Using Belief to Reason About Cache Coherence

L. Mummert, JM. Wing, and M. Satyanarayanan
Carnegie Mellon University

Abstract

The notion of belief has been useful in reasoning about authen-
tication protocols. In this paper, we show how the notion of belief
can be applied to reasoning about cache coherencein a distributed
file system. To the best of our knowledge, this is the first formal
analysisof this problem. We used an extended subset of alogic of
authentication [4, 5] to help us analyze three cache coherence pro-
tocols: avalidate-on-use protocol, an invalidation-based protocol,
and anew large granularity protocol for use in weakly connected
environments. In this paper, we present two runs from the large
granularity protocol. Using our variant of the logic of authentica-
tion, wewere ableto find flawsin the design of thelargegranularity
protocol. We found the notion of belief not only intuitively appeal-
ing for reasoning about our protocols, but also practical given the
optimistic nature of our system model.

1 Introduction

In their seminal work on alogic of authentication [4, 5] Burrows,
Abadi and Needham identify the central role played by belief in
reasoning about the correctness of authentication protocols. They
demonstrate the power of this reasoning by using it to identify
errors and inefficienciesin anumber of published protocols, one of
which had been proposed as an international standard. The novel
contribution of our work is the application of the notion of belief to
adomain that hasto our knowledge never been subjected to formal
analysis: cache coherencein adistributed file system.

Caching of data at clients plays an important role in meeting
the performance and scalability requirements of large distributed
systems[11, 19]. Caching has also been exploited to mask tempo-
rary failures of communication [12, 16]. The value of caching is
especially high when bandwidth and connectivity are at apremium.
Thissituation arises in mobile computing, where weak connectivity

This research has been supported by the Advanced Research Projects Agency
(Hanscom Aiir Force Base under Contract F19628-93-C-0193,ARPA Order No. A700;
and the Wright Laboratory, Aeronautical Systems Center, Air Force Materiel Com-
mand, USAF, under grant number F33615-93-1-1330), IBM Corporation, Digital
Equipment Corporation, Intel Corporation, and Bellcore. The views and conclusion
expressed in this paper are those of the authors, and should not be interpreted as those
of the funding organizationsor Carnegie Mellon University.

Authors' addresses: School of Computer Science, Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh, PA, 15213-3891.

E-mail: {lily,wing,satya} @cs.cmu.edu.

isthenorm. A weak connection is characterized by low bandwidth
or intermittence.

Thework describedin thispaper arosefrom our effortsto exploit
weak connectivity in the CodaFile System[21]. Sincecommunica-
tion is expensivein weakly-connected environments, we sought to
keep the volume and frequency of client-server communicationto a
minimum. This made our cache coherence protocol more complex
than earlier protocols developed for LAN environments. The need
to ensure the correctness of this more complex protocol led us to
explore techniquesto reason systematically about it.

In our investigation, we realized that the notion of “belief” was
at the heart of our cache coherence protocols. Informally stated,
the correctness criterion for these protocols is as follows: If a
client believes that a cached file is valid then the server that is
the authority on that file had better believe that the file is valid.
This insight led us to explore the logic of authentication. That
logic alows one to focus on the beliefs of parties involved in an
authentication protocol, and the changes in those beliefs as the
parties communicate. Analogously, we need to reason about the
behavior of clients and serversin adistributed file system, and the
changesin their beliefs about cached data as they communicate.

Asin the logic of authentication (henceforth referred to as the
“BAN logic”), we reason about the beliefs of “principals’; in our
systemthey areclientsand servers. Our systemmodel allowsclients
to update data during network partitions, such as in disconnected
operation[16], whenaclient cannot contact any servers. Therefore,
a connected client may reference afile that it and the server both
believeto bevalid, despitethe possibility that thefileistruly invalid
(in a global sense) because of an update the server has not yet
received. Determining global knowledgeor “absolutetruth” inthis
model isimpossible[10]. Fortunately, we do not want or need to.

Reasoning about cache coherenceis in some ways simpler, but
in other ways more difficult, than reasoning about authentication.
For example, we do not have to worry about maliciousintent. We
can also ignore replay attacks, since we can assume that dupli-
cate suppression is performed by the underlying communication
protocol. However, we cannot ignore two key characteristics of
distributed systems: failures and transmission delay. Indeed, for
thesereasonswe could not directly use the work in verifying cache
coherence for multiprocessors[6, 17].

In the rest of this paper, we describe how we extended a subset
of the BAN logic to help us analyze cache coherence protocols for
distributed file systems. We applied our logic to three different pro-
tocols: avalidate-on-use protocol, an invalidation-based protocol,
and a new large granularity protocol for weak connectivity. Our
strategy consists of first defining the state space and state transi-
tions, thenidentifying all reachablestates, and finally verifying that
all possible runs of the protocol are correct (i.e., maintain cache

coherence).

In the next three sections of this paper, we present our system
model, our logic, and a statement of the correctness criterion for
the cache coherence protocols. Then in Section 5, we describe
the large granularity protocol, the most complicated of the three
protocols that we have analyzed, and we present two of the fifteen
possible classesof runs of the protocol. We then discussthe effects
of failures and transmission delay on correctness. We close with a
discussion of related work and a summary of our conclusions.

2 System Model

We designate hosts as clients or servers of the file system. Clients
and servers communicate by sending messagesto each other via
remote procedurecall [2]; each request made by one party requires
aresponsefrom the other. To represent client C' sending a message
M to server S, we use this notation:

C—=S:'M

Clients speak only to servers, not to other clients. We assume
the underlying communication protocol addresses end-to-end con-
cerns such as guaranteeing authenticity and eliminating duplicate
messages.

Exactly onerepository, which could be one server or agroup of
servers, istheauthority for eachfile systemobject. In this paper, we
usethe generic term “server” for arepository. A file system object
is any data contained by a server that may be cached at a client,
including files, portions of files, file attributes, or version numbers.
For now, it sufficesto think of these objectsasfiles; later in Section
5.1 they may also be version numbers.

The loca state of a client, ', includes a set of cached data,
C.D, and a set of beliefs, C.B, about objects in its cache. The
local state of a server, S, includes a set of data objects, S.D, for
which it is considered the authority, and for each client C', a set of
beliefs, S¢. B, that includeswhich objects are present in C”s cache
and their validity.

The global state of the system is a tuple of al clients and
servers local states, plus an agreement set A - ¢, which determines
for each data object d whose authority is .S and is cached at C,
whether the server and client copiesare equal. It is this state vari-
able that approximates global knowledge about the validity of all
files. It represents pairwise knowledge, which is attained between
connected pairs of clients and servers.

State transitions occur when a component of the global state
changes. For themost part, thisiswhenclientsand serversexchange
messages. We discuss the types of messagesthey exchangein our
protocol in Section 5.

We reason about the presence or absence of file system objects
cached at clients and their validity. An object isvalid if it is the
most recent copy in the system. Otherwise, it isinvalid. Recencyis
determined by atimestamp associated with thefile. Thetimestamp
isreplaced whenever the file is updated.

Since serversmay not hear about updatesimmediately, validity
is global knowledge and cannot always be determined. However,
if C and S agreeon an object, and S believesits copy isvalid, then
C should be able to conclude that its cached copy is valid. If S
receivesan update from aclient other than C', then regardless of the
global validity of the updated copy, S isjustified in telling C' that
its copy of the object isnow invalid.

A run of a cachecoherenceprotocol beginswith aninitial mes-
sageand endswith a final message. Each protocol has a predefined
set of initial and final messages. Failures can terminate runs; how-
ever, failures are detected by messagetimeouts. If amessagetimes
out, the principal that sent the message considersit afinal message.

However, if aclient and server both believe arun is in progress,
then the run ends once both principals detect the failure. We give
an example of thisin Section 5.4.

Beforearun, aclient C' considersall objectsinitscachesuspect;
that is, it neither believes an object d is valid, nor believes d is
invalid. During arun, C' and S accumulate beliefs about d as a
result of exchanging messages. At the end of the run, C' and S
discard their beliefsregarding the validity of d. After arun, C' must
again consider all cached objects suspect becauseit cannot check if
they are valid, nor can S notify C' that they are not.

3 Logic

Our logicisasubset of theBAN logic with afew extensions. Below,
P and @ areprincipals, which are either clients or servers. S refers
to aserver and C refersto aclient. We denote amessageby X; a
file system object by d. The constructswe use are:

P believes X P behavesasif X istrue.
PseesX from @ P receivesmessage X from Q).
P controls X P isan authority on X.

The notions of belief and control are taken directly from the
BAN logic. Thestatement P believes X isequivalentto X € P.B,
where P. B is the belief set for principal P. The sees construct is
derived from the BAN logic based on our assumptions about the
underlying communication mechanism.

The following constructs, extensionsto the BAN logic, are for
reasoning about file system objects:

de P Phasacopyof d,i.e, d € P.D. Thecopy
held by P isdenotedd .

The value of d’s timestamp at P is greater
than or equal to the timestamp associated
with every other copy of d in the system.

valid(dp)

M essages can contain the abovetwo constructs and their nega-
tions. Asinthe BAN logic, amessage X can consist of formulae,
data, or both. For example, a message might contain a formula
about some object d such as valid(d <), or it might contain the
object itself (simply d). We classify messages further based on
their contents. For example, the various kinds of update requests
form one classof messages. We denotean update request involving
object d asupdate(d).

Belief sets can contain the above two constructs and their nega-
tions, as well as statements of the form P believes X .

Theaxiomsin our logic are:

Al ¥d € C.D (C believesd € ()
A2.¥d ¢ C.D (C believesd ¢ C)
A3. P believes X = —(P believes—X)

The first two axioms simply state that client C' is alowed to
believe what it knows about the contents of its cache.

The third axiom says belief sets must be internally consistent.
In the BAN logic, beliefs are stable, meaning that once a principal
holds a belief, it holds that belief for the duration of the protocol.
Thus during their protocols, belief sets only grow. In contrast, in
our system files may become invalid because of updates. Because
of this, beliefs about the validity of files may change. Axiom 3
guaranteesat most oneof X and —X appearsin P'sbelief set. If a
new belief is derived during arun that contradicts a currently held
belief about d, the new belief supersedesthe old one becauseit is
based on more recent information. Thusif C.B = {valid(d¢)},

1Although P is aparameter, we find using it as a subscript more readable.

and a message arrives invalidating d «, then C.B would become
{-valid(d¢)}.

The converse of A3, —(P believes X) = (P believes—X),
does not hold. In other words, absence of belief is distinct from
belief of the opposite.

It may be the casethat principal P hasno beliefsregarding X,
in other words it believes neither X nor -X. Since X € P.B
is equivalent to P believes X, then X ¢ P.B is equivaent to
—(P believes X'). Thus, for example, if valid(d ») does not appear
in P’sbelief set, thenwe can say —(P believesvalid(d 7)). Again,
thisdoesnot meanthat P believesd p isinvalid, asexplained above.

Theinference rulesin our logic are:

R1. Thevisibility rule saysif aprincipal seesa message, it sees
its components. Thisrule istaken from the BAN logic.

PseesX,Y from Q@
P seesX from Q, P seesY from @

R2. Themessageinterpretationrulesaysif aprincipal seesames-
sage, it can believethat the sender believeswhat it said in the
message. Thisis derived from the BAN message meaning
and nonce-verificationrules, and it follows from our assump-
tions about the underlying communication mechanism.

P sees X from @
P beieves @ believes X

R3. Thejurisdictionrule, takendirectly fromthe BAN logic, says
if P believes @ is an authority on X, then P may believe
whatever @ believesabout X .

P believesQ controls X, P believes @ believes X
P believes X

R4. The update rule says observers of an update invalidate old
versions of the updated data. Below, C’ # C, and S isthe
repository for d.

S believesvalid(d), S seesupdate(d) from C’

S believes —valid(d ¢')

4 Goal of Cache Coherence

The goal of a cache coherence protocol is to ensure that no invalid
objectisever portrayed asbeing valid. Thatis, for al clientsC and
objectsd,

if C believesvalid(d¢) thenvalid(d¢)

In practice, we cannot achieve this ideal, because our system
model alows partitioned updates. Therefore the correctnesscrite-
rionweuseis: for all clientsC, servers S, and objects d for which
S istherepository,

if C believesvalid(d¢) then S believesvalid(d)

Noticethat the correctnesscriterion is defined on a per-object basis.
Unlike authentication, cache coherence is not a final system
state to be achieved after running the protocol, but an invariant
to be maintained while running it. To argue a cache coherence
protocol correct, our obligation is to prove the invariance of the
correctnesscriterion over each run of the protocol.

5 Protocol Analysis

We analyzed three different protocols. a validate-on-use protocol,
an invalidation-based protocol, and anew large granularity proto-
col for weak connectivity.

In these protocols, a client may send a server a fetch request
for new data, a validation of already cached data, or an update.
Serversmay respondto fetch and validation requestswith new data,
and an indication if already cached datais valid. In invalidation-
based protocols, update requests cause serversto send invalidation
messagesto clients caching the updated data.

For example, in a validate-on-use protocol, the fetch and val-
idation messages are initial messages, and the response to these
messages is the final message. In such a protocol, runs are very
short, and serverskeep no state about client caches. Ininvalidation-
based protocols, the client’s responseto an invalidation messageis
a final message. The response to a validation request is a final
messageif it isnegative (i.e., thefileis not valid).

For theseprotocols, thefollowing assumptionsapply to al runs:

Sl. ¥d € 5.D (S believesvalid(d s))
S2. ¥d € 5.D d € C = (C believesS controlsvalid(d¢))
S3. Vd € 5.D d € C = (C believes.S controls —valid(d ¢))

The first assumption states that a server believes al the data it
storesisvalid. Thelast two assumptionssay aserver istheauthority
onthe validity of datait stores.

In the rest of this section, we describe and analyze two runs of
thelargegranularity protocol 2. Thedescriptionincludesadefinition
of initial and final messagesfor the protocol.

5.1 Protocol Description

The cache coherence scheme used by the Codafile systemis based

on callbacks. When a client caches a file, the server promises
that it will notify the client if the file changes. This is called a
callback promise, or just acallback. If thefileisupdated, the server
sends an invalidation message, called a callback break. If thefile
is invalidated, the client discardsit. |f afailure occurs, the client
retains the file but considersit suspect. The client does not discard
the file, becauseit is cheaper to validate the file when the failure
isrepaired than it isto re-fetch it. We assume for simplicity that a
client doesnot discard afileunlessthefileisinvalidated. Of course,

in practice clients may discard files for other reasons, such as lack
of space.

The large granularity cache coherence protocol extends the
Coda scheme. To reduce client-server communication in failure-
prone environments, callbacks may be maintained on volumes in
addition to or instead of files. A volumeisacollection of filesform-
ing apartial subtreein the file name space[22]. A fileis contained
in exactly one volume.

A callback on a volume constitutes proof that all cached files
in the volume are valid. To establish a volume callback, the client
cachesthe version number for the volume. The server increments
the volume version number whenever afile in that volume is up-
dated.

A completeanalysis of all three protocols appearsin [18].

A run of this protocol concerns a file f, and optionally the
version number » from volume V' containing f. Before requesting
v, the client must have at least one file in V' in its cache, and all
cachedfilesin V' must be valid. This requirement ensuresthe files
at C correspond to the version number it receives.

A client may validate v just asit would afile. If it has both file
and volume state at the beginning of a run, it may validate them
in either order. If a client validates v successfully, it receives a
callback for the volume. No further communicationis necessary to
read any file in the volume until the callback is broken or afailure
occurs.

Theinitial messagesfor this protocol are any one of the follow-
ing: afetch for afile or aversion number, or avalidation for afile
or aversion number.

The final messagesfor this protocol are: the client’s response
to an invalidation of afile or volume, and afailed validation of a
file or volume. Since a client can hold callbacks on both the file
and its volume, the run ends when the fileis discarded or rendered
suspect. A failure or an invalidation for thefileis sufficient to end
therun. Aninvalidation for the volume ends the run only if there
isno callback on thefile.

Without loss of generality, we can analyze this cache coher-
ence protocol by considering one client, C', one server, S, onefile,
f, and one volume, V', with version number ». Implicitly, the
system includes at least one other client to represent remote up-
dates. We can capture the system state as a tuple of four variables,
(C.D,C.B, S.B, A)®, where

e C.D ranges over §,{f}, and {f,v}. This means if the
volume version number is cached then so is a file from that
volume.*

¢ A isthe agreement set on the cached objects. It ranges over
the following values:

0, {fc = fs}, {fc # fs}, {foc =fs,vc =vs}
{fo = fs,vc #vs}, {fc # fs,vc # vs}

Notethat becausethe volume version number is updated whenever
an object in the volume is updated, it is not possible for f to be
invalid and v to be valid at the sametime.

A run of the protocol maps some initial state (C.D;, C.B;,
S.Bi, A;) to some fina state (C.Dy, C.By,S. By, Af). The
state space is restricted in the following ways. For al states,
(C.D,C.B,S.B, A),inarun:

1. For eachobject d (f or v) inC.D,dc = ds or de # ds
must be in A. This simply meansif d is cached at C, d ¢
either matchesthe copy at S or it doesnot. If C.D = @ then
A=0.

2. When an object isinvalidated, the client must discard it. An
invalidation for the file is an implicit invalidation for the
volume. More precisely,

(fe#fs)eA=C D=1
(ve#vs) € A= v g C. Dy

3. At theend of arun, either d isnot cached, or it is cached and
agrees with the server. This follows from 2 above, because
once the client discovers d is invalid it discards it. Thus
Af =0 orAf = {dc = ds}.

3\We do not need 5. D because our anal ysisincludesonly one server.

4We considerasi mplifiedmodel consisting of only f andv, eventhoughin practice
it would take more than one file to make obtaining avolume callback worthwhile. We
discussthisin Section 6.

We classify runs by the initial and final cache contents of the
client (C.D; and C.D ;) and by theinitial agreement set (A;)°. The
state transition diagram for a client is shown in Appendix A. This
diagramisfor asinglefile; thereisaseparate, independent state ma-
chinefor eachfile. Nodesarelabeled with thecontentsof theclient’'s
cache. For each object in C. D, the contents of the agreement set
determines which transition will be taken concerning that object.
For example, arun consisting of acachemisson file f and ending
with afailure hasinitial system state (¢, {f ¢ C},#,0) and fina
system state ({f}, {f € C},0,{fc = fs}). Thiscorrespondsto
apath from the upper leftmost state to the middle rightmost statein
the state transition diagram. With this diagram, one can generate
all possible runs of the protocol.

In the next two sections, we analyze two runs. (1) a cache
misswith no failures, and (2) asuccessful validation followed by a
communication failure. Thefirst lets usintroduce our notation and
shows how we use the axioms and rules of our logic. The second
serves as an example of a validation and a failure. For both, we
assumeinitially that transmission of messagesand failure detection
are instantaneous; we discuss how timing affects correctness in
Section 5.4.

We base our proof of invariance on either f ¢ or v¢, depending
on which callback, if any, is established first. It is never the case
that the client switches from depending on one type of callback to
another during the run. If the proof of invariance concerns v ¢,
and f is contained by the volume whose version number is v ¢,
if C believesvalid(v¢) then it can be confident that valid(f¢) as
well.

5.2 Cache miss, no failures

Fromtheclient’ sviewpoint, thisrun correspondsto thetopmost path
in the state transition diagram of Appendix A. The critical transi-
tionsfor theclientareafetchof f, andaninvalidationof f. Theini-
tial and final system statesfor thisrun areboth (@, {f ¢ C},0,0).

The run proceeds as follows. A request involving f is issued
at C, however f is not present in C’s cache. C sends the initial
messageto .S requesting acopy of f. S recordsthe fact that C' is
caching f (f € C' onS). Thisis the calback promise. When C
receivestheresponsefrom .S, it may usethe datato service requests
for f until S tellsit otherwise. Since no failures occur in this case,
eventually some other client updates f, rendering C’scopy invalid.
The server sends C an invalidation message (the callback break),
causing C' to discard its copy of f. C sendsthe fina messageto
S indicating that it received the invalidation, and S discards its
callback promiseon f for C.

In Figure 1, we show the evolution of C’sand .S’sbeliefsasthe

protocol runs. The diagram is read |eft to right, then top to bottom.
Time moves from top to bottom. Under the column named “C'
believes” wekeeptrack of C. B, the set of client beliefs; similarly
for the column named “.S'" believes.” We show the entire belief
set whenever an element of the belief set changes. For example, at
the beginning of the run, f isnot in C’s cache. Using axiom 2, we
derive C believes f ¢ C, shown at the top of the “C believes”
column. The notation “[«]” means —(P believesz). We do not
use beliefs involving f € C in our proof, but we show them to
motivate why certain messagesare being sent.

As we walk through this example, we show that the invariant
(rewriting the implication as adigjunction)

—(C believesvalid(f¢)) V (S believesvalid(f¢))

S\We do not need to consider A 7 becauseit will either be empty or indicate agree-
ment as stated in item 3 above.

C believes M essage
féc
C—5: fgcC
S —C: fvaid(fc), fecC
fec
S believes f € C
valid(f¢)
C'—5: indate(f)
S — C: —valid(fe)
fec
S believes f € C
—valid(f¢)
féc
[S believes f € (]
[-valid(fc)]
— S

S believes Notes

cachemiss

request f

record callback promise
send f, callback status

f € Cvalid(fe)

C' updates f
C’scopy stale
callback break for f¢

f € ¢, ~valid(fe)

supersedesvalid(f)

C discards f
C erasesbeliefs

C respondsto invalidation
[f € C,—valid(fc)] erasecallback promise

Figure 1: Run Starting with a Cache Miss, Ending with an Invalidation

holds initially and is preserved across each step that changes the
beliefsabout f’svalidity. Initialy, therearenobeliefsin C. B about
the validity of f, because f isnot evenin C’s cache. That means
valid(fc) ¢ C.B, therefore —(C believesvalid(f¢)). Thus the
invariant is established.

The cache miss causes C' to send the initial message (to 5),
which doesnot change either belief set.

When S sends the second message, we derive S believes
valid(fs) using assumption S1 stated at the beginning of Section
5. In this message, .S sendsacopy of f to C. The copy is hence-
forth known as f-. Since fc = fs when S sends f, we can say
S believesvalid(f¢).

When C receives the second message, C sees f, valid(f ¢),
f € Cfrom S. Usingthevisibility rule, wehaveC' seesvalid(f¢)
from S®. Using the message interpretation rule, we derive C
believes S believesvalid(f¢). Using thejurisdiction rule instan-
tiated with valid(f-), we conclude C believes valid(f¢). But
since S believes valid(f), theinvariant still holds.

When the remote update to f occurs, S receives a message
containing an update request involving f from someclient '’/ # C.
Thatis, S sees update(f) from C'. Usingthe updaterule, we have
S believes —valid(f¢). S sendsC aninvalidation messagefor f .
If we assumethe messagearrivesat C instantaneously, both parties
changetheir beliefs at the same instant and the invariant still holds.
Of course, the message does not arrive instantaneously. We discuss
that in Section 5.4.

When C' receives the invalidation message, we have C sees
—valid(f¢) from S. Using message interpretation, we have C
believes S believes—valid(f¢). Using assumption S3 and the ju-
risdictionruleinstantiated for —valid(f¢), weconcludeC' believes
—valid(fc). This supersedes C believesvalid(f¢). Since be-
lief sets must be internally consistent (axiom A3), we know —=(C
believesvalid(f)) and theinvariant holds.

C discards f and respondsto the invalidation message, ending

SIn practice, it is not necessary for S to include valid(f) in the response to a
fetch request. Theclient C' simply assumes that datareceived from a server is valid.

the run. Since C no longer hasa copy of f, clearly valid(f¢) ¢
C. B, and therefore —(C believesvalid(f-)). Thus at the end of
the run, the invariant holds.

5.3 Volume validation, followed by failure

From the client’s viewpoint, this run corresponds to the path in
Appendix A from state (f,v) to (f,v) to (f,v). The critica
transitions for the client are the validation of v and detection
of afailure. The initial and fina system states for this run are
({f, v}, {f € C,v e C}L0,{fc = fs,vc = vs}).

When thisrun begins, C' already hasvolume and file statein its
cache. C sends Vs identifier and volume version number v to the
server to determineif anythingin V' has been updated. In this case,
the validation is successful (i.e., nothing has changed), so C may
assumeadll cached state from V' isvalid. In addition, C' receivesa
callback promise for V', meaning S will notify C' if anythingin V'
changes. At this point C' may consider all filesin V' valid, though
we show only f.

The run ends when afailure severs the connection between C'
and S. Here we simply show the failure and its effect, assuming
it is detected instantly by both parties. In Section 5.4 we discuss
how failures are detected, and the impact of failure detection on
correctness.

Thisrunisshownin Figure 2. Asbefore, we walk through this
run showing the invariant holds initially and after each step that
changes either party’s beliefs about the validity of f. Initialy C
cannot be certain of the validity of v, so valid(v¢) ¢ C.B and
therefore —(C believes valid(v)). Thus the invariant is estab-
lished.

C sends the validation request for » to .S. Using assumption
S1, we obtain S believesvalid(v s). Since ve = vs in this case,
we have S believesvalid(v ¢), and theinvariant still holds.

When C' receives the response, we have C sees valid(v ¢)
from S. Using message interpretation we have C' believes S

believes valid(v¢). Using assumption S2 and the jurisdiction

C believes M essage S believes
feCved
C—S5: vedl
v € C,valid(ve)
S—C: veCvalid(ve)
feCved
valid(ve)

S believesv € C

fedved
[S believesv € (]
[valid(vc)]

falure

[v € C,valid(vc)]

Figure 2: Run Starting with a Validation, Ending with a Failure

rule, we have C believes valid(v¢). Since S believesvalid(vc¢)
the invariant holds.

When S detectsthe failure, it discardsits beliefsabout C'. This
includes beliefs about which objects C' has cached, and the validity
of those objects. When C detectsthe failure, it discardsits beliefs
about S, and the validity of objectsin its cache. It retains beliefs
about the presence or absenceof objectsin its cache; these beliefs
are always derivable using the axioms, because they are based on
strictly local information.

5.4 Timing

Failures and transmission delay affect the correctness of our cache
coherence protocols. While a messagefrom a server to client C' is
intransit, C' may believe, however briefly, that its copy of f isvalid
whenit isnot. Thus, without assuming instantaneoustransmission
of messages, the case analysis in section 5.2 is incorrect because
during the time it takes for the server’s invalidation messageto be
received by theclient, theclient still believesthefileisvalid. While
transmission time is often assumed to be negligible in LAN-based
environments, this assumption is not valid in weakly connected
environments. However, the transmission time is bounded by the
timeout period used by the underlying communication protocol,
denoted by . If amessageis not acknowledgedwithin 2 after itis
sent, the sender declares afailure. The timeout period is a system
parameter, and is usually on the order of a minute.

It also takestime for clients and serversto detect failures. Dur-
ingtheinterval betweenthe occurrenceof afailure and itsdetection,
itispossiblefor aclient to useinvalid data becausethe server was
unable to notify the client of updates. This interval, denoted by
7, defines a window of vulnerability for the protocol. To bound
the failure detection interval, clients and servers probe each other
periodically, and declarefailuresif messagestime out. Theseprobe
messages serve asfinal messageswhen failures occur.

Let 5 be the message timeout period as above, and let p be
the probe interval. Assume clients and servers use the same probe
interval, but do not necessarily probe each other at the same time.
Then thefailure detectioninterval - = p + 4 at most.

Our notion of correctnessis bounded by . We call a protocol
r-correctif theinterval inwhich it doesnot meet the correctnesscri-
terionisat most r. In Codar is composed of aprobeinterval of 10
minutes, and amessagetimeout of 15 seconds. A O-correct protocol
obeysthe correctnesscriterion strictly. Even avalidate-on-use pro-
tocol, such asin early versionsof the Andrew File System [20] and

Sprite [19], cannot achieve O-correctness because of transmission
delay.

The timetable in Figure 3 shows the worst-case behavior of a
systemwhosefailure detectioninterval is~. Webegininthemiddle
of arun, where C' has f cached and a callback promise from S.
Both C' and S believe f¢ isvalid. Let ¢, be the latest time at
which C probes S successfully before the failure, and let ¢ bethe
time at which the failure occurs. Eventually either C' or S sends
a message and discovers the failure. If the principals detect the
failures through probes, C' is till correct in believing that f is
valid, even though the principals are likely to detect the failure at
different times.

The worst case occurs if another client updates f while C' is
partitioned from S, but before C' has detected the failure. S triesto
break C’scallback on f at time ¢, but fails. Thisisalost callback.
Asfar as.S is concerned, the run is over, and it discards its beliefs
about C'. However, therun is not over until C' detects the failure.
Until then, C believes f- isvalid whenit isnot. Thisinterval is
largest when the failure and the update occur immediately after ¢ ..
Attime¢; + £, when S gives up hope of ever reaching C with its
invalidation message, C is4till blissfully ignorant of the statusof f.
C doesnot discover aproblemuntil it triesto contact S at ¢, + p. It
isnot until ¢, + 7 that C' declaresfailure and demotes f to suspect
status. Thus 7 is the longest period in which C' can believe f is
valid whenit is not.

6 Evaluation

Not surprisingly, formal analysis gave us a better understanding of
our protocol. Below we discuss more specifically how the analysis
helped to correct bugsin our design. We concludethis section with
adiscussion of some of the simplifications we made to our model,
and how our definitions could be extended.

6.1 Benefits of Formal Analysis

When we first designed the large granularity protocol, we began
with aninformal, narrative specification. Thisresulted in an under-
specified protocol. Initially we thought there were ten classes of
runs; after the formal analysis we realized there were fifteen. The
runs we missed fell into two categories. Thefirst involves aloop-
ing behavior that can occur if aclient holds both file and volume
callbacks. If the volume callback is broken, the run does not end

C believes M essage
f e valid(fe)
S believes f € C
C—S: brobe
failure

C'— S indate(f)

S —C: ﬁvalld(fc)
C—S: brobe
fec
[S believes f € (]
[valid(fc)]

S believes Notes

f € C,valid(fe)

tp, probe successful

ty, C'and S partitioned

C' updates f

f € ¢, ~valid(fe)

t;
[f € C,—valid(fc)] ¢+, S declaresfailure

tp+p
tP+p+6:tP+Ta
C declaresfailure

C erasesbeliefs

Figure 3: Worst Case Behavior During a Failure

becausethe file callback is still present. The file may till be used
without contacting the server. Unfortunately, the volume callback
may bere-established and broken ad infinitum until thefile callback
islost or broken. Theloop is visiblein the state transition diagram
of Appendix A, between states (f, 0) and (f, v). In practice, this
loop is avoidableby setting a policy at the client which determines
when to obtain a volume callback. While we realized that this
looping behavior could occur, we did not realize how pervasivethe
behavior could be. It can occur in any state in which afile callback
is held, which happensin most runs.

The second category involves ordering: if both f and » are
present at the beginning of the run, they may be validated in either
order. Thisis depicted in the state transition diagram of Appendix
A, by having transitions for both f and » from the bottom leftmost
initial state. It islegitimate for f to be validated first if conditions
do not favor establishing a volume callback upon connection, for
example, because of a high rate of remote updates in the volume.
Different orders may result in different runs (e.g., if f isvalid but
v isnot).

While writing the proofs for the large granularity protocol, we
were pleasantly surprised that we could base the proof on whatever
piece of data for which the client established a callback first. That
is, either we reasoned about f being valid or v being valid. There
is one exception, which does not occur in our implementation. If a
client obtains a file callback while holding a volume callback, the
client could lose the volume callback and still continuethe run. A
notion of hierarchy (i.e., z is“containedin” y) would help to switch
the proof from one data type to the other cleanly.

Formal analysis also helped in generating test cases, and early
in testing we uncovered a bug in the implementation that would not
have harmed the correctnessof execution, but the efficiency. In the
implementation, the client’ svolume state consists of twofields: the
version number, and the callback status. When a volume callback
was broken, the client cleared only the callback statusfield. Thisis
correct, becausethe client checksthe callback status field to deter-
mineif the client has a callback on the volume. However, because

the volume version number was still present, the client attempted
to validateit with the server on reconnection. Thevalidation wasa
waste becauseit was doomed to fail.

6.2 Extensions

Our analysisissimplified in two respects. First, we consider only a
single f and v, eventhoughin practiceit would take more than one
file to make obtaining a volume callback worthwhile. Given our
simplified model, we must exclude the states where C.D = {v}
because there must be at least one file present to obtain a volume
callback. In practice, this value for C. D is permissible provided
there are other filesin volume V' cached at the client.

Second, although we allow arepository to consist of agroup of
servers, our analysisignores some of the practical aspectsof repli-
cation. For example, if the client uses areplicated volume, it must
collate responses from multiple servers. One complication is that
the client may receive responses from only a subset of the servers
because of network partitions. A small change to the definition
of arun takes care of this problem. For a replicated service, the
run ends when the client detects a changein the number of servers
with which it is communicating. This definition is natural because
if the number shrinks, a callback may be lost from a server that
disappeared. If the number grows, a newly available server may
hold updated versions of cached data.

In addition to allowing us to reason about a replicated service
very naturally, the notion of arun could be extendedin other ways.
For example, some systems incorporate expiration times in their
cache coherencemechanism [8]. We can addressthis by extending
the definition of a run such that when expiration occurs, the run
ends.

7 Related Work

Formal verification of cache coherence protocols in the hardware
domain has been done by MacMillan and Schwalbefor the Encore

Gigamax multiprocessor [17] and by Clarke and his colleagues [6]

for the |EEE Futurebust+ standard. In both cases flawswere found
during the processof verification. Becausethey wereworkinginthe
hardwaredomain, they wereableto ignoretwo aspectsof distributed
systemsthat we cannot: failuresand transmissiondelays. They also
havethe additional advantageof working in afinite state spaceand
were able to do an exhaustive case analysis using symbolic model

checking techniques [7]. We could view our simplified model
(single server, single client, etc.) as a finite state machine, as
depicted in Appendix A, and thus complement our proof-theoretic
analysiswith model checking.

Network communication protocols must cope with failures and
latency as we do. Formal specifications of these protocols (e.g.,
[3, 24]), written in languages such as LOTOS [13] and Estelle
[14], typically abstract away from state and highlight instead the
behavior of the communicating parties as interleavings of their
events. We not only have to accommodate possible failure and
timeout events, but we also need to reason explicitly about client
and server state, e.g., what files are cached. We found for our
work that our correctness condition is most naturally specified asa
state predicate to be shown invariant over asmall, finite set of state
transitionsrather thanasaproperty of aninfinite set of interleavings.

Thereisanabundanceof specificationlogicsbased onfirst-order
predicate logic, set theory, and/or algebras, embodied in languages
like Z [23], VDM [15], and Larch [9], but they are more general
than we need. We could have easily defined our domain of dis-
course (clients, servers, RPC, faults, transmission delays, belief
and agreement sets, etc.) interms of these more generic primitives,
but we intentionally choseamodal |ogic that would let ushighlight
the essenceof our correctness condition—belief.

Just asBentley advocatesinventing and using “little languages”
for special-purposeprogramming[1], we suggest that “little logics”
are appropriate for special-purposereasoning. Our extended subset
of the BAN logicisjust right for our purposes; it is specific enough
so that we do not need to define primitives such as belief from first
principles, but general enough so that one can apply it to different
kinds of protocols.

8 Conclusions

Designers of large distributed systems must cope with the the fact
that failures are the rule, not the exception. Ideally, these systems
shouldfunction despitethem. Thismeansthat clientsshouldoperate
with a certain amount of autonomy; when failures occur, there
should be mechanismsto allow clients to reduce their dependence
on servers. Optimistic approaches for data access, which allow
data accessand updates during partitions, areideal for this purpose
—they maintain ahigh degreeof dataavailability, but at the expense
of global consistency. By its very nature, optimism is based on
belief, not on knowledge. Hence, we find belief a practical notion
for reasoning about correctnessin distributed systems.

Using our extensions to a subset of the BAN logic we were
ableto capture client and server behavior intuitively and succinctly.
Rather than defineanew logic, wewerefortunateto havealogic we
could apply to our domain. The notion of belief for reasoning about
cache coherence for file systems held intuitive appeal to us when
considering alternative formal approaches. The underlying state
machine model suffices for describing relevant local and global
state components, and critical state transitions. The pure state
machine approach would require encoding belief in terms of state
variables, and reasoning about those variables. Using belief allows
usto reason at a higher level of abstraction.

A little formalism goes a long way. We discovered serious
flaws in earlier designs of our protocol, and inefficiencies in its

implementation. By characterizing formally the classes of runs of
our protocol, we could easily check that we covered all cases that
we expect to encounter in practice.

Larger distributed systemswill require more complex resource
management software to meet more demanding performance and
availability requirements. Judicious use of suitable formalism can
help increase our confidencein the correctness of the systems we
build.

9 Acknowledgements

Wethank Martin Abadi and Mark Tuttle for their comments on our
extended abstract, and especially for their help in our understanding
some of the subtleties of the BAN logic.

References

[1] Jon Bentley. Programming Pearls: Little Languages. Com-
munications of the ACM, 29(8), August 1986.

[2] AndrewD. Birrell and BruceJ. Nelson. Implementing Remote
Procedure Calls. ACM Transactions on Computer Systems,
2(1):39-59, February 1984.

[3] G.v. Bochmannand C.A. Sunshine. Formal Methodsin Com-
munication Protocol Design. |EEE Transactionson Commu-
nications, 28(4):624 — 631, April 1980.

[4] M.Burrows, M. Abadi, and R. Needham. A Logic of Authen-
tication. Technical Report 39, DEC SystemsResearch Center,
February 1989.

[5] Michael Burrows, Martin Abadi, and Roger Needham. A
Logic of Authentication. ACM Transactions on Computer
Systems, 8(1):18-36, February 1990.

[6] E. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. Long,
K. McMillan, and L. Ness. Verification of the Futurebus+
Cache Coherence Protocol. Technical Report CMU-CS-92-
206, Carnegie Mellon University School of Computer Sci-
ence, October 1992.

[7] E.M. Clarke, J.R. Burch, O. Brumberg, D.E. Long, and K.L.
McMillan. Automatic Verification of Sequential Circuit De-
sign. Phil. Trans. R. Soc. London, 339:105-120, 1992.

[8] Cary G. Gray and David R. Cheriton. Leases: An Efficient
Fault-Tolerant Mechanismfor Distributed File Cache Consis-
tency. In The Twelfth ACM Symposium on Operating Systems
Principles, pages 202-210. ACM, December 1989.

[9] J.V. Guttag, J.J. Horning (eds.) with S.J. Garland, K.D. Jones,
A. Modet, and JM. Wing. Larch: Languagesand Tools for
Formal Specification. Springer-Verlag, 1993.

[10] J.Y.HalpernandY. Moses. Knowledge and Common Knowl-
edge in a Distributed Environment. In Proceedings of the
Third ACM Symposiumon Principles of Distributed Comput-
ing, pages 50— 61, 1984.

[11] John H. Howard, Michael L. Kazar, Sherri G. Menees,
David A. Nichols, M. Satyanarayanan, Robert N. Sidebotham,
and Michael J. West. Scadle and Performance in a Dis
tributed File System. ACM Transactions on Computer Sys-
tems, 6(1):51-81, February 1988.

[12] L.B. Huston and P. Honeyman. Disconnected Operation for
AFS. In Proceedingsof the USENIX Symposiumon Mobile &
Location Independent Computing, pages1—10, August 1993.

[13] Information Systems Processing — Open Systems Intercon-
nection — LOTOS — A Formal Description Technique based
on the Temporal Ordering of Observational Behavior. Tech-
nical Report SO 8807, International Standards Organization,
1988.

[14] Information Systems Processing — Open Systems Intercon-
nection — Estelle— A Formal Description TechniqueBased on
an Extended State Transition Model. Technical Report 1SO
9074, International Standards Organization, 1989.

[15] C.B. Jones. Systematic Software Development Using VDM.
Prentice-Hall International, 1986.

[16] JamesJ. Kistler and M. Satyanarayanan. Disconnected Opera-
tionin the CodaFile System. ACM Transactionson Computer
Systems, 10(1), February 1992.

[17] K. McMillan and J. Schwalbe. Formal Verification of the
Encore Gigamax Cache Consistency Protocol. In Proceed-
ings of the 1991 International Symposiumon Shared Memory
Multiprocessors, April 1991.

[18] Lily B. Mummert, Jeannette M. Wing, and M. Satya
narayanan. Using Belief to Reason About Cache Coherence.
Carnegie Mellon University, School of Computer Science
Technical Report, in preparation.

[19] M. N. Nelson, B. B. Welch, and J. K. Ousterhout. Caching
in the Sprite Network File System. ACM Transactions on
Computer Systems, 6(1):134 — 154, February 1988.

[20] M. Satyanarayanan, John H. Howard, David A. Nichols,
Robert N. Sidebotham, Alfred Z. Spector, and Michael J. West.
The ITC Distributed File System: Principles and Design. In
Proceedingsof the Tenth ACM Symposium on Operating Sys-
tems Principles, pages 35-50, December 1-4 1985.

[21] M. Satyanarayanan, JamesJ. Kistler, Puneet Kumar, Maria E.
Okasaki, Ellen H. Siegel, and David C. Steere. Coda: A
Highly Available File System for a Distributed Workstation
Environment. |EEE Transactionson Computers, 39(4), April
1990.

[22] R.N. Sidebotham. Volumes. The Andrew File System Data
Structuring Primitive. In European Unix User Group Con-
ference Proceedings, August 1986. Also available as Tech.
Rep. CMU-ITC-053, Carnegie Mellon University, Informa
tion Technology Center.

[23] J. M. Spivey. TheZ Notation: A Reference Manual. Prentice-
Hall, 1989.

[24] A.J. Tocher. LOTOS and the Formal Specificationof Commu-
nication Standards: An Example. In Formal Methods: Theory
and Practice. PN. Scharbach, editor. CRC Press, Inc., 1989.

A Client State Transition Diagram

Theclient’ sstatetransition diagram for afileand its containing vol-
umeis shownin Figure 4. ThenodelabelscombineC. D and C. B.

We denotethefileby f and the volumeversion number by ». A “0”

meansthe object is not present in the cache. For example, the state
(f,0)meansC.D = fand(f € C) € C.B. Anobjectinboldface
means the client has a callback for the object (valid(d ¢) € C.B).
The states with no callbacks ((0, 0), (£, 0), (0,v), and (f, v)) are
either initia or final states. For each object in C. D, the agreement
set A determinesthefirst statetransition concerningthat object. For
example, if C.D = fand A = {dc # ds}, when C references
the object its next transition will be afailed validation for f.

Looping is possible between states (f, 0) and (f, v). In theory,
aclient could repeatedly obtain and lose the callback for v, while
it holds the callback for f. Thisis false sharing, and should be
avoided. In practice, a reasonable policy for obtaining volume
callbacks should prevent this.

Therearetwo transitionsthat we do not show (or use), but could
be added as optimizations. Both are from the state (f, v). In this
state, al of the cached objectsin V' are valid. Thefirst transition
would allow aclient to obtain afile callback on f in casethe volume
callback is broken ((f, v) to (f, v)). The second transition is an
invalidation for f ((f,v) to (0,0)). If aclient holds a volume
callback only, the server does not have any information on which
objects the client has cached. If object f is updated, the server
breaks the callback for ». If it sent the identifier of f instead, the
client would interpret the message as an invalidation for » as well
as f. If it hasacopy of f, it would discard it. Thisis a small
optimization that will saveavalidation for f that is doomed to fail.

The diagram is simplified in that we do not show transitions
associated with error conditions, such as message timeouts.

Initial States Final States

fetch f m invalidate f
=)
1

0,0
%,
tetchy | |invalidatev /

invalidate f
validate f failure

failed validation f 0

failed validation v

failed validation f
validate v

failed validation v

validate f failure

Figure 4: Client State Transitions

invalidate v </
failure

validate v failure

invalidate f

Thisisthe state transition diagram for the client for afile-volume pair (f, »). A “0" meansthe object (f or v) isnot present in the cache. An
object in boldface meansthe client has a callback for the object.

