in file res-
olution can be seen by considering the example of a

calendar management program. Suppose an executive
and her secretary both make appointments while the
former is disconnected. Upon reconnection, Venus de-
tects that the file containing appointments is in conflict.
But it has no knowledge of the format of file contents,
nor of whether there is really a scheduling conflict.
Only code specific to the calendar program can tell, for
instance, that appointments for an hour each at 8am and
10am on the same day pose no problem if they are in
the executive’s office, while those same appointments
are impossible to keep if they are in New York and San
Francisco.

Even in the absence of computers, conflicts occur in
application domains such as the appointment calendar
and checkbook examples mentioned above. People
are already inured to coping with occasional conflicts
in such domains. Hence an acceptable goal for file
resolution is to reduce the frequency of manual repair,
rather than eliminating it altogether. Total elimination
of conflicts is, by definition, an unattainable goal in an
optimistically replicated environment.

4 Design Overview

A fundamental design choice pertains to the site of ex-
ecution of an ASR: should it be executed on a server or
on a client? Our choice was to execute ASRs on clients.
The primary reason for this decision was to preserve
the security model of Coda. Allowing arbitrary ASRs
to execute on servers would have violated Coda’s ba-
sic assumption that servers run only trusted software.
Considerations of scalability were a second important
factor in our decision. Since the computational re-
sources needed by an ASR may be large, scalability
is enhanced by off-loading this burden to clients. A
third reason for executing ASRs on clients is the fact
that much of the supporting machinery needed to ex-
ecute an ASR is already present at the client but not at
servers. For example, Venus already incorporates the
code needed to perform pathname resolution.

Venus performs file resolution lazily. An ASR is only
invoked in the course of servicing a system call, when
Venus discovers that a file has divergent replicas. This
is in contrast to an aggressive strategy, whereby execu-
tion of ASRs would be performed en masse upon recov-
ery from a network partition. Our approach reduces the
likelihood of recovery storms, a serious concern in en-
vironments with intermittent connectivity. But it does
mean that the entire performance cost of ASR execu-
tion is incurred by the triggering system call, and can
therefore not be hidden from applications and users.

Logically, the Coda ASR mechanism can be viewed as
comprising three distinct parts: one part responsible

for invoking an ASR when needed, a second part per-
taining to selection of the correct ASR and a third part
responsible for overseeing the execution of an ASR. In
practice, of course, there is some interdependence be-
tween these parts. An underlying consideration in the
design of all aspects of the ASR mechanism is the desire
to preserve transparency from the viewpoint of users.

Viewed from a high level, the ASR mechanism works
as follows. On every cache miss, Venus verifies that
all replicas of the file being accessed are identical. If
Venus detects divergence of replicas it searches for an
ASR for this file using rules specified by the user. If an
ASR is found, it is executed on the client. The ASR’s
mutations are performed locally on the client’s cache
and written back to the server atomically after the ASR

completes. The application that requested service for
the file is blocked while the ASR is executing. If a
failure occurs, ASR execution is aborted and the results
of partial execution are flushed from the cache. If no
ASR was found or the ASR execution fails, an error
code indicating a conflict is returned to the application
process.

We elaborate upon thishigh-leveldescription in the two
sections that follow. Section 5 describes those aspects
of our design that contribute to flexibility. Section 6
addresses aspects pertinent to safety.

5 Achieving Flexibility

5.1 Invoking an ASR

To execute an ASR on the client, Venus makes a re-
quest to a special process called the ASR-starter,
as shown in Figure 1. As its name implies, the
ASR-starter process is responsible for finding and
executing an ASR for a file. An ASR cannot be executed
on a client unless it is runningan ASR-starter. The
functionality of the ASR-starter could have been
providedas a routinewithinVenus. However, we chose
not to do so because Venus code is already complex.
Implementation and debugging of the ASR-starter
was greatly simplified by making it a separate pro-
cess. The only disadvantage of this approach is slightly
higher latency for starting an ASR.

A pool of threads in Venus, called workers, are re-
sponsible for servicing system calls. Once a worker is
assigned to a system call, it is bound to that call until
completion. The request to start an ASR is made by a
worker when it notices that a file has diverging replicas.
This request is made via an RPC, called InvokeASR,
to the ASR-starter process. If the request is suc-
cessful, the process-id (pid) of the ASR is returned to
the worker. The worker now blocks, and awaits the

Executor

ASR

Venus

Command

Process

User ASR

Starter

ASR
Command

ASR

[3]

Client Workstation

[1]

[4]

[5]

[6][7]
[2]

Kernel

Figure 1: ASR Invocation

This figure shows the message exchange between processes
involved in an ASR invocation on a client. Seven events
responsible for the ASR invocation and execution are
labelled in the Figure: events [1] and [2] are the user
request for a file that has diverging replicas; event [3] is
the InvokeASR RPC; event [4] is the execution of the
ASR commands; the ASR result is returned to Venus via the
Result Of ASR RPC labelled as event number [5];
events [6] and [7] return the result of the user request.
The dotted lines show the message exchange necessary for
servicing Coda file system requests made by the
ASR-starter, the user process and the ASR processes.

result of the ASR’s execution. The user process whose
system call is being serviced by the worker thread also
remains blocked for this duration. If an ASR cannot be
started, resolution fails and a code indicating conflict
is returned immediately to the user process.

The InvokeASR RPC has two parameters: the path-
name of the file needing resolution, and the identity of
the user on whose behalf the ASR is being executed.
The pathname is used by the ASR-starter process
to find an appropriate ASR. The user identity is used to
restrict the privileges of the ASR via the Unix setuid
mechanism. The ASR-starter itself runs as root.

Once the ASR completes execution, its result is re-
turned to Venus by the ASR-starter via the
Result Of ASR RPC. The pid of the recently com-
pleted ASR is also returned to Venus so that it can
resume the worker waiting for this ASR. If the ASR

return code indicates success, the worker retries ser-
vicing the user’s request. Otherwise it returns an error
code, ESYMLINK, to the user application.

<object-list>: <dependency-list>
<command-list>

Figure 2: Format of rules in a ResolveFile

5.2 Selection of an ASR

Resolution rules are stored in a file named
ResolveFile, whose format is similar to
a Makefile. The scoping mechanism for
ResolveFiles is analogous to lexical scoping in
common programming languages. Rules contained
in a ResolveFile apply to all files in the subtree
rooted at its directory, except where overridden by an-
other ResolveFile lower in the tree. To find the
resolution rule for a file, the ASR-starter searches
for a ResolveFile upward from the file toward the
root. The search stops at the earliest ResolveFile
encountered, or at the root.

The advantage of the scoping mechanism is that reso-
lution rules are automatically inherited as new objects
are created. For example, a user may have only one
set of resolution rules in a ResolveFile in his home
directory, which applies to all his files. To simplify
sharing of rule files, the ResolveFile entry in a
directory can be a symbolic link. For example, an
application-writer could provide a ResolveFile for
the application’s files. All users of this application can
share the ResolveFile by creating a symbolic link
to it in their personal directory containing the applica-
tion’s data files.

Like Makefiles, ResolveFiles contain multiple
resolution rules separated by one or more blank lines.
Each rule has the format shown in Figure 2.

The object-list is a non-empty set of object names for
which this resolution rule applies. Object-names can
contain C-shellwild-cards like“*” and “?”, thusallow-
ing one rule to be used for multiple files. For example,
a rule that specifies *.dvi in its object-list applies to
all files with a .dvi extension.

The dependency-list contains a list of object names
whose replicas must be identical before the rule can be
applied. This provides a useful check for resolvers that
regenerate a file based on the contents of another file.
Consider once again the example of a file with a .dvi
extension. Its contents can be regenerated by process-
ing the source file with Latex. However, this strategy
is usable only if the source file itself does not have
divergent replicas, a condition that can be checked au-

tomatically by adding the name of the source file (i.e.,
the file with the .tex extension) to the dependency-
list. In principle it would be possible to recursively
resolve objects in the dependency-list. However, to
keep the implementation simple, an ASR invocation is
aborted if any object in the dependency-list has diverg-
ing replicas.

The command-list consists of one command per line.
Each command specifies a program to be executed
along with its arguments. Since the object-list may
contain wild-cards, some file-names that need to be
passed as arguments to the resolver programs are not
known until the rule is being utilized to invoke the
ASR. Therefore, the rule-language provides macros
that serve as place holders for these file-names. The
language provides threemake-like macros, $*, $> and
$<. The $* macro expands to the string that matches
the wild-card in the object-list;$< expands to the path-
name of the parent of the file being resolved and $>
expands to the file’s name. These macros are expanded
dynamically when a rule containing them is used to ex-
ecute an ASR. Figure 3 shows the macro expansions
using a simple example.

.dvi: $.tex
file-resolve $</$>
latex $*.tex

For a file /coda/usr/pk/foo.dvi the rule
expands to:

file-resolve /coda/usr/pk/foo.dvi
latex foo.tex

And is executed only if the replicas of foo.tex
are not diverging.

Figure 3: Macro-expansion of a Resolution Rule

To find a rule that applies to a file foo, the
ASR-starter first parses the ResolveFile. The
string foo is matched against the names in the object-
list of each parsed rule. The first rule containing
a match is used as the resolution rule for foo. If
no match is found or a syntax error is found in the
ResolveFile, the ASR-starter assumes no ASR

exists for foo and returns an appropriate error code to
Venus.

5.3 Exposing Replicas

Although Venus normally makes replication trans-
parent to user processes, an ASR needs to be able
to examine individual replicas of the file being re-
solved. To allow this, Venus temporarily modifies
the name space seen by an ASR. The file being re-
solved appears to be a directory with each replica
appearing as a child of that directory. For exam-
ple, two replicas of file /coda/usr/pk/foowould
be accessible as /coda/usr/pk/foo/rep1 and
/coda/usr/pk/foo/rep2. This in-place explo-
sion of a file into a fake directory only occurs for files
being resolved, and only at the client executing the ASR

– replication continues to be transparent for all other
files and at all other clients.

File replicas in a fake directory are accessible for read-
ing via the normal Unix interface. However, the only
mutating operation allowed on the fake directory is the
repair pioctl, that takes the name of a replacement
file as input. The replacement file can exist in the local
Unix file system or it can be one of the replicas of the
file being resolved. Its contents are used to atomically
set all replicas to a common value. Once this operation
succeeds, Venus collapses the fake directory back into
a file. The implementation of fake directories makes
use of the mountmachinery already present in Venus,
as elaborated elsewhere [9].

For the duration of the ASR’s execution, the volume
containing the file being resolved is forced into a spe-
cial fakeify mode. In this mode, any file in that volume
with diverging replicas, is converted to a fake directory
upon access. This functionality is necessary for an ASR

that simultaneously resolves a group of files with di-
verging replicas. For example, a user’s calendar might
be maintained in multiple files, and its ASR may need to
examine the replicas of all files to perform resolution.
Of course, this approach assumes that all files mutated
by the application are contained in the same volume.

Since the number and identity of the diverging repli-
cas are not known a priori, the rule-language syntax
provides three additional macros, [i], [*] and $#,
that serve as replica specifiers. [i] is replaced by the
name of the i’th replica, [*] by a list of names of all
replicas, and $# by the replication factor of the file.
Figure 4 shows the use of these macros with a simple
example.

5.4 ASR Execution

The ASR is executed after all macros in the resolu-
tion rule have been expanded. Multiple programs may
be executed in a single ASR invocation, since a rule’s

*.cb:
merge-cal-reps $< $# $>[*]

expands to

merge-cal-reps /coda/usr/pk 2 \
cal.cb/server1 cal.cb/server2

Figure 4: Macro-expansion of Replica Specifiers

This figure shows the macro-expansion for a file whose
replicated pathname is /coda/usr/pk/cal.cb. The
file’s volume is replicated at two servers, server1 and
server2.

command-list can contain more than one command.
Since these programs may take an arbitrary long time to
execute, they are executed by a separate process, called
theexecutorwhich is forked by theASR-starter
process. The ASR-starter process returns the
pid of the executor to Venus. Running the ASR

via the executor frees the ASR-starter pro-
cess to continue servicing other requests from Venus.
Once the ASR completes, its result is returned via the
Result Of ASR RPC.

The executor runs with the identity of the user
whose request triggered resolution. It executes the
commands in the command-list sequentially, each
in a separate process. If any command fails, the
executor is aborted and an error returned to Venus.

Since Venus runs on multiple hardware platforms, the
executor must have the ability to choose the bi-
nary appropriate for the client machine. To achieve
this functionality, it uses the @sys pathname expan-
sion capability of the Coda kernel. The kernel evalu-
ates the @sys component to a unique value on each
architecture. This mechanism allows a single reso-
lution command pathname to be used for any client
machine. For example, the pathname /usr/coda/-
resolvers/@sys/bin/merge-cal, trans-
lates to /usr/coda/resolvers/pmax mach/-
bin/merge-cal on DECstation 5000 clients and
to /usr/coda/resolvers/i386 mach/bin/
merge-cal on Intel-386 clients.

6 Preserving Safety

6.1 Security

Enforcing security is a critical issue because an ASR is
not a piece of trusted system software. A wide range
of catastrophes ranging from simple coding errors to
full-fledged Trojan horse attacks have to be guarded
against. The problem is especially tricky because ASRs
are executed transparently. In other words, a user may
be completely unaware that an innocent file reference
by him caused a malicious ASR to be executed. Coda
provides three levels of defense against this problem.

As the first level, which is the default, Coda uses the
setuidmechanism to restrict the privileges of an exe-
cuting ASR. Since the ASR only possesses the privileges
of the user who triggered it, damage is limited to those
portions of the Coda name space that can be modified
by the user.

The next level provides control over which ASRs can be
executed by a client. Using the cfs command, a user
may specify a list of directories where trusted ASRs
can be found. ASR invocation will fail if an attempt
is made to execute an ASR from a directory not in the
list. Even a trusted ASR is, however, subject to the
setuid restrictions mentioned previously. It would be a
fairly simple matter to extend this scheme to include a
fingerprinting mechanism [18] to detect tampering of
ASRs.

The third level prevents ASR execution altogether.
As mentioned in Section 5.1, the presence of a
ASR-starter process is essential to ASR invoca-
tion. If a user configures his client so that the
ASR-starter is not run, he is assured that no ASR

will ever be executed.

Concerns of security do cause some loss of trans-
parency. Even the least onerous level of security in-
volves some lost opportunities for file resolution be-
cause a user needs to have update access, not just read
access, on a file to resolve it. Visibility of file con-
flicts, on the other hand, only requires read access.
The second level involves further loss of transparency
because it disallows ASRs from untrusted regions of the
name space, even though many of them may really be
safe. The loss of transparency is, of course, greatest
at the third level – in effect, file resolution is avoided
altogether.

There are no simple answers to the problem of pre-
serving security while providing transparency in file
resolution. Our approach is to allow the user to make
the tradeoff, depending on his level of suspicion. Even
at the weakest level, however, the user is no worse off

than if he were to execute ASR binaries manually.

6.2 Robustness

Misbehaving ASRs can seriously affect the robustness
of a client. For example, an ASR whose return code
indicates success even though it is unable to resolve
the file will cause the Venus worker thread to loop in-
definitely: the worker, when resumed, will re-invoke
the ASR since the file’s replicas are still diverging. Re-
solvers with programming errors like infinite loops can
end up starving user processes of critical resources.
Since the number of worker threads is finite, and since
a worker is blocked for the duration of an ASR mul-
tiple executions of a misbehaving ASR could block all
worker threads, resulting in denial of service.

Coda addresses these problems by limiting the execu-
tion time of an ASR and the frequency of ASR invo-
cations for an object. In our current implementation,
these limits are two minutes and five minutes respec-
tively. The system allows these limits to be changed
dynamically for specific objects. Of course, no stati-
cally set limit can be perfect: one can always contrive
situations where a correct ASR execution is aborted due
to one of these limits being exceeded.

6.3 Isolation

To avoid interference between ASRs simultaneouslyex-
ecuting on a client, the ASR-starter ensures that at
most one ASR executes at a time. A worker thread
requesting execution of an ASR is blocked if another
ASR is already executing on the client. To avoid dead-
lock, all locks held by the worker are released before it
is blocked. The blocked worker is resumed when the
current ASR completes.

Executing only one ASR at a time implies that we cannot
currently handle cascaded file resolution across vol-
umes. Consequently, an ASR servicing one volume is
aborted if it attempts to access a file with divergent
replicas in a different volume. Note that, as described
in Section 5.3, an access by the ASR to divergent files
within the same volume does not abort the ASR – it
merely results in an in-place explosion of those files.

Enforcing serial execution of ASRs at a client only of-
fers local isolation. It does not prevent multiple clients
from running an ASR for the same file simultaneously.
Coda uses an optimistic concurrency control strategy
to handle this problem. Each ASR performs its updates
in the client’s cache assuming no other client is exe-
cuting an ASR for the same file. When committing the
updates made by an ASR, each server verifies that none
of the objects in the ASR’s write-set have changed since

the ASR started executing. If this condition is violated,
the ASR is aborted. Therefore, if multiple ASRs simulta-
neously attempt to resolve a file from different clients,
only the first to finish will succeed.

To prevent other processes from accessing partial re-
sults of an ASR execution, an exclusive lock is held on
behalf of the ASR by Venus. This lock applies to the
volume containing the file being resolved, and is held
for the entire duration of the ASR’s execution. Requests
from other processes are blocked until the ASR termi-
nates. Venus uses the process group mechanism of
Unix to distinguish between ASR and non-ASR requests
– each ASR belongs to a new process group, and all
processes created by it belong to this group.

6.4 Atomicity

An ASR execution may abort due to a variety of causes
such as client or network failure, coding bugs in the
ASR, and exceeding ASR time limits imposed by the
ASR-starter. Coping with the partial results of
an aborted ASR execution can be messy, especially if
they lead to further conflicts. To alleviate this prob-
lem, Coda ensures that the updates performed by an
ASR are made visible atomically. This transactional
guarantee can be provided by Venus because it knows
the boundaries of an ASR computation (bracketed by
InvokeASR and Result Of ASR RPC requests)
and because it can distinguish requests made by the ASR

using the process group mechanism described above.

Venus exploits the mechanism already present for dis-
connected operation to make ASR execution atomic. To
implement disconnected operation, Venus logs all mu-
tations made at a client while it is disconnected from
a server. This log is used to reintegrate the updates
with the server when connection is re-established. The
updates are committed at the server atomically, using
a local transactional mechanism called RVM [16, 17].

To make the updates of an ASR atomic, Venus pretends
that the ASR is executing while disconnected. Hence
its updates are not written through to the server, but are
logged. If the ASR aborts, its updates are undone by
purging the log and the modified state in the client’s
cache. But if the ASR completes successfully, its up-
dates are reintegrated atomically.

The support in Venus for disconnected operation had to
be modified to allow servicing of cache misses during
ASR execution. Originally, Venus operated in one of
three states [7]: connected (also called the hoarding
state), disconnected (also called the emulating state),
or reintegrating, which is a transient state. We ex-
tended Venus to support a fourth state called write-
disconnected. This state is a hybrid between the con-

nected and disconnected states. Cache misses are trans-
parently serviced, as in the connected state, but updates
are only performed locally and logged, as in the dis-
connected state.1 The volume containing the file being
resolved is forced into the write-disconnected state be-
fore an ASR is invoked by Venus. The modified state
transition diagram for a volume is shown in figure 5.
Write-disconnected state is similar to the fetch-only
mode proposed by Huston and Honeyman [5] for dis-
connected operation in AFS clients.

Dis-
Connected

Reinteg-
rating

Connected

Disconnection

di
sc
on
ne
ct
io
n

Reconnection

reconnection

logical

En
d
AS
R

Start ASR Write
Dis-

connected

This figure shows the modified state transition diagram for a
volume with the new write-disconnected state. The new
state and its related transitions are shown in dotted
lines/arrows.

Figure 5: Volume State Transitions

Two operations, purge-log and commit-log are pro-
vided to purge or commit mutations made by an ASR.
Commit-log is invoked if the ASR computation was
successful and the server is accessible: the volume
transitions into the reintegration state, the ASR’s up-
dates are propagated to the server, and then the volume
enters the connected state. Purge-log is used to
flush the changes made by the ASR. Further details on
the implementation of the write-disconnected state are
provided in [9].

7 Example ASRs

This section shows the use of the resolution rule lan-
guage with two example ASRs: a resolver for a calendar
management program, and a resolver for a file created
by the make utility. The former ASR merges the con-
tents of the diverging replicas. The latter ASR, on the
other hand, does not use the contents of the diverging
replicas but reproduces the file’s data from its source
files.

1The dual of this state is read-disconnected. Both read- and
write-disconnected states are collectively referred to as pseudo-
disconnected states.

7.1 Calendar Application

The cboard application is one of the calendar man-
agement programs available in ourenvironment. Using
this application, each user can store her appointments
in multiple databases. For example, a user may have a
personal database for private appointments, and an
official database that she shares with her secretary,
for recording business appointments. Furthermore, a
system database is shared by users to store announce-
ments for public events. The system database and a
user’s official database, exhibit write-sharing and
are thus prone to concurrent partitioned updates.

Each database is maintained in two files, an events
file and a key file. The former, stored in ASCII format,
contains one record per event. The key file, on the other
hand, is stored in binary format and contains an index of
the events file. The index is used for efficient retrieval
of a day’s events. These two files are distinguished
by special name extensions – a .cb extension for the
events file and a .key extension for the key file. For
example, the files storing the system database, are
named system.cb and system.key.

The user interface for the calendar, implemented in
Tcl/Tk [12], is shown in Figure 6. A user may browse
through a database or mutate it in one of three ways:
insert a new event, remove a cancelled event and update
a changed event. An event is inserted by appending a
new record to the events file. To remove an event, its
record is invalidated, i.e. logically removed from the
calendar, but not deleted physically from the events
file. Finally, an event is updated by invalidating its
record and inserting a new one with the updated data.
In all three cases, the index is changed and both files
are written to disk.

Since each mutation modifies the events and key file,
a concurrent partitioned update to the calendar causes
both these files to have diverging replicas. Therefore,
a resolution rule for the calendar application, as shown
in Figure 7, contains both files in its object-list. The
dependency-list of the rule is empty, since the ASR

does not require any other file to have non-diverging
replicas. The ASR is executed in three steps. First, the
merge-cal program merges the diverging replicas of
the events file and produces a temporary database. The
number of replicas and their names, as well as the name
of the temporary database are provided as arguments
to this program. In the example shown in Figure 7,
the temporary database is stored in /tmp/newdb. In
the next two steps, the temporary database is used to
atomically update the contents of the diverging files
using the file-resolve utility. This utility sets the
contents of the diverging replicas of a file to a common

value. The new contents are provided in a file whose
name is supplied as an argument to this utility. If this
argument is missing, the replicas are replaced with an
empty file.

The merge-cal program, performs its task as fol-
lows. It builds an index of each replica of the events
file. The index includes deleted events, even though
their records are invalid, so that the resolver can disam-
biguate between recent deletes and new insertions. The
indices are merged using a straightforward algorithm –
a unique copy of every valid record is preserved.

The original calendar application was implemented
more than a decade ago. We chose this as one of
our test applications due to its wide-spread use in
our community. There are approximately 90 regular
users of this application. The user interface, when it
was originally implemented, was based on terminal in-
put/output. The more recent implementation based on
Tcl/Tk and shown in Figure 6 is being used regularly
by ten users. We expect this number to increase as the
software becomes more stable.

7.2 Make Application: Reproducing a
File’s Data

Another kind of ASR, commonly used for a file pro-
duced by make-like applications, reproduces the file’s
data from a source file. Of course, such ASRs can
succeed only if the source file itself is conflict-free.

Common examples of files that could benefit from such
ASRs are files witha .dvior.o extension. The former
are created by Latex and the latter are produced by the
C compiler. The resolution rules for these two file
types are shown in Figure 8. Note that both rules
have a non-empty dependency-list, which is typical for
ASRs that regenerate the file’s contents. The resolver
for foo.dvi reproduces its contents by processing
foo.tex with Latex, provided foo.tex itself does
not have diverging replicas. Similarly, if bar.c has
identical replicas, it is processed by the C compiler to
generate the contents of bar.o.

Recall, that no mutation except repair is allowed for
a file with diverging replicas. Since foo.dvi is up-
dated by Latex while processingfoo.tex, its replicas
are first truncated using file-resolve. Alterna-
tively, the functionalityof the file-resolve utility
could be incorporated into Latex. However, our strat-
egy allows us to use the Latex software off the shelf
without any modifications. This intermediate step is
not necessary for the latter example, since the C com-
piler allows its output to be redirected to any named
file, e.g. /tmp/bar..o in the example above. This

This figure shows the Tcl/Tk based interface for browsing events in the calendar. The menu is used to invoke functions like
selecting a database, inserting and deleting events etc. The top frame shows the calendar and highlights those days whose events
are being viewed in the lower frame. The user may view events for a day, week or month. The lower frame shows a one line
summary for each event. Details for an event can be seen by clicking on its summary line. The application uses a dialog-box to
remind users about an event and a window-based form to receive user input.

Figure 6: User Interface for the Calendar Manager

*.key, *.cb:
merge-cal-replicas -n $# -f $</$*.cb[*] -db /tmp/newdb
file-repair $*.cb /tmp/newdb.cb
file-repair $*.key /tmp/newdb.key

Figure 7: Resolution Rule for the Calendar Application

file is used to set the replicas of bar.o to a common
value using file-resolve.

8 Performance

The cost of executing an ASR is visible directly to the
user because his request is suspended for the duration
of the ASR execution. The time overhead occurs dur-
ing each of the three parts of the ASR mechanism, i.e.
invocation, selection and execution of the ASR. While
the time overhead of the first two parts is application-
independent, the time overhead of the last part depends
on the complexity of the ASR’s algorithms and the num-
ber of updates made by the application. The purpose of
this section is to quantify the overhead of only the first
two parts, those concerned with providing flexibility
and safety for the ASR mechanism.

To measure this overhead we conducted a series of
experiments. An experiment consisted of triggering
an ASR and measuring the elapsed time between Venus
requesting the ASR and receiving notification from the
ASR-starter that the ASR had completed. The ASR

was triggered by issuing a stat request for a file with
diverging replicas. The ASR consisted of running the
Unix command echo without any arguments. Since
we are interested in measuring the overhead only for
invoking and selecting an ASR, we could have used an
empty command-list for the resolution rule. Instead we
used a null-programso that our measurements included
the cost of a fork system call which would be made
even by a minimal ASR.

A measure of the overhead must take into account the
fact that the time to find an ASR depends on the lo-

*.dvi: *.tex
file-resolve $</$>
latex $*.tex

*.o: *.c
cc -c $*.c -o /tmp/$*..o
file-resolve $> /tmp/$*..o

Figure 8: Make Application’s Resolution Rules

cation of the ResolveFile with respect to the file
being resolved. A longer distance between these files
lengthens the time needed by the ASR-starter to
find the ASR. To study the effect of changing the
depth of the ResolveFile, i.e. the distance between
the ResolveFile and the file being resolved, the
above experiment was conducted with depth levels
from 1 to 12. A depth-level of n implies the ASR-
starter had to lookup n ancestral directories to find the
ResolveFile.

The experiments were conducted on a DECstation
5000/200 with 32 Megabytes of memory running ver-
sion 2.6 of the Mach kernel. In each experiment the
latency of the ASR execution was measured using a
microsecond timer.

8.1 Results

The results of our experiments, shown in Figure 9,
confirm that the framework for invoking and selecting
an ASR has a small overhead. In most cases, it takes
between one-half and one second for the ASR to be
invoked and its results returned to Venus.

The minimum overhead of 571:5 milliseconds oc-
curs when the ResolveFile and the file being re-
solved are in the same directory. Detailed measure-
ments of this experiment configuration show that the
RPC request from Venus to the ASR-starter costs
12:5 milliseconds. The fork request that starts the
executor causes a delay of 50 milliseconds. The
executor takes 496 milliseconds to perform its work
– 180 milliseconds to parse the ResolveFile and
316 milliseconds to lookup the parent directory for the
ResolveFile, lock the volume and fork the echo
program. Finally, the RPC from the ASR-starter
to Venus costs 12:5 milliseconds.

Although the cost of invokingand selecting an ASR may
seem high, it is usually lower than the time needed to
execute the resolver. Further, the flexibility of the ASR

mechanism combined with the major improvement in
usability resulting from ASRs being invoked automat-
ically, rather than manually, renders this cost entirely
acceptable.

9 Related Work

The work reported in this paper only represents one part
of the overall support for conflict resolution in Coda.
Resolution of directories is performed using a server-
centric, log-based scheme [10]. The radically different
approaches to file and directory resolution arise due
to their very different characteristics. Directories are
objects whose semantics are entirely known to the sys-
tem; files, on the other hand, are treated as untyped
byte streams. Directories are more critical to avail-
ability, because a directory conflict denies access to an
entire subtree while a file conflict only denies access to
a single object. Finally, to safeguard against structural
damage caused by directory corruption, Coda servers
never accept entire directory contents from clients as
they do file contents; rather, directory updates are per-
formed individually on servers.

These differences lead to Coda’s use of very different
resolution strategies for directories and files. Directory
resolution is performed entirely by servers, although it
is triggered by clients. The code for performing direc-
tory resolution is part of the trusted system software
on a server, in contrast to ASRs which are untrusted.
A similarity between directory and file resolution is
that both function lazily, and resolve on demand rather
than resolving en masse. As mentioned earlier, this
approach minimizes the likelihood of recovery storms.

The Ficus File System also uses optimistic replication
and provides facilities for automating the resolution of
file conflicts [14]. Like Coda, Ficus uses a rule-based
approach for selecting a resolver. But it is less flexible
along many dimensions. For example, the parameter
list to a resolver is assumed to have a fixed format; a
Ficus user can have only one personal resolver list; it is
not possible to specify that a group of programs are to
be executed as one logical resolver, nor can a group of
files be resolved together. There are also important dif-
ferences in the execution models of resolvers in Ficus
and Coda. Since Ficus uses a peer-to-peer rather than
a client-server model, it is more liberal in its choice of
execution site – any site with a replica of a file can run
a resolver for it. If one resolver fails, others are tried
in succession.

The Ficus design pays less attention to issues of secu-
rity and robustness. Ficus resolvers are run on behalf
of the owner of the file and not the user accessing it.
Therefore, a malicious user could cause serious dam-

Resolution rule used for the experiments:
*:

/bin/echo -n

Depth of ASR Exec.
ResolveFile Time (milliseconds)

1 571.5 (4.9)

2 576.6 (4.5)

3 620.8 (5.2)

4 665.0 (3.2)

5 708.5 (5.2)

6 754.1 (13.9)

7 806.5 (10.9)

8 847.1 (4.3)

9 888.9 (4.0)

10 940.7 (16.7)

11 970.2 (5.3)

12 1026.4 (6.8)

Depth of Resolve File

N
ul

l-
A

SR
 e

xe
cu

ti
on

 ti
m

e
(m

se
cs

)
0

200

400

600

800

1000

1200

2 4 6 8 10 12

The table shows the elapsed time for executing the null-ASR. The graph shows the increase in overhead with increasing depth of
the ResolveFile. Each additional lookup in an ancestral directory takes 44.8 milliseconds. The file being resolved was
replicated at two servers. The experiments were performed on a DECstation 5000/200 with 32 Megabytes of memory. The time
values in milliseconds are the mean value from nine trials of each experiment. Figures in parentheses are standard deviations.

Figure 9: Execution Time for a Null-ASR

age by using a misbehaved resolver on a file owned by
another user. There are no specific mechanisms in Fi-
cus to provide atomicity or isolation. Coda, in contrast,
takes these issues much more seriously and provides
specific mechanisms to improve safety.

The ASR mechanism in Coda is loosely analogous to a
watchdog as proposed by Bershad and Pinkerton [1]:
it extends the semantics of the file system for specific
files. Of course, since the watchdog mechanism is not
specifically intended for conflict resolution, it does not
incorporate many important mechanisms needed by
us. For example, it does not use a rule-based approach
for selection of watchdogs, provide a mechanism for
exposing file replicas, or pay particular attention to the
issues of security, robustness, isolation and atomicity.

10 Conclusion

The importance of optimistic replication as a technique
for providing high availability in distributed systems
has been known for over two decades. But the use

of this technique in actual systems has been minimal.
One reason for this has been the fear of designers that
conflicts, an inevitableconsequence of optimistic repli-
cation, might hurt usability unacceptably. A second
reason has been concern that the machinery needed to
cope with conflicts might be excessively complex and
unwieldy.

Our work puts both these fears to rest in the context
of distributed personal computing environments. We
have shown how one can build a practical system that
provides support for resolving file conflicts. A key
aspect of our approach is that the semantic knowledge
needed for resolution is provided by application writers
rather than being wired into the system. The challenge
with this approach is to ensure that security, robustness
and other safety properties are not compromised intol-
erably. This is indeed possible, as we have shown in
this paper.

References
[1] Bershad, B., and Pinkerton, C. Watchdogs - Ex-

tending the UNIX File System. Computing Sys-
tems 1, 2 (Spring 1988).

[2] Eldred, E., and Sylvester, T. A Groupware Duet
with Gusto. Client/Server Today 1, 3 (July 1994).

[3] Guy, R., Heidemann, J., Mak, W., Jr., P., T.W.,
Popek, G., and Rothmeier, D. Implementation
of the Ficus replicated file system. In USENIX
Summer Conference Proceedings (Anaheim, CA,
June 1990).

[4] Howard, J., Kazar, M., Menees, S., Nichols, D.,
Satyanarayanan, M., Sidebotham, R., and West,
M. Scale and Performance in a Distributed File
System. ACM Transactions on Computer Systems
6, 1 (February 1988).

[5] Huston, L., and Honeyman, P. Disconnected Op-
eration for AFS. In Proceedings of the 1993
USENIX Symposium on Mobile and Location-
Independent Computing (Cambridge, MA, Au-
gust 1993).

[6] INTUIT. User’s Guide: Your Day to Day Reference
Guide to Quicken, September 1992.

[7] Kistler, J., and Satyanarayanan, M. Disconnected
Operation in the Coda File System. ACM Trans-
actions on Computer Systems 10, 1 (February
1992).

[8] Kumar, P. Coping with Conflicts in an Optimisti-
cally Replicated File System. In Proceedings of
the IEEE Workshop on Management of Repli-
cated Data (Houston, TX, November 1990).

[9] Kumar, P. Mitigating the Effects of Optimistic
Replication in a Distributed File System. PhD
thesis, School of Computer Science, Carnegie
Mellon University, 1994.

[10] Kumar, P., and Satyanarayanan, M. Log-based
Directory Resolution in the Coda File System.
In Proceedings of the Second International Con-
ference on Parallel and Distributed Information
Systems (San Diego, CA, January 1993).

[11] Kumar, P., and Satyanarayanan, M. Supporting
Application-Specific Resolution in an Optimisti-
cally Replicated File System. In Proceedings of
the 4th IEEE Workshop on WorkstationOperating
Systems (Napa, CA, October 1993).

[12] Ousterhout, J. Tcl and the Tk Toolkit. Addison-
Wesley, 1994.

[13] Parkinson, K. Remote Users Get in Sync with
Office Files. Macweek 8, 28 (July 1994).

[14] Reiher, P., Heidemann, J., Ratner, D., Skinner, G.,
and Popek, G. Resolving File Conflicts in the Fi-
cus File System. In USENIX Summer Conference
Proceedings (Boston, MA, June 1994).

[15] Satyanarayanan, M., Kistler, J., Kumar, P.,
Okasaki, M., Siegel, E., and Steere, D. Coda:
A Highly Available File System for a Distributed
Workstation Environment. IEEE Transactions on
Computers 39, 4 (April 1990).

[16] Satyanarayanan, M., Mashburn, H., Kumar, P.,
Steere, D., and Kistler, J. Lightweight Recov-
erable Virtual Memory. ACM Transactions on
Computer Systems 12, 1 (February 1994), 33–57.

[17] Satyanarayanan, M., Mashburn, H., Kumar,
P., Steere, D., and Kistler, J. Corrigendum:
Lightweight Recoverable Virtual Memory. ACM
Transactions on Computer Systems 12, 2 (May
1994), 165–172.

[18] Tygar, J., and Yee, B. Strongbox: A System
for Self Securing Programs. In CMU Com-
puter Science: 25th Anniversary Commemora-
tive. Addison-Wesley, 1991.

Author Information

Puneet Kumar received a PhD in Computer Science
from Carnegie Mellon University in 1994, after a B.S.
degree in Computer Science from Cornell University.
His PhD thesis was concerned with automating resolu-
tion in optimisticallyreplicated distributedfile systems.
He is one of the original implementors of the Coda File
System.

Mahadev Satyanarayanan is an Associate Professor
of Computer Science at Carnegie Mellon University.
He is currently investigating the connectivity and re-
source constraints of mobile computing in the context
of the Coda File System. Prior to his work on Coda, he
was a principal architect and implementor of the An-
drew File System. Satyanarayanan received the PhD
in Computer Science from Carnegie Mellon University
in 1983, after a Bachelor’s degree in Electrical Engi-
neering and a Master’s degree in Computer Science
from the Indian Institute of Technology, Madras. He is
a member of the ACM, IEEE, Sigma Xi, and Usenix,
and has been a consultant to industry and government.

