Mitigating the Effects of Optimistic Replication
in a Distributed File System

Puneet Kumar

December 1994
CMU-CS-94-215

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee:
Mahadev Satyanarayanan, Chair
Brian Bershad
Alfred Spector
Maurice Herlihy, Brown University

Copyright (© 1994 Puneet Kumar

This research was sponsored by the Air Force Materiel Command (AFMC) and the Advanced Research Projects
Agency (ARPA) under contract number F19628-93-C-0193. Additional support was provided by the IBM
Corporation, Digital Equipment Corporation, Bellcore, and Intel Corporation.

The views and conclusions contained in this document are those of the author and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied, of AFMC, ARPA, the
U. S. Government, or the sponsoring corporations.

Keywords: Application-specific resolution, conflicting updates, Coda, directory resolution,
distributed file systems, high availability, mobile computers, one-copy serializability, optimistic
replication, transparency.

In memory of my Father

For my Mother

Abstract

Optimistic replication strategies can significantly increase availability of data in distributed
systems. However such strategies cannot guarantee global consistency in the presence of
partitioned updates. The danger of conflicting partitioned updates, combined with the fear
that the machinery needed to cope with conflicts might be excessively complex has prevented
designers from using optimistic replication in real systems.

This dissertation putsthese fearsto rest by showing that it isindeed practical and feasibleto use
optimistic replication in distributed file systems. It describes the design, implementation and
evaluation of the mechanisms used to transparently resolve diverging replicas in the Codafile
system. Files and directories are resolved using orthogonal mechanisms due to the difference
in their structure and semantics. A server-based mechanism that uses operation logging is
utilized to resolve directories, while a client-based mechanism that uses application support
is utilized to resolve files. When automatic resolution fails a repair tool in conjunction with
standard Unix utilities aids the user in merging the diverging replicas. The combination of
these mechanisms allows the system to provide high data availability with minimal impact on
its usability, scalability, security and performance.

Coda has been in daily use by thirty-five users for more than three years. The system consists
of ten servers storing more than four Gigabytes of data and seventy-five clients, consisting
of desktop and mobile hosts. Empirical measurements show that the system has maintained
usability by automatically resolving partitioned updates on more than 99% of the attempts.
Furthermore, the automatic resolution facility has excellent performance, minimal overhead
and israrely noticeable in normal operation. Usage experience with the repair facility has also
been positive.

This dissertation makes four significant contributions: a design of simple yet novel automatic
resolution techniques; a formalization of the Unix file system model and proof of correctness
of the resolution methods; implementation of these methods in a system with a real user
community; and measurements, showing the efficacy of the approach.

Acknowledgments

| came to Carnegie Mellon University seven years ago soon after finishing my undergraduate
education at Cornell University. Coming from a school that excels in theoretical work to
an environment that takes pride in building real systems was a difficult transition. However
having Satya as my mentor, who is one of the most understanding and patient advisors, made
this transition easier. It has been a great pleasure to work with him for the past seven years.
He provided useful and insightful feedback for all my research ideas. and always made the
time to meet me in spite of his hectic schedule. He gave me the confidence to solve difficult
problems and taught me the importance of analyzing and validating my research ideas through
experimentation. Above all, Satya has been a good friend. | will cherish this friendship for
many yearsto come. Thanks for everything Satya.

| would like to thank other members of my thesis committee, Alfred Spector, Brian Bershad
and Maurice Herlihy, for providing feedback on the dissertation. Their feedback has helped in
improving the quality of this document. | would liketo specially thank Alfred who co-advised
me with Satyaduring my first few yearsat CMU and gave me useful feedback on early designs
of my thesiswork.

This thesis wouldn’t have been possible without the support of members of the Coda project.
| would like to thank past and current members of the project including Maria Ebling,
Jay Kistler, Qi Lu, Hank Mashburn, Lily Mummert, Brian Noble, Morgan Price, Joshua Raiff
and David Steere, for their help. They are a smart bunch and | am honored to have had the
opportunity to work with them. | wish them all luck in their future endeavors. | would like
to specialy thank two Coda members, Jay Kistler and David Steere. Jay helped me design
the resolution architecture and provided useful tipsto implement the design. Moreover, he has
been a great friend and a constant source of encouragement over the past seven years. David
helped me an uncountable number of times in tracking down serious server bugs. He never
failed to put a smile on my face even when | was completely stressed out writing the thesis.
Thanks for your friendship, Jay and David!

| would like to thank other members of the SCS community who used the Coda system. |
appreciate their patience in using an experimental system and thank them for providing me
with useful feedback on the pros and cons of the system.

Over the past seven years, | have probably spent more time in my office than any other
place at CMU. | would like to take this opportunity to thank my office-mates, both past and
present, for providing me with a friendly and enjoyable work environment. My officemates
included Alan Christiansen, Andrew Hastings, Alicia Pérez, Henry Rowley, Manuela Veloso
and Mel Wang. Nous nous sommes bien amusés de pratiquer notre Frangais ensemble.

| would like to specially thank Manuela for providing me the encouragement needed to finish
the dissertation. She helped me on innumerable occasions in dealing with the idiosyncrasies of
IATEX. Moreover, she has been agreat companion and a constant source of good advice outside
the work environment. Thanks a lot, Manuela.

Some people may find this hard to believe, but it is possible to have the same house mate for
six years. | would like to thank my house mate Anurag Acharya, for his companionship and
support. Even though we had our differences in the beginning, | always liked his affectionate
and humble personality. | would also like to thank Aarti Gupta who aso shared our house for
three years. | know | will miss them when | leave Pittsburgh.

| have been lucky in enjoying the friendship of a huge group of people during my stay in
Pittsburgh. | would like to thank the Brew Crew, especially Gary, Wayne, Jonathan and Sue
for providing me with an evening off on Thursdays. | would like to thank my Indian friends
especially Rukmini and Manu, Rajeev and Barathi, Anurag Gupta, Ashish and Puja, Satish and
Priya, who provided me with the encouragement and support needed to finish the dissertation.
| would also like to thank other friends at CMU including Jirgen and Rebecca, Jody and Sam,
Chris and Hannah, Deborah and Rqj, José, Greg and Tanya, Matt, Scott, Francesmary and Jeff,
Juan, Jodo and Lucco. The loss of memory that accompanies the post dissertation blues may
have resulted in the omission of names that deserve to be mentioned in this list. To those of
you | forgot to mention | apologize and thank you for your support.

Even though | wasfar away from my parentsinindia, | waslucky to enjoy theloveand affection
of aspecia couple, Phyllisand John Zekauskas, ak.a. Mrs. Mom and Mr. Dad to some of you.
| got to know them through Peter, my best friend and room-mate at Cornell University. | would
like to take this opportunity to thank the entire Zekauskas family for allowing me to become
a part of their family and to experience first-hand some of the wonderful American family
traditions and values.

| would like to warmly thank my sisters, Sangeet and Guneet, and their families, for their
support and patience over the past few years. Even though they were going through school
at the same time themselves, they never failed to cheer me up whenever | was completely
disgusted with school and required that badly needed pep talk.

| met my fiancee, Shuchi, only seven months ago. Even though this was during the period in
which | was writing the dissertation, taking that extratime to spend a few more hours or days
with her were worthwhile. She has been extremely patient, understanding and comforting and
| thank her for al her help.

My father instilled in me the desire to do a PhD. If it weren't for him, | would probably
never have thought of coming to graduate school. Unfortunately, he is unable to witness this
momentous occasion as he passed away during my second year at CMU. Even though my
mother has been alone in India, she has been very supportive over the past six years. Her
sacrifices and her boundless love, patience and encouragement have provided me with the

strength needed to complete this arduous task of finishing the PhD. | am indebted to both of
them forever.

Puneet Kumar
December, 1994

Contents

1

Introduction

11
1.2
1.3
14
15
1.6

Overview of Resolution in Coda

21

22

2.3

Digtributed FileSystems
Replication.
Shortcomingsof Optimistic Replication
TheThesis
ThesisValidation.
Road-mapfortheDocument

a A W W N - P

TheCodaFileSystem
211 Scaability
212 Peformance
213 Easeof Administration
214 Security ...
215 HighAvailability
Server Replication 10
221 Replication Granularity, 10
222 ReplicaControl 11
223 CopingwithFailures 12
Coping with Problemsdueto Optimism 13
231 DetectingtheEndof aFailure 14
23.2 DetectingDivergence 14

© ©O© 00 00 N N N

Xii

CONTENTS

2.3.3 Transparency of Resolution: ViewtotheUser 15
24 Automating Resolution: The Resolution Architecture 18
24.1 Separationin Methodology: Directoriesvs. Files 18
24.2 Overview of Directory Resolution 19
24.3 Overview of Fileresolution 20
25 Manua Repair 22
Computation M odel for Partitioned Operation 23
3.1 Resolvable PartitionedUpdates 23
3.2 ComputationModel 25
321 Why Transactions? 26
322 System-Inferred Transactions 26
3.2.3 Enforcement of CorrectnesswithinaPartition. 29
3.3 Transaction Specification for High Availability 30
331 RedefiningSystemCalls., 33
3.3.2 Exploiting Type-SpecificSemantics 34
3.33 Read-only Transactions 34
3.34 Checking Resolvahility of Updates from Different Partitions 37
Automatic Directory Resolution 39
4.1 DesignConsiderations 39
411 Log-basedApproach. 39
4.1.2 Optimizationsin Resolution Methodology 40
4.2 Protocol Overview 42
421 Phasel: Preparingfor Resolution 44
422 Phasell:CollectingLogs 48
423 Phaselll: Verify& Perform oL 48
424 PhaselV: Commitment of Resolution 52
4.3 Seridizabilitylssues 53
4.3.1 Notationand Assumptions. 54

432 EquivalenceTesting 55

CONTENTS

5

4.3.3 Certification Methodology During Resolution
4.4 ImplementationDetails
441 Fault-tolerance of the Resolution Protocol
442 ResolutionLog
443 OtherDetails

Automatic File Resolution

5.1 Syntactic Approach: Version-Vectors

5.2 Semantic Approach: Application-Specific Resolution
521 ASR Mechanism: Design Considerations
5.2.2 ASR Mechanism: Design and Implementation

5.3 Example Application-SpecificResolvers
53.1 Caendar Application,
5.3.2 MakeApplication: Reproducing aFilesData.
5.3.3 Automatically Invoking the Repair-tool

Manual Resolution

6.1 DesignRationale.

6.2 Repair Tool: Design and Implementation
6.21 Preservingand ExposingReplicas
6.2.2 Directory Repair Tool,
6.23 FileRepairTool

Evaluation

7.1 Statusand Usage Experience.
711 Evolution
712 CodaEnvironment.
7.1.3 Usage

7.2 Empirical Measurement Frameworko

7.3 Evaluation of Directory Resolution
7.3.1 PeformancePenalty duetolLogging

Xiii

58
60
61
71
77

81
82
85
86
88
99
99
102

105
105
107
108
108
114

Xiv

7.3.2 Sizeof Log
7.3.3 Performance of Resolution
7.4 Evaluation of File Resolution
7.4.1 Latency of File Resolution
7.4.2 Overhead of the ASR Mechanism
7.5 Evaluation of Manual Resolution
7.5.1 Methodology
7.5.2 Results
7.6 Summary of Chapter

Related Work

8.1 Automatic Directory Resolution
8.1.1 Locus
8.1.2 Ficus
8.2 Automatic File Resolution
8.21 Version Vectors
8.2.2 Application-specific Resolvers
8.3 Manua Resolution
8.3.1 Commercia Packages
8.4 Optimistic Replication in Databases
8.4.1 Davidson
8.4.2 Blaustein
8.4.3 Data-Patch

Conclusion

9.1 Contributions of the Dissertation
9.2 Future Work
9.21 Implementation Extensions
9.2.2 Impact of New Research
9.3 Closing Remarks

CONTENTS

List of Figures

2.1 FileSystemView at aCodaClient Workstation 11
2.2 Message Exchangeto ServiceaUser Request 16
2.3 CodaObject Statesand Transitions 17
3.1 Examples of Resolvable Partitioned Directory Updates 25
3.2 A Non-seria Execution that is Serializable with Inferred Transactions 29
3.3 Partitioned Transaction Example where 1SR-ness is Data-Dependent 30
34 CodaDataltemDescription 32
3.5 Expansion of the Basic Syntactically RecognizableHistory 35
3.6 Multi-ltem Queries Violating One-Copy Seridizability 37

4.1 Transaction Example Requiring Multiple Directories to be Resolved Together 41

4.2 RPC Traffic During the Resolution Protocol 42
4.3 Detailsof Each Phase of the Resolution Protocol 43
4.4 Enforcement of Top-downResolution 46
45 Problemswith Object-level Version-ids 56
4.6 A History that is Value-certifiable but not Version-certifiable 57
4.7 Historiesthat are Serializable but not Certifiable. 61
4.8 Layering of Functionality USngRVM 63
4.9 Organization of the Server'sAddressSpace 66
4.10 Volume Data Structuresin RecoverableMemory 67
4.11 Logica and Physical Organization of aVolume's ResolutionLog 73
412 LogRecord Format 74
413 A History with Twin Transactions 79

XVi

LIST OF FIGURES
4.14 A History that is Resolvable only if the Identity Sequenceisignored 79
5.1 Using Version-vectorsfor FileResolution 83
5.2 FaseConflictswithVersion-vectors 85
53 ASR-Invocation. 90
54 Macro-expansonof aResolutionRule. 91
5.5 Macro-expansion of a Resolution Rule with Replica Specifiers 9
56 VolumeStateTransitions. 98
5.7 UserInterfaceforthe Calendar Manager 100
5.8 Resolution Rulefor the Caendar Application 102
5.9 Resolution Rulesfor the Make Application 103
6.1 User Interfacefor the Directory Repair Tool 109
6.2 AnExampleRepair-file 110
6.3 UserInterfacefortheFileRepair Tool 114
7.1 DataCollection Architecture. 121
7.2 Distribution of Hourly Log Growth 128
7.3 Daily High-Water Marks of ResolutionLog Sizes 129
7.4 Performanceof Resolution. L. 132
75 FleResolutionTime. 136
7.6 ExecutionTimeforaNullasr. 140
7.7 FileRepair Strategies 146

List of Tables

31 43BSDFleSysteminterface L. 27
3.2 CodaTransaction Typesand System Call Mapping 28
3.3 CodaTransaction Specification 36
4.1 Integrity Checks Made for each Directory Transaction Type 50
4.2 RVM Library Interface Routines and Descriptions 65
4.3 RVM Usagefor someVolumesinthe CodaFileSystem 68
4.4 Log Record Types and their Type-dependentFields 75
5.1 Grammar for the Resolution Rule-language Syntax 92
6.1 Command Syntax for RepairingaDirectory 111
7.1 Observed Directory Resolutions 123
7.2 TimeOverhead at Server duetoLogging 125
7.3 TimeOverhead at ClientduetoLogging 126
7.4 Observed Distribution of Long-Term Average Log Growth Rates 127
7.5 Sample Physical Characteristicsby VolumeType 130
7.6 Resolution Time After Work at OneReplica 133
7.7 Resolution Time After Work at All Replicas 134
7.8 ObservedFileResolutions 135
7.9 FleResolutionTime. 137
7.10 Empirical DataCollected for Repairs 144

XVii

XViii LIST OF TABLES

Chapter 1

| ntroduction

The importance of optimistic replication as a technique for providing high availability in
distributed systems has been known for over two decades [47, 20]. But the use of this
technique in actual systems has been minimal. One reason for this has been the fear that
conflicting partitioned updates, an inevitable consequence of optimistic replication, might hurt
usability unacceptably. A second reason has been concern that the machinery needed to cope
with conflicts might be excessively complex and unwieldy. This dissertation addresses these
concerns. It showshow one can buildan optimistically replicated Unix filesystem that preserves
usability by automating the resol ution of partitioned updates and maintains practicality by using
simple yet novel resolution techniques.

The rest of this chapter discusses optimistic replication and itsrelated problems. It begins with
a discussion on distributed file systems (DFss) and the use of replication for improving data
availability. It then discusses the shortcomingsof optimistic replication and proposes asolution
for alleviating these problems. The chapter concludes with the thesis statement and aroad map
for the rest of the dissertation.

1.1 Distributed File Systems

DFSs such as AFs [48, 22], NFs [44], Netware and LanManager have become an integral part
of organizations with a large number of personal computers. The success of DFSs in such
environments can be attributed to three factors.

First, they simplify the administration of the large body of machines. Users work at their
personal machines or clients and concern themselves only with tasks relevant to their work.
Administrative tasks like backup and software maintenance are performed at the servers by a
small group of trained personnel.

2 CHAPTER 1. INTRODUCTION

Second, they simplify file sharing within a user community. File sharing occursin two forms:
inter-user and intra-user. Inter-user sharing arises when one user accesses another user’sfiles;
intra-user sharing arises when a user accesses his files from multiple clients. The former
simplifies the management of collaborative work and the latter increases a user’s mobility
within his organization.

Third, bFss maintain transparency by hiding the distributed nature of the system. Applications
that are written for alocal file system can be used on a DFs without any modifications. Users
can also use the DFs just like they would use alocal file system.

To provide these three features, most modern DFS designs use a client-server model, provide
location transparency and export a programming interface that is the same as or very similar to
that of alocal file system. In addition, they use client-caching to improve performance. The
appropriateness of these design choices is confirmed by their widespread use in most modern
DFss. Two surveys of modern distributed file systems can be found in [29, 46].

A fundamental problem with DFss is data availability. Since files are stored and used on
separate machines, a server crash or anetwork failure that partitions a client from a server can
prevent a user from accessing his files. Such situations are very frustrating to a user because
they impede computation even though client resources are still available. This problem of data
availability in DFss will increase over time for two reasons:

e The frequency of network failures will increase. As DFss become more popular and
increase in scale, they will cover a larger geographical area, encompass multiple ad-
ministrative boundaries and consist of multiple sub-networks connected via bridges and
routers. As networks get larger, their administration and maintenance becomes more
difficult. Furthermorethereisan increased probability of congestion or unavailability of
a sub-network at any given time.

e The nature of mobile clients will increase the number of occasions on which servers
are inaccessible. Wireless technologies such as packet-radio and infrared suffer from
inherent limitations like short range and line of sight. Due to these limitations, the
network connections between servers and mobile clients will exhibit frequent partitions.

1.2 Replication

Replication is the key to providing higher data availability in DFss. The basic ideais that by
replicating afile, itsavail ability can be maintained even if some of thereplicas areinaccessible.
Two forms of replication are possible. 1n oneform, called server replication, afileisreplicated
across multiple servers. In another form, called disconnected operation [25], a copy of thefile

1.3. SHORTCOMINGS OF OPTIMISTIC REPLICATION 3

cached at the client serves as a temporary replica. In either case, availability of a file can be
maintained only if at least one of itsreplicasis accessible.

Replication strategies that have been proposed in the literature can be classified into two broad
categories. pessimistic and optimistic. These strategies differ in the assumptions they make
about the environment and the techniques they use to update and maintain consistency between
replicas.

Pessimistic replication strategies assume write-sharing is common and provide strict consis-
tency amongst all replicas of afile. To avoid conflicting updates to an object’s replicas, they
either allow only reads during a failure or allow both reads and writes in only one partition
group. Examples of pessimistic strategies are primary site [2, 37], voting [16, 52], quorum
consensus [21] and tokens [32]. Pessimistic replication strategies can severely limit the avail-
ability of data. For example, the token passing scheme allows an object to be accessed only
if atoken is presented. Availability islimited if the token islost due to failures. In the voting
scheme, objects can be accessed only in the partition group that obtains a majority vote. In
some situations, it is possible that no partition group can obtain amajority vote.

Optimistic replication strategies, unlike pessimistic strategies, allow reads and writesto proceed
even during anetwork partition. They are optimistic in the sense that they assume users will not
update the same object in separate partitions. They allow an object to be be read and modified
aslong as one of itsreplicasis accessible. As aresult optimistic replication strategies provide
significantly higher availability than pessimistic strategies.

1.3 Shortcomings of Optimistic Replication

Unfortunately optimistic replication suffersfrom a serious problem —an object’s replicas might
be updated concurrently in two or more partitions. Asaresult, such strategies cannot guarantee
data consistency across partitions. To cope with this shortcoming, some mechanism is needed
to detect and resolve the diverging replicas once the partition groups reconnect.

Is resolution feasible in practice? How complex is it to implement the resol ution mechanism?
What isits impact on a system in terms of its scalability and performance? When automated
resolution is not possible, how hard is it for users to perform the resolution manually? Can
the system offer any help in such situations? Concerns such as these have held designers back
from using optimistic replication strategiesin real systems.

1.4 TheThess

The goal of this thesis is to alleviate the potential shortcomings of optimistic replication in
Unix systems thereby paving theway for its practical useinreal systems. Intuitively, the thesis

4 CHAPTER 1. INTRODUCTION

appears viable for the following reasons:

¢ A DFsbeing used in aresearch and devel opment environment for tasks such aselectronic-
mail, bulletin boards, document preparation and program development exhibits little
write-sharing. Further, the length of atypical partition is much shorter than the average
timeinterval between two write-sharing events. Thus, write-sharing during a partitionis
rare.

e Evenif write-sharing occursduring a partition, the system can often resolve thediverging
replicas automatically and transparently when the partitions reconnect. There are two
reasons that make this possible.

1. The semantics of directories (which are more susceptible to write-sharing than files)
are well understood by the system.

2. Although the knowledge needed to resolve afile is not known to the system, it is
knownto the application that ownsthefile. Thusthe system canusetheapplication’s
assistance for resolution.

These observations lead to my thesis statement, whose validation is the subject of this disser-
tation:

Optimistic replication can be used effectively to improve availability in a distributed file
system by reducing the frequency and difficulty of manual resolution. The mechanisms
for automated resolution can be designed to minimally impact scalability, security and

performance.

1.5 ThesisValidation

This thesis has been validated by designing and implementing techniques for automatic and
manual resolution in a bFs named Coda [49]. Coda, a descendant of AFsS, uses an optimistic
replication scheme to increase availability. The system uses separate mechanisms for auto-
mated resolution of directories and files and provides separate tools for manual resolution of
each. Thirty-five users have been using Coda on a daily basis for over 3 years. Empiri-
cal measurements as well as controlled experiments confirm the safety and efficacy of this
approach.

1.6. ROAD-MAP FOR THE DOCUMENT 5
1.6 Road-map for the Document

The rest of this document consists of eight chapters. Chapter 2 describes the architecture of the
Codafile system and givesahighlevel view of the mechanismsit uses for resolution. Chapter 3
describes a formal model that precisely defines the criterion for deciding the resolvability of
a set of partitioned updates. This model is also used to reason about the correctness of the
resol ution mechanisms described in the chapters that follow.

Chapters 4 and 5 describe the design and implementation of the mechanisms for automating
resolution of directoriesand filesrespectively. These chaptersinclude adiscussion of thedesign
considerations, details of the resolution architecture and a description of the algorithms,

Chapter 6 describes the design and implementation of Coda's repair facility that is used to
manually resolve files and directories.

Chapter 7 evaluates the resolution mechanismsin Coda. It presents empirical and quantitative
results. Empirical results are based on actual use of the system over the past year and the
quantitative results are based on controlled experimentation using synthetic benchmarks. This
chapter also presents some results based on simulations driven by file system traces from our
environment.

This document concludes with a discussion of related work in Chapter 8, and a description of
the contributions of this dissertation in Chapter 9. The latter chapter also includes a discussion
of future work and a summary of key results.

CHAPTER 1. INTRODUCTION

Chapter 2

Overview of Resolution in Coda

This chapter gives an overview of the central problem addressed in the thesis and describesits
solution at a high level. To set the context of this thesis, the first section describes the Coda
file system. It outlines the architecture of the system and emphasizes those considerations that
were pivota in its design. The second section focuses on high availability, a maor goal of
the system. It discusses the use of optimistic replication and the problems that arise with it
in practice. The solutions to these problems are the main thrust of this thesis. Sections 2.3,
2.4 and 2.5 give an overview of these solutions; details of their design and implementation are
provided in later chapters.

2.1 The Coda File System

The Codafile system isadescendant of the Andrew File System (AFS). AFSwasimplemented at
Carnegie-Mellon University over aperiod of more than seven years resulting in three different
versions. AFs-1, AFS-2 and AFS-3. Coda was derived from AFs-2 and retains all its goals.
Specifically, it preserves the scalability, performance, security and ease of administration of
AFS-2. In addition, it strives to provide high availability of data. In the following sections we
describe how the system achieves each one of these goals.

21.1 Scalability

Coda wanted to preserve AFS' ability to support thousands of users. Therefore scalability of
the design is an important factor influencing the Coda architecture. Coda divides the system
structurally into two distinct groups, servers and clients. The ratio of the number of serversto
clients ranges between 1 : 20 and 1 : 100.

8 CHAPTER 2. OVERVIEW OF RESOLUTION IN CODA

The group of servers, collectively called Vice, consists of a small set of dedicated Unix ma-
chines. From the viewpoint of security, only the integrity of the servers is important for the
correct functioning of the system. As summarized by Satyanarayanan [45], this approach “[de-
composes] the system into asmall nucleusthat changesrelatively slowly, and amuch larger and
less static periphery. From the perspective of security and operability, the scale of the system
appears to be that of the nucleus.” Physical separation of clients and serversis essential for the
system to scale beyond a moderate size.

2.1.2 Peformance

To improve performance, Coda uses caching of data on clients. Caching reduces the latency
of operations for objects found in the cache. It also improves the scalability of the system by
offloading some of the work from servers thus allowing more clients to be serviced.

The client cache is managed by a process named Venus. Venus transparently intercepts file
system requests on Vice objects and services them using information in its cache. Whenever
necessary it communicates with the servers. The cached datais stored on disk alowing larger
and more effective caches and also shortening the cache warm up time after reboots. Venus
caches both files and directories in their entirety. The caching of directories enables Venus to
resolve pathnames locally.

File system updates are written through the cache to the servers by Venus. However, file writes
are propagated to the server only when thefileis closed. This allows Venus to take advantage
of faster bulk-transfer protocols and to provide cleaner guarantees about the coherence of its
cache. Coherence of cached objects is enforced using a callback mechanism. A callback for
an object issimply a promise from the server to the client that the latter will be informed if that
object is changed. Clients check the validity of an object whenever it is opened by ensuring a
callback promise exists for that object. At the servers, atable maps an object to alist of clients
that have it cached. When an object is updated, its entry in the table is deleted and all clients
that have it cached are informed that their copies are invalid.

2.1.3 Easeof Administration

The use of central servers simplifies administration of the system tremendously. The small
number of servers can be managed by a relatively small administrative body while the much
larger number of clients can be administered individually by their owners.

To further simplify administration, Coda uses a data-structuring mechanism called a volume.
A volume is acollection of files and directories forming a sub-tree in the Vice name hierarchy.
Typically, a volume may contain files and directories belonging to a single user or a project
group. All datain a volume resides at a single server and backups are performed by cloning

2.1. THE CODA FILE SYSTEM 9

entire volumes. Disk quotas are also enforced at the level of volumes. File system operations
never span multiple volumes.

Each volume has a unique 32-bit identifier called the volume-id (VID) and a unigue name.
Either of these can be used to locate the volume the first time it is accessed. Volumes are
conceptually similar to mountable Unix file systems. The Vice name space isformed by gluing
volumes together by their root at mount points. Each mount point is a special symbolic link
whose contents are the name of the target volume. The process of locating the target volume
when crossing over volume boundariesis performed transparently by Venus. This mechanism
is pivotal in providing name and location transparency in Coda.

2.1.4 Security

At large scale, security becomes a major concern due to the distributed control of clients and
relative anonymity of users. Users can no longer depend on the goodwill of their colleaguesfor
protection of their data. Coda addresses these security issues in three ways. First, servers are
physically protected and run only trusted software. Second, all client-server communication
is done on secure authenticated connections using a variant of the Needham and Schroeder
private key protocol [34]. In principle, each connection could be fully encrypted athough the
system doesn’t do thisin actual use. Third, protection on individual objectsis specified using
directory access-control lists containing names of individual users or groups of users. A breach
in security at a client gives the intruder rights only to that portion of the name-space to which
the user at that client has access. Damage cannot spread to arbitrary regions of the name-space.

2.1.5 High Availability

High availability of dataisimportant for clients to provide uninterrupted service to users. The
key to providing high availability of data in the face of network failures or remote server
crashes is data replication. Having multiple copies of data increases the likelihood of at least
one replica being available at any given time.

Coda uses two complementary replication mechanisms - server replication and disconnected
operation. The former mechanism replicates data at multiple servers and makes data available
to clients even if a subset of the serversareinaccessible. If al servers become inaccessible, the
latter mechanism allows a client to service file system requests using data cached on its local
disk.

Both replication mechanisms have their disadvantages and neither is adequate for al failure
conditions. Maintaining replicas at multiple servers increases the work load and has space
overheads. Moreover, server replication can guarantee availability of an object only if at |east
one of the servers holding that object is accessible to the client. It does not protect against

10 CHAPTER 2. OVERVIEW OF RESOLUTION IN CODA

network failures that might isolate the client. Disconnected operation addresses these issues
but suffers from other problems. Since the cache size at a client will always be much smaller
than the storage capacity of servers, the amount of data accessible to a disconnected client is
limited. Limited space becomes a bigger problem when the working set of the user grows
beyond the client’s cache size. Further, sharing information between disconnected clients is
impossible. Finally, backups and mediareliability become a concern in small portable clients.

The dichotomy in properties of servers and clients brings out the distinction Coda makes
between first-class replicas on servers and second-class replicas on clients. First-class replicas
are permanent, complete, secure and visible to many clients. Second-class replicas on the
other hand are weaker in al these respects. Therefore, the strategy used in Coda is to rely
on first-class replication as far as possible and to use second-class replication only as a last
resort. The two replication strategies are seamlessly integrated by switching between them
automatically when the client-server connectivity changes.

Although both mechanisms have the same goal, to provide higher availability, they use very
different methodologies. Disconnected operation by itself is a complex facility and has a lot
of interesting issues specific to it. These were discussed in great detail in an earlier disser-
tation [25]. The rest of this thesis discusses server replication in isolation from disconnected
operation. Other Coda papers discuss the relationship of disconnected operation to server
replication [47, 49].

2.2 Server Replication

This section provides an overview of server replication in Coda. It describes the granularity of
replication, the replica control algorithm and how it realizes high availability in the presence
of failures.

2.2.1 Replication Granularity

The granularity of replicationin Codais avolume. The set of replication sites for avolumeis
called its volume storage group (VSG). The subset of a VSG that is currently accessible at a
client isits accessible volume storage group (AV SG).

Volume level replication strikes the right balance between flexibility and easy management
of replication information. It allows different regions of the name-space to have different
degrees of replication depending on the user’s availability requirements. Replicating at a
higher granularity, for example, replicating entire servers, wouldn't provide this flexibility but
would simplify management of replicas. Replicating at alower level, for example, at the level
of files and directories, would provide the flexibility but suffersfrom two disadvantages. First,

2.2. SERVER REPLICATION 11

the information the system must maintain for replica location and connectivity state would
be harder to manage because of its much bigger size. The number of files and directoriesis
several orders of magnitude larger than the number of volumesin a system. Second, the update
protocols would be much more complex. Guaranteeing atomicity of operationsliker enane,
that mutate multiple objects, would either require distributed commit protocols because the
objects involved could be replicated at different sites, or complicate crash recovery. However,
if the objects involved in a mutation are al at one site, then the commit protocol need not be
distributed. This requirement is provided by storing all objects within one volume replica at
one server and preventing all file system operations from spanning a volume boundary.

bin dev etc lib tmp vmunix user coda
L ocal Files /N
Shared Files

The subtree under the directory labeled “coda’ isidentical at all workstations. The other files and
directories are local to each workstation.

Figure 2.1: File System View at a Coda Client Workstation

2.2.2 Replica Control

Replicacontrol refersto the mapping of read or writerequests on alogical object toits physical
copies. The logical view of the file system seen by a user on a Coda workstation is depicted
in Figure 2.1. Each workstation has its local, non-shared area of the name space that contains
temporary files, startup binaries and other files necessary for the running of the system. The
shared name-space contains all Vice objects and Venus ensures each object has the same name
at al clients. Users utilize this name to make file system requests on the Vice object.

Replication is made transparent to the user by presenting a one-copy view of the system. When
a user makes a request for an object, Venus locates its replicas dynamically, services read

12 CHAPTER 2. OVERVIEW OF RESOLUTION IN CODA

requests using the latest copy of its data and propagates write requests transparently to all its
replicas. This section describes how Venus performs these tasks in the absence of failures.

Locating replicas To locate an object’s replicas, Venus uses its unique identifier called a fid
(for fileidentifier). The fid of an object containsthe identity of the replicated volume (RVID) it
iscontained in. A replicated volumeis logically one volume that has several physical replicas
eachwithitsown VID. The VIDsof theindividual replicasare obtained by querying the Volume
Replication Database (VRDB). Thelocation of each physical replicaisthen found by querying
the Volume Location Database (VLDB) using the VID. Both the VRDB and VLDB are stored
at all servers. To reduce the frequency of communication with the server, Venus caches the
volume replication and location information returned from the VRDB and VL DB respectively.

Servicing reads and propagating writes Once the replicas of an object have been located,
fetching data from or propagating data to them is also the responsibility of Venus. It uses
a read-one-write-all replicas policy. To minimize the latency for a user’s write request, it
propagates the update to all members of the VSG in parallel. As a side-effect of the update it
also changes the version stamp associated with each replica. The version stamp is guaranteed
to be unique for each update. Thus, when two replicas have the same version stamp, their
contents are equal. To service a read request for an object, Venus first compares the version
stamps of the object’s replicasto ensure they areidentical. It then fetches the object from only
one VSG member to optimize the use of limited bandwidth. Note that Venus fetches an object
from the servers only if it does not already have a valid copy of that object in its cache.

2.2.3 Coping with Failures

Until now the discussion has focussed on server replication in the absence of failures and how
it is made transparent to the user for usability reasons. The system has the look and feel of a
regular one-copy Unix file system (UFs) that is shared and identical at all clients. When failures
do occur and some servers become incommunicable, maintaining a high level of availability
requires modifications to the replica control policy. Thisis discussed in section 2.2.3.2 below.
But first, section 2.2.3.1 describes the kinds of failures the system is ready to cope with.

2.2.3.1 Kindsof Failures

Coda provides continued access to datain the face of two kinds of failures: network partitions
and server crashes. Network partitionsare aconsequence of failuresinthe networking hardware
or software, causing clients to lose communication with one or more servers. Server crashes

2.3. COPING WITH PROBLEMS DUE TO OPTIMISM 13

may be caused due to software bugs or hardware faults. Coda doesn’t protect against hardware
failures like media crashes. However, disk mirroring could be used to improve reliability.

Network partitions are a more serious failure than server crashes because they can divide the
group of serversinto two or more digoint sets such that updatesin one set are not visiblein the
other set. Unrestricted access to partitioned replicas can present stale data to the user, leading
to inconsistencies and incorrect computations. When aserver crash has occurred, its datais not
availableto any client and thus no inconsistencies can arise. In other words, network partitions
force atradeoff between availability and consistency.

2.2.3.2 Failuresand Optimistic Replica Control

Section 2.2.2 described the replica control strategy used by Venus to make replication trans-
parent to the user in the absence of failures. In the presence of failures, Venus can maintain
this transparency by using only the accessible replicas to service user requests. A failureis
detected when a request for an operation at a server times out. Once a failure is detected,
Venus drops all connections to the inaccessible server, pretends that the VSG of all volumes
having a replica at that server has temporarily shrunk, and then continues servicing the user
request. The modified replicacontrol strategy it usesis called the read-one-write-all-accessible
replicas. For read requests, equality is checked only amongst the members of the AVSG. For
write requests, updates are propagated only to those same members of the AV SG. To the user,
there is no visible change in operation except perhaps an initial pause in the handling of the
request that detected the failure due to a timeout. The file system still appears to be like any
one-copy UFS except that many failures are masked.

The read-one-write-all-accessible replicas policy provides the highest level of availability
because it allows unrestricted access to replicas in all partitions. This level of availability can
be maintained only if the AV SG is non-empty. If the AV SG does become empty, Venus enters
the disconnected mode of operation and continues servicing user requests using its cached data.

The replica control policy is optimistic in the sense that it assumes operations in different
partitions will not update the same object. Of course, this assumption may be wrong and the
object may end up with diverging replicas due to concurrent updates in multiple partitions. In
practice thisis a rare occurrence since write-sharing is not common in the Unix environment.
However, when it does occur it leads to the task of making replicas converge to asingle value.
The next few sections will discuss how thistask is handled in Coda.

2.3 Coping with Problemsdueto Optimism

The process of converging diverging replicas to the same value is called resolution. To reduce
the burden of resolving an object’s replicas manually, Coda invokes resolution transparently

14 CHAPTER 2. OVERVIEW OF RESOLUTION IN CODA

when needed and automates it when possible. With these two mechanisms, the failure that
led to the divergence can be masked from the user. However, it is possible that resolution
cannot be automated under certain circumstances. For example, the partitioned updates may
not be merge-able because they violate some semantic invariant when merged even though they
preserve thisinvariant independently.

Invoking resolution transparently requires mechanisms to

e detect the end of afailure, and
e detect objects with diverging replicas

The following two sub-sections discuss each of the transparency mechanisms. Then sec-
tion 2.3.3 describes how the transparency mechanisms fit together to make resolution transpar-
ent to the user. The mechanisms used to automate resolution for the two kinds of file system
objects, directories and files, are discussed in section 2.4.

2.3.1 Detectingthe End of a Failure

The end of afailureisusually marked by the recovery of aserver from acrash or the healing of
a network partition. The former event can be announced by the recovered server but detecting
the latter requires frequent polling by the servers and/or clients. For scalability reasons Coda
clients, and not servers, are made responsible for this polling. This offloads some of the work
and state maintenance from the servers and also prevents recovery storms at the server if it
were to broadcast its restart.

For every replicated volume Venus maintains its state of connectivity with the VSG by probing
the servers periodicaly. In our environment, the probe interval is set to ten minutes. The
system also provides a user level command at clients to force a probe at any arbitrary time.
To accommodate an ever growing number of servers in the environment, Venus uses two
mechanisms to minimize space and time resources for this task. First, it probes only those
servers from where it has some objects cached. Second, it probes all of these servers in
parallel. Even if the system grows very large, the number of objects cached, and hence the
state information for the servers, islimited by the size of the local disk and the user’s working
set. Probing in parale limits the time needed to check communicability with al serversto a
single timeout interval.

2.3.2 Detecting Divergence

Recall from section 2.2.2 that each update has a unique version stamp associated with it.
Therefore, partitioned replicas of an object that have been updated during a failure will have

2.3. COPING WITH PROBLEMS DUE TO OPTIMISM 15

different version stamps. Venus compares these version stamps whenever it services a read
request for an object missing in its cache. To force this comparison even if an object isin the
cache, Venus does the following. As soon as a server becomes communicable after afailure,
it invalidates its cached copy of all objects serviced by that server. Then, the next time each
one of these objects is accessed, Venus will compare the version stamps of the replicas to
re-validate its cached copy. If the version stamps are identical, it deduces the object wasn’t
modified during the failure and it can ssmply re-mark its cached copy as valid. However, if the
version stamps do not match a divergence is declared.

This scheme pushesthework for detecting divergenceto the client and allowsit to be performed
lazily, i.e. only for those objects being accessed by the user, not for all objects with diverging
replicas. It relieves the servers of the book-keeping and overheads of distributed protocols that
might otherwise be necessary for efficiently computing the set of objectswith diverging replicas.
Moving the book-keeping to the client improves the scalability of the system significantly. The
laziness of the scheme reduces the peak demand on the system soon after a recovery from
afailure. An aggressive approach, in contrast, would try to find al objects with diverging
replicas as soon as a server recovers or partitionsreconnect. A problem with thelazy schemeis
it dlows stale replicas to persist and if failures were to re-occur, this data may be used in other
updates leading to an increased likelihood of conflicts.

It is possible to have ahybrid schemein which aclient isforced to fetch all the objects serviced
by the newly recovered server. If the fetches are separated by long enough gaps, then the
demand on the servers wouldn’t be bursty and it would also prevent an object with diverging
replicas from not being detected. The current implementation could be extended easily to use
this scheme. However our usage experience with the system does not indicate the need for
such a scheme.

2.3.3 Transparency of Resolution: View to the User

When Venus detects diverging replicas for an object while servicing a user request, it suspends
the request and transparently invokes resolution on the object. Once resolution completes
successfully, Venus can continue to service the user request after fetching the latest merged
version of the object. In this case, resolution is completely transparent to the user. The only
noticeable effect is perhaps a dlight delay in the servicing of the file system request. Figure 2.2
shows the message exchange, between Venus and the servers, that makes resol ution transparent
to the user.

If resolution is unable to complete its task successfully, the object is marked with a special
inconsistency flag. Venus will not service requests on this object until it is manually repaired.
This prevents any further damage from being propagated due to the unresolvable update. The
system provides a special repair-tool which can be utilized to examine the object’s replicas and

16 CHAPTER 2. OVERVIEW OF RESOLUTION IN CODA

User User
Process Process

User Request Fetch Object Service Request
(a) Identical Replicas

User Request Validate Object, Detect Divergence Invoke Resolution

User
Process

Resolution Succeeds

Service Request Fetch Object
(b) Diverging Replicas

The labelled arrows show the order of messages exchanged by a client and the servers in order to
service a user’s request. The object is assumed to be replicated at three servers. Figure (a) shows
the message exchange when no failures have occurred, all replicas are identical and the object is
not in the client’s cache. Figure (b) shows the message exchange when resolution is needed. The
latter case has more message exchanges and thus also a higher latency to service the user’srequest.

Figure 2.2: Message Exchange to Service a User Request

2.3. COPING WITH PROBLEMS DUE TO OPTIMISM 17

merge them manually. Manual repair exposes the failure to the user and therefore the system
tries to minimize the frequency of this event.

Validate Unsuccessful M anual

AVSG < VSG
(JAVSG| > 0)

Disconnected
Operation
(AVSG| = 0)

Figure 2.3: Coda Object States and Transitions

Figure 2.3 summarizes the possible states of an object as viewed from a Coda client and the
events that trigger the transitions between them. The “validate and resolve’ state is only a
transitory one which the object passes through whenever communication is re-established with
a server. All states except the one labelled “manual repair” are transparent to the user . The
object could be in any one of the other four states and seamlessly transition between them
without any visible effect to the user. However, an object enters the manual-repair state when
it has diverging replicas and the system is unable to automatically resolve the replicas. The
object can leave this state only after manual intervention.

18 CHAPTER 2. OVERVIEW OF RESOLUTION IN CODA

2.4 Automating Resolution: The Resolution Architecture

The previous section described the framework for invoking resolution transparently. This
section gives an overview of the methodology for automating resolution. The process of
resolving an object consists of several subtasks:

1. Deducing the sets of partitioned updates.
2. Communicating each set of partitioned updatesto all replicas.

3. Checking for unresolvable partitioned updates that do not satisfy certain conditions or
violate some system invariant.

4. Performing the partitioned updates in a fault-tolerant manner.
5. Marking thereplicasto

¢ alow normal file system requests to be serviced once again,

e or, if unresolvable updates were made, confine them and prepare the object for
manual repair.

Coda uses completely different strategies to perform these tasks for the two kinds of objects,
files and directories. This section first motivates the need for separation of strategies and then
describes the two strategies.

24.1 Separation in Methodology: Directoriesvs. Files

The mainreason for having different resol ution methodsfor directoriesandfilesisthe difference
in their structure and update methods. Directories have a well defined structure known to the
system. A directory consists of entries that bind unique names to files or other directories.
Entries are added or removed from a directory using a well defined interface consisting of a
few, fixed set of operations. On the other hand, afileisan untyped byte stream whose semantics
are not known to the system. The only file update visible to the systemis arewrite of the entire
contents of thefile. Since any useful resolution policy requires understanding the semantics of
partitioned updates, the system cannot automate the resolution of files. Moreover, since each
file's data has unique semantics, a resolution policy must be specific to the application that
interpretsthefile. Therefore, Coda’s resolution strategy consists of an automated system-wide
policy for directories and amechanism for transparently invoking application-specific resol vers
that implement the application-specific policy.

24. AUTOMATING RESOLUTION: THE RESOLUTION ARCHITECTURE 19

Files and directories impose different requirements on their respective resolution strategies
along two dimensions, efficiency of resource usage and smartness i.e. effectiveness in recog-
nizing the set of partitioned updates as resolvable or unresolvable. Directory resolution needs
to be better than file resolution along both of these dimensions for two reasons. First, since
write-sharing is more common for directoriesthan for files, for example, project members share
aproject directory, the likelihood of a directory needing resolution is significantly higher. Sec-
ond, since directories are navigational objects, their unavailability could make large portions
of the file system hierarchy rooted under that directory unavailable. Therefore, the directory
resolution algorithm must be careful not to wrongly classify a set of resolvable updates as
unresolvable. Such misclassification for afile affects only the availability of its data.

The argument for separating the resolution strategy for files and directories is strengthened
by the different restrictions imposed by security constraints in the system. Since application
specific resolvers are arbitrary untrusted programs, not only must all their file system accesses
be verified but they must also be disallowed from executing on the trusted Coda servers. In
contrast, directory resolution may require examination and modification of regions of the file
system for which the user has insufficient access privileges. A failed resolution due to insuf-
ficient privileges for a directory high in the hierarchy would significantly reduce availability.
Therefore, directory resolution must be able to proceed without requiring specia access priv-
ileges. This suggests that directory resolution must be performed on the servers. As aresult
files are resolved at the client but directories are resolved by the servers. We now describe the
two strategies in the following subsections.

2.4.2 Overview of Directory Resolution

Directory resolution istriggered by Venus at one of the serversinthe AV SG. This server, called
the coordinator, leads all the other servers in the AVSG through a multi-phase protocol that
performs the five subtasks of resolution mentioned in section 2.4. Once resolution completes,
an error code indicating its success or failureis sent back by the coordinator to the Venus that
triggered it. If resolution completed successfully, all the replicas of the directory are identical.
Venus must re-fetch the directory’s contents from any member of the AVSG to service the
suspended file system request.

For the purpose of resolution each server maintains a data structure, called the resolution log,
alongwitheachdirectory replica. Theresolutionlog usesoperationloggingtorecordall updates
made to the directory. The log is used in the first four subtasks of resolution, i.e. deducing,
propagating, checking and replaying the set of partitioned updates at the corresponding replica.
Each log provides the exact sequence of updatesin chronological order. Therefore, partitioned
updates can be found by simply comparing logs. The log records have enough information
to check and replay each partitioned operation at sites that missed that operation. Therefore,

20 CHAPTER 2. OVERVIEW OF RESOLUTION IN CODA

propagating the resolution logs of each replica to al VSG sites is sufficient to complete
resolution.

The directory resolution protocol consists of four phases. During the first two phases, the
coordinator collects the resolution log from each replica. During the third phase, the logs
are distributed to all AVSG members who then deduce the updates they missed, check for
correctness and replay them. All the partitioned operations that are replayed are executed
atomically, for fault-tolerance reasons, at each AVSG site. During the fourth phase, the
directory replicas are either marked as being equal or with aninconsistency flag. Detailsof this
protocol are provided in chapter 4.

2.4.3 Overview of Fileresolution

Section 2.4.1 described why a system-wide policy for resolving filesisn't possible in a Unix
environment. In practice, concurrent updates in multiple partitions are rare. Therefore, when
filereplicas differ, it is often due to updates only to a subset of the replicasin asingle partition.
There is at least one replica containing the latest version of the data. File resolution, in this
instance, could simply force or propagate this data to the replicas containing stale data.

The Coda design for file resolution realized this early on and therefore used a ssmple light-
wei ght mechanism, based on ver sion-vectors, to solve the frequently occurring case. To address
the less frequent and harder case of divergent file replicas, it uses a more complex mechanism
based on application-specific resolvers (Asr). The former mechanism is purely a syntactic
method of detecting concurrent writesin multiple partitions whereas the latter mechanismisa
semantic method that uses knowledge of the data contained in the file to perform the resol ution.
The following sections discuss each of these sub-cases separately.

24.3.1 Version-vector Techniques

The use of version-vectorsto detect concurrent writes on the samefilein multiple partitionswas
first proposed by Locus [39]. Each replicaof the file has a vector associated with it containing
as many elements as the number of sites in the file's VSG. Each vector counts the number of
updates made at each VSG site. Concurrent updates in multiple partitions can be detected by
comparing the version vectors.

When two vectors have identical elements, the corresponding replicas are also equal. If every
element of a vector A is greater than or equal to the corresponding element of another vector
B, then A dominates B. In this case, the replicawith vector A hasthe later version of thefile's
data. If some elementsof A aregreater than and other elements are | ess than the corresponding
elements of B, then vector A is conflicting with vector B. Inthis case, thereplicasare diverging.

24. AUTOMATING RESOLUTION: THE RESOLUTION ARCHITECTURE 21

Asindirectory resolution, Venusinvokes resolution for afile at one of the serversin the AV SG.
This server collects and compares the version-vectors from all the replicas in the AVSG. If
a replica exists, whose vector dominates the vector of al other replicas, then its vector and
contents are distributed to all AVSG members. However, if the version-vectors are found to
conflict, application-specific resolution must be performed.

2.4.3.2 Application Specific Resolvers

Application-specific resolvers are programs, provided by the application writers, that under-
stand the structure and semantics of data contained in the application files. These programs
use this knowledge to resolve diverging replicas of the application’sfiles. Thus, very broadly,
automating the resolution of diverging file replicas amounts to finding and running the correct
ASR that understands the semantics of data contained in that file. It isthe ASR’s responsibility
to perform the five tasks of resolution mentioned in section 2.4. 1f no AsrR isfound or if thefile
isunresolvableit is marked with the inconsistency flag and must be repaired manually.

There are severa ASR related issues that the system needs to address.

e Howisan AsrRbound toitsfileor group of files? The system must have some method
by which a user can specify a priori the ASR corresponding to each or a group of files.
This mechanism is needed to maintain the transparency of resolution.

e Where does an ASR run? Since the ASR can be any arbitrary program, it cannot be
trusted. Therefore, the system must be careful in deciding where to run the AsR. At no
cost should the security of the system be compromised.

e How isreplication exposed to an ASR? As mentioned before, Coda providesaone-copy
view of the file system even though it isreplicated. However, thisis one instance when
the replication needs to be exposed. The ASR needs some mechanism to name and access
various replicas of afile.

e How isthe execution of an ASR made fault-tolerant? The AsR may consist of multiple
programsthat write out multiplefiles. If only partial results get written out dueto crashes,
then another program is needed to correct the errors of the AsR when the system recovers.
To simplify this, the system should guarantee the atomicity of the results of the ASR.

e How doesthe system cope with multiple machinetypes? Codafiles are shared across
many different machinearchitectures. Since executable programsarenow associated with
the file store, it is important for the system to provide some mechanism for specifying
and executing the correct binary for each machine type.

Answers to these questions are deferred until chapter 5 of the thesis which describes the AsR
mechanism in detail.

22 CHAPTER 2. OVERVIEW OF RESOLUTION IN CODA
2.5 Manual Repair

Manual repair of an object is needed whenever it has diverging replicas that cannot be resolved
successfully. The object has been marked as inconsistent, and normal applications cannot
access thedatait contains. To aid in the manual repair, Coda provides arepair-tool that can be
run at any client. The tool has two purposes: first, to make the replicas of the object visible to
the user; second, to provide commands for the user to repair the object.

To expose the replicas of the object, thetool hasaBegi nRepai r command. When executed,
this command causes the inconsistent object, file or directory, to be converted into a pseudo-
directory. This directory contains as children all the accessible replicas of the object. The
children are all read-only so they cannot be mutated via normal Unix applications. However,
the user isfreeto use any Unix toolslikevi or enacs to peruse the replicas.

To repair an object, the tool has a DoRepai r command which takes as input the name of
a special file. The DoRepai r command behaves differently for files and directories. For
files, the special file is used as the new version of the file being repaired and is propagated to
all members of the VSG. For directories, the specia file contains a series of operations to be
performed by each VSG member. For fault-tolerance reasons, the operations are performed
atomically at the respective servers.

More details of the design and implementation of the repair tool are provided in chapter 6.

Chapter 3

Computation Model for Partitioned
Operation

The effectiveness of asystem in masking failuresdepends critically on the success of resolution.
If the partitioned updates are resolvabl e, they can be propagated transparently to all thereplicas.
The key issue isdeciding which set of partitioned updates areresolvable. File systemsthat have
previously addressed this issue [19, 38], used ad hoc methods and settled for a solution that
seemed reasonable. The Coda approach is to formally define a model for the file system and
define resolvability in its context. The goal of this chapter is to define precisely the criterion
used by Codato decide which set of partitioned updates are resolvable.

This chapter is divided into three parts. The first part uses examples to intuitively show the
kind of partitioned updates that should be resolvable. The second part formally defines Coda’'s
computation model. Thismodel isbased on transactionsrather than the traditional Unix shared-
memory approach and it defines correctness in terms of serializability. If file system updates
are modelled as transactions on entire Unix objects, then most concurrent partitioned updates
aren't serializable. Therefore, thethird part of this chapter modifies the basi ¢ transaction model
so that a mgjority of concurrent partitioned operations will be resolvable, i.e. serializable.

3.1 Resolvable Partitioned Updates

The task of resolving diverging replicas can be achieved in one of two ways:. either by undoing
the partitioned updates and re-doing them at all replicas or by performing some compensating
actions at some or al replicas. Undo-redo of an update requires knowledge of the computation
that initiated it. Since Unix doesn’t have any means to capture the static representation of a
computation, thismethodisn’t feasiblein Coda. Therefore, the second methodistheonly option

23

24 CHAPTER 3. COMPUTATION MODEL FOR PARTITIONED OPERATION

for resolution without modifying existing applications. Partitioned operations are resolvable
only if the compensating actions can be found.

The goal of each compensating operation is to replay the corresponding partitioned update.
Intuitively, compensating operations can be effectiveonly if the partitioned updatesare mutually
independent, i.e. if they modify different entries of a directory or different regions of afile or
separate attributes of an object. Let us consider examples of resolvable and un-resolvable
partitioned operations.

Consider a directory whose replicas get updated simultaneously by users in two separate
partitions. 1n one partition an entry f oo isinserted and in the other partition an entry bar is
inserted. Inthe uFsinterface, these updates are independent of one another and succeed aslong
as there are no duplicate names within the same directory. The compensating action during
resolution is that each replica perform the insert operation it missed. The resolved directory
replicaswould contain both f oo and bar . Figure 3.1 gives examples of some more partitioned
“independent” directory operations that are resolvable.

Now, consider a calendar application cal that manages appointments in a file. For a user
X, cal manages areplicated file cal . per sonal which gets updated, sometimes in different
partitions, whenever appointments for X are added or deleted. For example, in one partition
a new appointment for the following Monday is added by X, and in another partition, an ap-
pointment for the following Wednesday is cancelled by X’'s secretary. When the partition ends,
cal . personal has diverging replicas. However, the partitioned updates are “independent”
since they add or change appointments for different times. Therefore, these updates can be
merged and should be resolvable. Note that in this case, the resolution functionality would be
provided by an AsR.

Some partitioned updates are not resolvable because they update the same directory entry or
same region of the file. Consider the directory example above again: instead of f oo and bar
an entry cor e gets inserted in the two partitions. This is a common situation in the Unix
environment that arises when abad binary is executed. When the partition ends, the creation of
cor e cannot get propagated to the other replicabecause Unix directoriesdo not allow duplicate
names in the same directory. User intervention is needed to decide which one of the core
entries can be deleted or renamed.

The above examples show thefeasibility of automatic resolutioninthe Unix environment. They
show, only intuitively, the kind of partitioned updates that are resolvable and un-resolvable.
The next few sections develop a formal model that defines precisely what kind of partitioned
updates are resolvable in the Coda system. The model identifies exactly how much consistency
can be traded-off for higher availability. Since, thisthesis reuses parts of the model devel oped
by Kistler [25], it only gives a synopsis of the model.

3.2. COMPUTATION MODEL

25

/coda/usr/pkumar
Pre-partition state

test src

RN

Partition 1 Partition 2

%In test test2
%rm-rf src

/coda/usr/pkumar

test test2 src test afs

RN

/coda/usr/pkumar
Post-resolution state

test test2 afs

%In -s /afs/cs/user/pkunmar afs

/coda/usr/pkumar

Figure 3.1: Examples of Resolvable Partitioned Directory Updates

3.2 Computation Model

Since Coda emulates UFS semantics in a distributed environment, it is natural to use the UFS
model as the starting point for our definition of correctness. UFS uses the shared memory
consistency model, i.e. the file system is treated as a block of common store to which read and
write requests are made. The system is unaware of the computations to which these requests
belong. Further, the effect of a write is immediately visible to all reads that follow. This
model when extended to a replicated system becomes the one-copy Unix equivalent (LUE)
model. In 1UE, a partitioned execution of a set of computations is considered correct if the
final file system state it generates is the same as that resulting from some execution of the same

26 CHAPTER 3. COMPUTATION MODEL FOR PARTITIONED OPERATION

computations on asingle Unix host. In this model, two partitioned operations are conflicting if
they both access the same object and at least one of them is awrite operation. Therefore, 1TUE
can be trivially achieved in areplicated system with partitionings by restricting the conflicting
operationsto a single partition or disallowing any mutations (and thus all conflicting operations
also) during partitions. However, thisis completely antithetical to Coda’'s goals since it does
not provide high availability.

The two restrictions above are sufficient but not necessary for 1UE. They are over zealous in
excluding certain partitioned conflicting operations that would otherwise have an equivalent
one-copy history. For example, if afileisperused in one partition and edited in another partition
then even though a partitioned conflict exists, it is 1UE to reading and then editing the same
file in the same partition. Unfortunately, since the system does not know the computation
boundaries of the perusal and editing session, it must pessimistically disallow the partitioned
mutations to guarantee that non-1UE computations are not allowed.

3.21 Why Transactions?

The deficiency of the shared memory model isits inability to distinguish conflicting operations
that have one-copy equivalents from those that do not. To overcome this deficiency, we can
tag the read/write requests with the identity of the computation they belong to. This is made
possible by considering each computation as atransaction. Each read or write operation can be
tagged with the identifier of the transaction it belongs to and the boundaries of the computation
are madevisible to thefile system interface. Once the computation boundaries are exposed, the
system can recognize some of the computations with conflicting operations that have one-copy
equivaents.

The correctness criterion in the transaction model has traditionally been serializability, i.e. the
concurrent execution of a set of transactions is equivalent to their serial execution. Serializ-
ability is the preferred correctness criterion because it recognizes more concurrent executions
(with conflicting accesses) as correct and can be enforced using knowledge of the computation
boundaries.

3.2.2 System-Inferred Transactions

So how does the system know to which transaction a read/write request belongs? Typically,
thisis specified in the programming interface which allows programmersto bracket off compu-
tations with a begin- and end-transaction, and then all read/write requestsidentify the enclosing
transaction they belong to. However, the Unix programming interface does not provide any
transaction support. Adding this support would not be too difficult, but modifying al appli-

3.2. COMPUTATION MODEL 27

cations to utilize this new interface is extremely expensive and violates Coda's goal of binary
compatibility with Unix.

Our approach therefore, is to use asimple heuristic to map certain sequences of system callsto
individual transactions called inferred transactions. Without any changes, existing applications
are made capabl e of an expanded set of operationsduring partitionswhichisn’'t possiblewith the
Unix shared memory model. The mapping of the file system calls to transactions is described
indetail in[25]. To summarize, Table 3.1 lists the Unix file system interface and Table 3.2 lists
the transaction types inferred from that interface.

access Check access permissions for the specified object.

chnod Set mode bits for the specified object.

chown Set ownership for the specified object.

cl ose Terminate access to an open object viathe specified descriptor.
fsync Synchronize the specified object’s in-core state with that on disk.
i octl Perform a control function on the specified object.

[ink Make a hard link to the specified file.

| seek Move the read/write pointer for the specified descriptor.

nmkdi r Make a directory with the specified path.

nmknod Make a block or character device node with the specified path.
nount Mount the specified file system on the specified directory.

open, creat
read, readv

Open the specified file for reading or writing, or create a new file.
Read input from the specified descriptor.

readl i nk Read contents of the specified symbolic link.

r ename Change the name of the specified object.

rmdi r Remove the specified directory.

st at Read status of the specified object.

statfs Read status of the specified file system.

sym i nk Make a symbolic link with the specified path and contents.
sync Schedule al dirty in-core data for writing to disk.
truncate Truncate the specified file to the specified length.
urmount Unmount the file system mounted at the specified path.
unl i nk Remove the specified directory entry.

utinmes Set accessed and updated times for the specified object.

wite, witev Write output to the specified descriptor.

Table 3.1: 4.3 BSD File System Interface

An obviousdisadvantage of thismodel isthat the actual transaction boundariesmay differ vastly
fromthose of theinferred transactions. AsshowninFigure3.2, whenan actual transaction spans
multiple inferred transactions, the system may wrongly declare a non-serializable execution
(with respect to the true transactions) to be serializable. However, thisis not a major problem

28 CHAPTER 3. COMPUTATION MODEL FOR PARTITIONED OPERATION

r eadst at us[object, user]
access | ioctl | stat

r eaddat a[object, user]
(open read* close) | readlink

chown| object, user]
chown

chnod] object, user]
chnod

ut i mes| object, user]
utines

set ri ght s[object, user]
i octl

st or e[file, user]
((creat | open) (read | wite)* close) | truncate

[i nk[directory, name, file, user]
i nk

unl i nk] directory, name, file, user]
rename | unlink

r ename| directoryl, namel, directory2, name2, object, user]
rename

nkf i | e[directory, name, file, user]
creat | open

nmkdi r [directoryl, name, directory?2, user]
mkdi r

nmksym i nk][directory, name, symlink, user]
sym i nk

rnf i | e[directory, name, file, user]
rename | unlink

r mdi r [directoryl, name, directory2, user]
rename | rndir

r msym i nk][directory, name, symlink, user]
rename | unlink

The first line of each group shows the transaction type and the second line shows the sequence of
system callsthat map toit. The notationused inthe second line of each descriptionisthat of regular
expressions; i.e. juxtaposition represents succession, “*” represents repetition, and “|” represents
selection.

Table 3.2: Coda Transaction Types and System Call Mapping

in practice. First, the chance of concurrent activity leading to non-serializable behavior is
rarein practice. Second, Unix itself allows non-serializable behavior since it does not provide
any support for concurrency control. Replication and partitioned activity expand this window
of vulnerability for non-serializable behavior to the length of the partition rather than just

3.2. COMPUTATION MODEL 29

the duration of the transaction. However, users typically monitor partitionings with special
purpose tools and use external synchronization means like telephones during partitionings to
ensure serializable executions.

Initial values, (X,Y) = (0,0)

T1: Begin_trans.
T2: Begintrans.

(TL1)Read X

(T21)Read Y
Y=X+1 .

X =Y 4+ 2 Time
(TL2Wite Y

(T22Wite X

End_trans.]
End_trans.

Final values: (X,Y) =(2,1)

This figure shows the interleaved execution of two transactions T1 and T2. Assume X and
Y correspond to real files and that file open, read, wite, and cl ose are inserted as
necessary. In theinferred transaction model the individual file reads and writes would be separate
transactions. Thefina values (X,Y) = (2,1), are aresult of executing transactionsT1.1, T2.1, T1.2,
and T2.2 serialy. Thisis not equivalent to either of the serial schedules (T1,T2) or (T2,T1).

Figure 3.2: A Non-seria Execution that is Serializable with Inferred Transactions

3.2.3 Enforcement of Correctnesswithin a Partition

This section describes how Coda enforces correctness of transactions within a partition. To
simplify the discussion, assume a partition consists of one server connected to multiple clients.
Transactionsareinitiated and executed at the client but are committed at the servers. Correctness
of atransactionisenforced at thetime of itscommitment. Itsserializability isverified by usinga
mechanism called certification. Each object has a version identifier, which uniquely identifies
the last transaction to modify the object. Certification of a transaction succeeds only if the
version identifier of each object it accesses hasn’t changed since the start of the transaction. In
other words, C;, i.e. the certification of transaction 77, succeeds only if the following is truefor
all transactions 7; that were committed since 7; started.

1. read-set(7;) N write-set(7}) = ¢
2. write-set(7;) N write-set(7}) = ¢

30 CHAPTER 3. COMPUTATION MODEL FOR PARTITIONED OPERATION

Partition 1 Partition 2

T if (Y %2 == 0) X++ T2: if (X %2 == 0) Y++
Assumethat X and Y correspond toindividual files, and that fileopen,read,w it e,andcl ose
calls are inserted as necessary. The 1SR-ness of partitioned exection of T1 and T2 depends upon
the pre-partitioning state of the system. If either X or Y (or both) are odd, then the partitioned
executionis1SR. If both dataitems are even at the time of the partitioning, however, the partitioned
execution isnot 1SR. Since a syntactic approach does not understand the logic of the computation,
it will always declare thisto be a non-1SR history.

Figure 3.3: Partitioned Transaction Example where 1SR-ness is Data-Dependent

Note that write-set(77;) N read-set(7;) may be non-empty. 7; isstill certifiable because itswrite
can be serialized after the commitment of transactions 7';.

Each transaction is executed in three steps. First, Venus makes sure it has avalid copy of each
object read or written by the transaction and records their version identifiers. An objectisvalid
if its callback promiseisn’t broken. Second, Venus performs the transaction’s reads and writes
on the cached copies. Finally, the transaction’s read and write sets are certified by the servers.
If certification succeeds, the values and version identifiers of objects in the transaction’s write
set are updated, the callback promises on all other clients are broken and the transaction is
committed. If certification fails, the transaction must be restarted at the client.

A transaction with updates is certified and commited at the servers. Servers use locking
protocols for concurrency control between transactions being certified simultaneously. Read
only transactions are certified at the client by verifying the validity of callback promises on all
objects read. The second certification condition istrivially true for read only transactions.

The above protocol for executing transactionsin a single partition certifies only those histories
that are seridlizable. To check the seriaizability of a transaction 77, consider only those
transactions (7}), that are executed concurrently with 7;. All transactions that were committed
before T; started and start after 7; is committed, are serializable before or after 7'; respectively.
The two conditions for certification to succeed guarantee that 7; will succeed only when it
has no contention with, and hence is serializable with, all concurrent transactions 7’;. If there
is some contention, i.e. 7; and 7; have conflicting operations on the same data item, one of
them will be aborted. This protocol is equivalent to the optimistic concurrency control protocol

whose correctness is proved formally in [27].

3.3 Transaction Specification for High Availability

Including replicated data within the framework of the transactional model trandates the cor-
rectness criterion from serializability to one-copy serializability (1SR). A concurrent, possibly

3.3. TRANSACTION SPECIFICATION FOR HIGH AVAILABILITY 31

partitioned, execution of transactions is 1SR if it is equivalent to their serial execution on
non-replicated data. One copy serializability recognizes more partitioned executions (with
conflicting accesses) as correct than the traditional JUE model. Determining exactly those
transactions that are 1SR requires knowledge of their intra-partition ordering, the specific data
accesses they make, the pre-partition state of the system and the logic of the computation. Col-
lecting and analysing this knowledge may be intractable and sometimes infeasible. Therefore,
only the syntactic representation of transactions, i.e. the history, consisting of the names and
access methods (read or write) of all data items, is used to efficiently decide if a multi-copy
transaction history is 1SR. Syntactic approaches are restrictive in that they recognize only a
subset of the 1SR histories. Figure 3.3 shows an example 1SR history that cannot be recognized
by a purely syntactic approach.

It is important for the syntactic specification to reflect a transaction’s true behaviour. This
specification is used to decide which partitioned histories are 1SR, and therefore resolvable,
which in turn affects the availability offered by the system. Omission of data accesses from
the specification may wrongly admit some non-serializable historiesin the set of 1SR histories.
Similarly, wrongly including data in the specification that is not accessed by the transaction
may lead to false conflicts, i.e. some serializable histories are declared as non-1SR.

In the inferred transaction model, false conflicts can occur if data accesses are under-specified,
i.e. the specification names not only the actual item accessed but also some other neighboring
items. For example, if the specification of the chnod and chown transactions indicates that
the entire object (directory or file) is written, then a partitioned chown and chnod transaction
on the same object would appear to have a write/write conflict even though they updated
different fields of the same object. To avoid situations like this, Coda inferred transactions are
specified at the sub-object level. At thislevel, the attributes and elements of a data object are
all independent items. Figure 3.4 shows the description of all three datatypes: files, directories
and symbolic links. All object types have a common base structure called a vnode which
contains the meta-data of the object. The type specific portion of each object is a fixed size
array, with each element being potentially independent.

There are two important parts of the object specification, the modelling of access-rights and
directory contents, that significantly effect the availability realized by the system. Each of these
is discussed below.

Access-Rights In Unix, access to an object is controlled using a tightly encoded vector.
Modeling transactions like chnod as updates to the entire vector can lead to false conflicts.
Consider achnod transaction in one partition that restricts access to a particular group. This
transaction would falsely conflict with transactionsin other partitionsthat involved other users,
for example, the owner. The Codamodel avoids false conflicts, and thus increases availability,
by using an explicit access matrix representation (called ri ght s in the vnode). Each rights-
mutating transaction updates independent elements of the matrix.

32 CHAPTER 3. COMPUTATION MODEL FOR PARTITIONED OPERATION

const int MAXUIDS = 2%

const int MAXFILELEN = 2%
const int MAXDIRENTRIES = 2562%6;
const int MAXSYMLINKLEN = 210;

struct vnode {
fidt fid,;
uidt owner;
timet nmodifytinme;
short node;
short |inkcount;
unsigned int | engt h;

rights_t rights[MAXuIDS]; /* implemented as access-control list */
h
struct file : vnode {
unsigned char dat a] MAXFILELEN] ; /* implemented as list of blocks covering [O..length - 1] */
h
struct directory : vnode {
fidt data[MAXDIRENTRIES] ; /* implemented as hash table containing only bound names */
h

struct symink : vnode {
unsigned char dat a[MAXSYMLINKLEN] ; /* implemented as list of blocks covering [O..length - 1] */
h

Figure 3.4: Coda Data Item Description

Directory Contents Directoriesarealist of <name, id> bindings that are independent of one
another. The only constraint is that the name must be unique with respect to all other bindings
within the same directory. Consider an operation that adds a new binding to the directory. This
operation isindependent of all other operations and succeeds if and only if no binding with the
same name component already existsin the directory.

Modeling individual directory mutations as updates to the entire directory can lead to false
conflicts. The Coda specification avoids this by modeling a directory as an array whose sizeis
equal to the cardinality of the set of al possible entry names. Each array element representsthe
state of one name in the space of all possible names. If anameisbound in adirectory, then the
array location corresponding to that name contains the id of the object; otherwise it containsa
specia value . False conflicts are prevented in this model because transactions on the same
directory conflict only if they access the same name, i.e. the same array location, whichisared
conflict. Itisimportant to note that this representation of directoriesis only used in the model

3.3. TRANSACTION SPECIFICATION FOR HIGH AVAILABILITY 33

to discuss correctness but a more compact and practical representation is implemented.

The Coda model enhances this basic object specification to expand the syntactically recogniz-
able set of 1SR preserving transactions. It

e redefines certain system call semantics to shrink the write sets of some inferred
transaction,

o exploits type-specific information of dataitems accessed, and

e enforcesthe 1SR correctness criterion for update transactions and not for read-only
transactions.

We discuss each of these pointsin the following sections.

3.3.1 Redefining System Calls

In the BSD Unix file system, each object maintains time attributes like access-ti ne,
change-tine, nodify-tinme which get updated as a side-effect of certain system calls.
Trangdlating these semantics into the Coda transactional model |eads to two problems. First, if
areaddat a transaction is required to modify the access-ti nme attribute of the object read,
then the transaction is no longer a read-only transaction, making it harder to serialize it with
other readdata transactions on the same object in another partition. Second, all update transac-
tions on the same object would be in write/write conflict since each one would be writing the
same attributes: change-ti me andnodi f y-ti me. Inshort, the system would haveto restrict
access to an object to a single partition and in turn reduce the avail ability significantly.

The Codamodel changesthe system call semantics, and in turn the transaction specification, so
that access-ti me and change-ti ne are never modified for any object and nodi fy-ti ne
for a directory can only be changed via the uti nes system cal. This alleviates the two
problems mentioned above and provides greater availability. Read-only transactions continue
to be strictly read-only and can be executed unrestricted in any partition. Update transactions
that change different names in the same directory are considered independent once again and
can be serialized even if they are executed in different partitions.

In our experience, the semantic impact of these changes is small in practice. As evidence,
consider distributed file systems that exist today. Most of them do not maintain an accurate
access-ti me to improve the effectiveness of caching file meta-data. Yet, few users or
applications are affected by this. Maintaining an accurate nodi f y-t i me for files seems to
be more important to users and some programs, for example, make. However, thisisn't true
for directory modify-time.

34 CHAPTER 3. COMPUTATION MODEL FOR PARTITIONED OPERATION
3.3.2 Exploiting Type-Specific Semantics

Directory attributeslikel i nk- count and| engt h get updated as a side-effect of transactions
likeli nk, rndi r etc. If these attributes are treated like any other data item written by these
transactions, then all independent transactions on the same directory will be in write/write
conflict and availability will be significantly reduced.

Unlike time-attributes these attributes are fairly important quantities, so they cannot simply
be ignored. The key point to realize is that these attributes are used as counters that reflect
the state of the directory and that from the viewpoint of the transaction the actual value of the
counter it writes is not important. Therefore, instead of using the write set to logically reflect
the increment/decrement operation, these operations are explicitly specified in the transaction
syntax. Transactions that modify the same counter are no longer considered to be in conflict,
thus yielding higher availabiity. Each counter’s value is correctly compensated at the end of
a partition by propagating the “net change’ value from each partition to replicas from other
partitions.

3.3.3 Read-only Transactions

Read-only transactions, or queries, can be exploited to provide higher availability. If a query
reads asingle logical item, it can be executed in any partition regardless of whether the object
it accesses is updated in other partitions. This is because, the query can be serialized before
any conflicting partitioned update transaction. All historiesthat are 1SR without this query will

continue to be 1SR with the query as a part of the history.

If aquery reads morethan onelogical item, it cannot always be serialized before all partitioned
update transactions that write the object it reads. Figure 3.6 shows one such example query.
For higher availability, the Coda model does not enforce 1SR for read only transactions. It
guarantees 1SR only for update transactions and treats multi-item read only transactions as
weakly-consistent queries [15]. Such queries see a consistent system state resulting froma 1SR
execution of update transactions but may not themselves be serializable with respect to one
another. Thisisuseful for improving availability, especially inthe context of file systems where
alarge percentage of transactions are queries. 1SR guarantees can be provided selectively for
certain queriesif needed.

Changing the model along the three dimensions, time attribute modifications, directory attribute
mutations, and read-only transactions, significantly increases the number of partitioned trans-
actions that are serializable. Asaresult, the availability offered by the system also increases.
Figure 3.5 shows how the syntactically recognizable set of serializabletransactionsisexpanded.
A summary of all Coda transaction typesis shownin Table 3.3. For each transaction type, the
table describes its read-set, write-set and counter operations. This specification is used during
resolution to decide if the partitioned transactions are serializable, and hence resolvable.

3.3. TRANSACTION SPECIFICATION FOR HIGH AVAILABILITY

Al Histories

1SR/ WOQ

1SR

|:| Count er - Senmant i cs

Weakl y- Consi st ent Queri es

S extends the syntactically recognizable set of serializable histories(S) to include two history sub-
classes: (1) histories which become serializable once counter operations are added to the syntax,
and (2) histories which become serializable once queries are allowed to be weakly-consistent. (In
the diagram, “1SR/WCQ" stands for all historiesthat are 1SR with Weakly-Consistent Queries.)

Figure 3.5: Expansion of the Basic Syntactically Recognizable History

In summary, the important points of the model are

e queries of any kind arelegal in any/all partitions and never reduce availability,

e update transactions are conflicting mostly when they modify the same directory
entry, the same data file or the same attribute of an object, and

e intuitively “independent” directory operations within the same directory do not
conflict

The next section describes how serializability is checked during resolution.

35

36 CHAPTER 3. COMPUTATION MODEL FOR PARTITIONED OPERATION

Transaction Type Read Set Write Set Increment Set | Decrement Set

fid,

. owner,
.nodi fytime,
node,

. I'inkcount,
| engt h,
.rights[u]
fid,
.rights[u],

| engt h,

dat a[*]
fid, 0. owner
.rights[u],
owner

fid, 0. node
.rights[u],
node

fid, o. nodi fytine
.rights[u],
modi fytime
fid, o.rights[u]
.rights[u]
.fid, f.modi fytine,
.rights[u], f.length,
.nodi fytime, f.data[*]

.l ength,
.data[*]
Lfid, d. dat a[n] d.l ength,
.rights[u], f.linkcount
.data[n],
fid

fid, d. dat a[n] d.l ength,
.rights[u], f.linkcount
.data[n],
.fid
rename[dl, n1,d2,n2, o,u] | di.fid, di.data[ni], d2.1i nkcount, d1.1inkcount,
dl.rights[u], d2. data[n2], d2.length dl.length

dl. data[nl], o.data[‘‘..""]
d2.fid,
d2.rights[u],
d2. data[n2],
o.fid,
.data[‘"".. "]
fid, d.data[n], o.* d. i nkcount,
.rights[u], d.l ength
.data[n], o.*
fid, d.data[n], o.* d. i nkcount,
.rights[u], d.l ength
.data[n], o.*

readstatug/o, u]

readdatalo, u]

chown [o, U]

chmod[o, u]

utimes[o, u]

setrightg[o, U]
store[f, U]

link[d, n, f, u]

unlink[d, n, f, U]

TeeeeRe T 0000000000000 000000000

mkobject[d, n, o, u]

rmobject[d, n, o, U]

000000 O0

Note that in the r enane transaction o. data[‘ ‘.. '] isrelevant only when the renamed
object isa directory.

Table 3.3: Coda Transaction Specification

3.3. TRANSACTION SPECIFICATION FOR HIGH AVAILABILITY 37

Partition 1 Partition 2
T1: read A T3: read B
wite A wite B
T2: read A T4: read A
read B read B

This executionisnot 1SR because T2 requires an ordering where T1 precedes T3, and T4 requires
one where T3 precedes T1. Such precedence conditions are derivable using two simple rules; T«
must precede Ty in an equivalent one-copy history if either:

e Tz and Ty arein the same partition, T+ preceded Ty in the partition sub-history, and
Tz wrote a data item that was later read by Ty or it read a data item that was later
written by Ty; or

e Tz and Ty arein different partitionsand T« read a dataitem that Ty wrote.

Figure 3.6: Multi-ltem Queries Violating One-Copy Serializability

3.3.4 Checking Resolvability of Updates from Different Partitions

Assume k dites, Sy, ..., .S are partitioned into » groups #;,..., P,. In each partition, F;,
a set of transactions H;, consisting of T, , ..., Tp,, is executed. The history of partitioned
transactions H,, ..., H,, is resolvable if it is one-copy serializable in the model developed
in the previous section. The process of verifying one-copy serializability proceeds as fol-
lows. Each site 5;, that existed in partition F;, sequentially processes the transaction histories
Hy,...,H;_1,H;1,...,H,. Transactions from each history H; are processed in the order in
which they were committed. Processing atransaction hastwo steps: it isfirst certified and then
itswrite-set istentatively updated. If transactionsfrom all histories can be certified successfully
by al SiteSS]_, cee, Sk, then Hl, cea H, is1SR.

How are transactions certified? Recall from Section 3.2.3 that the serializability of operations
within a partition is verified using a version certification scheme. Unfortunately, this scheme
is impractical for verifying 1SR because a version identifier is associated with an entire Unix
object, not with its independently modifiable data items. The version certification scheme
would suffer from too many false conflicts. For example, adding entries named f 0o and bar

to the same directory in different partitions would change the version identifier of the same
directory. Inthis case, version certification would declare a conflict.

A solution to this problem is to associate a version identifier with each independent data item.
However, this solution isimpractical. The number of independent data items maybe large (for
example, 2562° in the case of directory entry names) and maintaining a version identifier for
each itemisinfeasible.

Another solution, the one used in Coda, is to augment the version certification scheme with a
different methodol ogy, called value certification. Inthisscheme, the old value of each dataitem

38 CHAPTER 3. COMPUTATION MODEL FOR PARTITIONED OPERATION

accessed by atransaction is stored in the history log. At certification time, the logged value of
the dataitem is compared with its current value. If the two values are the same, certificationis
successful. Otherwise, the transaction is not certifiable and the history H, ..., H, isnon-1SR.
The correctness arguments of value certification will be discussed in detail in Chapter 4.

Chapter 4

Automatic Directory Resolution

The goal of directory resolution is to merge updates made to partitioned replicas of adirectory.
Resolution isinitiated when Venus, while servicing a user’s request, detectsthat a directory has
diverging replicas. It requests one of the serversin the VSG to perform resolution and pauses
the user’srequest. This server becomes the coordinator of a multi-phase protocol that performs
resolution. If resolution completes successfully, all the replicas of the directory are identical.
In this case, Venus fetches the contents of the directory and continues servicing the paused user
request. Otherwise, an appropriate error is returned for the user request.

This chapter discusses details of the resolution protocol in four parts. Thefirst section discusses
itsdesign rationale. An overview of the protocol is presented next. The third section describes
the algorithm used to decide the resolvability of a group of partitioned updates. This section
also formally provescertain propertiesof agroup of resolvable updates. Finaly, thelast section
describes details about the implementation.

4.1 Design Considerations

Recall from Chapter 2 that Coda uses a log-based approach for directory resolution. This
section describes the rationale for using this approach and discusses other design optimizations
that make the approach efficient and scalable without compromising security.

4.1.1 Log-based Approach

The basic idea behind log-based directory resolution is to record the history of partitioned
updates, and use it to propagate updates to all replicas when the partition ends. The history is

39

40 CHAPTER 4. AUTOMATIC DIRECTORY RESOLUTION

stored in a data structure called the resolution log. This section discusses the design tradeoffs
of using alog-based approach for directory resolution.

The main advantage of using a log-based approach is it provides a complete chronological
history of al partitioned updates. A complete history allows the set of partitioned updates to be
deduced efficiently using only the order of operations in the log without semantic knowledge
about the individual operations. Alternatively, a “log-less’ scheme could infer the partitioned
updates from the state of each replica during resolution and the semantics of all possible
operations. However, such schemes introduce additional complexity since multiple operation
sequences can lead to the same final state and resolution must be performed with incomplete
information. Moreover, such “log-less” schemes eventually need some kind of logging to
disambiguate recent deletes from new creates. For example, the presence of an entry only in
one replica of a directory could mean one of two things. either the entry was created only at
that replica during a partition, or the entry was deleted at al other replicas. This problem can
be avoided by recording the delete when it occurs, or in other words by logging. Note that
recording only the deletes, does not provide other benefits of logging listed earlier.

An added advantage of logging is the order of operations in the log provides a natural order
for verifying their correctness and propagating them to each replica. Furthermore, since all
information for resolution isin the log, it can be managed efficiently in a single data structure,
and be shared easily between servers during resolution. Storing the information for resolution
inasinglelinear structure reduces external fragmentation and simplifies the garbage collection
of stale data.

The main disadvantage of logging is the extraspace required for thelog. For example, adding a
new object to adirectory uses space not only to create the object, but also to record the operation
intheresolutionlog. However, thisoverhead is acceptablein the context of Unix directoriesfor
two reasons. First, the space required for logging adirectory transaction is approximately equal
to the size of a directory entry, typically less than fifty bytes. Second, directory transactions
are rare compared to other updates in the system. Chapter 7 will provide empirical evidence
showing that the space overhead due to logging is acceptable.

4.1.2 Optimizationsin Resolution M ethodology

Recall from chapter 2 that due to security reasons, directory resolution must be performed
at servers rather than clients. However, for scalability reasons, the work at servers must
be minimized. Furthermore, since Venus pauses the user request while resolution is being
performed, it isimportant to minimizethelatency of each resolution call. This section describes
the mechanisms used by Coda to address these concerns.

Toimprovescalability, Codaperformsresolutionlazly, i.e. adirectory with diverging replicasis
resolved if and only when auser requests servicefor it. Thisreducesthe peak demands made on

4.1. DESIGN CONSIDERATIONS 41

serversimmediately after recovery from acrash or network partition. The disadvantage of this
scheme is that unresolved partitioned updates may persist until a subsequent crash or partition,
thus increasing the chances of stale data being used or a conflicting update being made. In
contrast, an aggressive approach would strive to eliminate al unresolved partitioned updates as
soon as the partition ends. However, aggressive approaches are susceptible to recovery storms.
This reduces scalability and may potentially cause more failures. A compromise would be to
perform resolution lazily when triggered by a client, but to conduct aggressive resolution in the
background during periods of low server load. Our usage experience so far with Coda has not
indicated the need for such ahybrid policy.

A lazy policy also minimizes the latency of resolution. Only the directory for which the user
IS requesting service needsto be resolved. Thetotal cost of resolving all partitioned updatesis
amortized over many low latency calls, onefor each directory that participatedinany partitioned
operation.

Correctness sometimes requires more than one directory to be resolved at a time. This is
because some partitioned transactions, like r enanes, may mutate multiple directoriesin the
same transaction. Figure 4.1 shows one such example. To verify the correctness of such
partitioned transactions, it is necessary to simultaneously resolve all directoriesinvolved in the
mutation. Once again, to minimize latency, only the smallest set of directories with related
updates are resolved together. This set of directories, forming atransitive closure, is computed
dynamically at resolution time. The smallest possible transitive closure for a directory D
is D done. In this case, al partitioned updates D participated in are independent of other
directories. Since transactions cannot span volume boundaries, the largest possible transitive
closure includes all directories from the volume in which D resides.

A[1] Al1]

rfile(2, E 5,u)
B[2] CI3] renane(3, D, 2, E, 4, u) B[2] C[3]

E[S] D[4 E[4]

The figure shows a subtree with five objects A, B, C, Dand E. The number in bracketsis the
identifier of each object. The two transactionsr nf i | e and r enan®e, corresponding to the Unix
commandsrm B/ Eand mv C/ D B/ E, are executed at only one replica on behalf of user u. In
order to resolve directory B, C must also be resolved, and vice-versa. Thisis because ther enane
transaction, mutates both B and C atomically.

Figure4.1: Transaction Example Requiring Multiple Directoriesto be Resolved Together

Another requirement for correctnessisthat the path to the root of the volume, fromthe directory

42 CHAPTER 4. AUTOMATIC DIRECTORY RESOLUTION

Phase | Phase Il Phase Il Phase IV
Verify Return
F Vi ceResol ve-——Prepare I Cf(')'g‘s" | & | commit F— from —
Perform Vi ceResol ve

This figure shows the sequence of RPCs during resolution. The client V invokes resolution
by nominating server S1 as coordinator. The four phases of the protocol are executed at three
subordinate servers S1, S2 and S3. The node labeled Sl is shaded when the server is acting as
coordinator and unshaded when it is acting as subordinate.

Figure4.2: RPC Traffic During the Resolution Protocol

being resolved, isconflict-free. Thistop-down policy ensuresthat the directory being resolved
exists at all accessible replicas. For example, if a directory was created and updated during a
partition, itsreplicas will exist at all sites only after its parent has been resolved. If an ancestor
has diverging replicas, the resolution current underway must be deferred till the ancestor is
resolved.

To summarize, Coda uses a lazy, top-down resolution scheme for better scalability and cor-
rectness respectively. To minimize latency, it limits the objects resolved in each invocation of
resolution. Asaresult, the descendants of adirectory being resolved are resolved separately as
and when they are accessed by the user.

4.2 Protocol Overview

The resolution protocol is coordinator based and is initiated by a Vi ceResol ve RPC from
Venusto oneserver inthe AV SG. The RPC hasasingle parameter, thef i d of the directory with
diverging replicas, whichisdenoted by D.,.,. The coordinator, i.e. the server which servicesthe
RPC, is chosen randomly by Venus from the directory’s AVSG. An alternative strategy could
use Venus to coordinate this protocol, just like it manages connected updates. However, this
isn't feasible due to the untrusted nature of the client and the need for performing resolution
regardless of the protection on adirectory.

4.2. PROTOCOL OVERVIEW

Collect Logs

'

Verify
&
Perform

'

Commit

'

/

Return from
Vi ceResol ve

Coordinator

Vi ceResol ve

RPC2_NewBi ndi ng

Est abl i sh Connecti on

Request Lock

\
/

Conpare path statuses

Formtransitive closure

Request 1 ogs _—

Mer ge | ogs

Transfer |ogs _ O

RPC2 Si de- Ef f ect

R

Unpack conflict lists

Merge and nmarshall lists

Cenerate new storeids
Transfer lists

- =

-
Return result to Venus

Subordinates

Lock Vol unme
Conpute cl osure
Get Path status

Get vnodes and | ogs
Log record marshal ling

Log record unmarshal ling

Cet vnodes

Deduce partitioned transactions
Val i date transactions
Performand | og transactions
Create new version identifier
Commit vnodes and | ogs

Return list of conflicts

Unnmarshal | conflict |ist
Per f or m oper ati ons

- Get vnodes

- Create objects if necessary
- Mark conflicts

- Change storeids

- Commit changes

Unl ock Vol une

This figure shows the sub-steps performed at the coordinator and each subordinate during the four
phases of the protocol. The solid arrows show the RPC messages exchanged between them. The
dashed arrows show the bulk data transfer used for transferring logs. Time moves downwards in
thisfigure.

Figure 4.3: Details of Each Phase of the Resolution Protocol

44 CHAPTER 4. AUTOMATIC DIRECTORY RESOLUTION

The protocol design minimizes the number of phases, or message exchanges between servers,
for performing resolution. Any resolution protocol requires at least three phases: one to dis-
tribute or collect the partitioned state of the replicas, and two to modify and commit distributed
state at the different servers. Coda's resolution protocol uses one additional phase to compute
the transitive closure of D,.,. An aternative strategy, that avoids computing the transitive
closure, would resolve all directories with diverging replicas in the volume containing D....
Such an aggressive strategy would reduce the number of phases to three, but impose peak
demands on servers after a failure ends. As mentioned before, this is antithetical to Coda's
goals of scalability.

The four phases of Coda’s directory resolution protocol are: Prepare, Collect Logs, Verify and
Perform, and Commit. Each phase is performed in lock step at al the subordinate servers.
Figure 4.2 shows the message exchange between the coordinator and the subordinates and
Figure 4.3 shows the sub-tasks executed during each phase of the protocol. The Prepare phase
performstwo sub-tasks. First, it checks which serversinthe VSG are available to participatein
the resolution. Second, it computesthe transitive closureof D, i.e. the set of directoriesthat
will be resolved in thisinvocation of resolution. The logs of these directories are collected by
the coordinator in the second phase and then redistributed to all subordinates during the third
phase. Each subordinate uses the logs to verify the resolvability of the partitioned operations
and to re-execute them. Thefourth phase, Commit, isresponsiblefor marking the status of each
replicaso that normal operation can continue. If the partitioned operationswere successfully re-
executed in the previous phase, then the relevant directory’s replicas are marked with identical
version stamps and they can be used once again to service user requests. Otherwise, thereplicas
are prepared for manual repair.

The following sub-sections describe the tasks performed during each phase of the protocol.

4.2.1 Phasel: Preparing for Resolution

This phase consists of work done between the time a Vi ceResol ve RPC isreceived by the
coordinator and the time each subordinate starts processing logs. Its main purposeisto prepare
the servers for performing resolution efficiently. It consists of four steps that are described
below.

e Establishing a connection - First, the coordinator attempts to establish an authenticated
connection with all serversinthe VSG of D,., by using a RPC_NewBi ndi ng request.
Serversthat respond become the subordinates and will use the connection just established
for all communication with the coordinator. If some servers are not accessible, i.e. the
bind request returns a timeout error, the coordinator does not send any more messages to
them.

4.2. PROTOCOL OVERVIEW 45

e Locking the volume - After establishing connections, the coordinator requests each
subordinate to lock the volume containing D...;. This lock prevents other resolves or
mutating transactions in the same volume from executing concurrently. However, it does
not exclude non-mutating transactions, r eadst at us andr eaddat a, within the same
volume. This maintains high read availability but requires ensuing phases of resolution
to lock individual objects if and when they are modified.

If asubordinate is successful in locking avolume, it returns three items. First, it returns
alist of directories that are in the transitive closure of D,.,. The transitive closure is
computed by an iterative process. Initially, the closure consists of one element, D,.,.
More directoriesare added to the set by scanning the resolution log of D, .., and including
other directories it shares a transaction with. In the next iteration, the logs of the newly
added directories are scanned and other directoriesthey share transactions with are added
to the closure. The process terminates when no directories are added to the closure in an
iteration.

The second item returned by each subordinateisthef i d and st at us of the ancestors,
up to the volumeroot, of each directory in thetransitive closure. The status of a directory
is the identity of the last transaction that modified it. Finally, each subordinate returns
the total size of theresolution logsfor al directoriesin the volume containing D ,..,. This
value will be used by the coordinator during the next phase.

The protocol continues only if al accessible serverslock the volume successfully. Oth-
erwise, the coordinator requests the lock be released at servers that succeeded. The
protocol is aborted and an error condition indicating the volume is busy is returned to
Venus. Venus retries the call after a short time interval.

e Comparing status - If all subordinates lock the volume successfully, the coordinator
comparesthereplicas of al directoriesin the closure and their ancestors. Thisisdonefor
two reasons. Firgt, to ensurethat thereplicasof D, arestill diverging because they may
have been resolved since the client detected the need for resolution. Second, to enforce
top-down resolution. If thereplicas of some ancestor of D,.., have different status values,
i.e. they are diverging, then resolution of D,., is aborted. Instead, resolutionisinitiated
for the topmost ancestor with diverging replicas. This ancestor is found using the list of
f i ds returned by each subordinate.

There are two special cases the coordinator must address separately. First, some di-
rectories in the closure may have diverging replicas as well as an ancestor-descendant
relationship. For example, amv A/ B A/ C/ D command during a partition requires
directories A and D to be resolved simultaneously. The coordinator must recognize that
top-down resolution cannot be enforced in this case and treat it as an exception. Second,
as shown in Figure4.4, D,., may not exist at a subordinate. The subordinate is able to
lock the volume but cannot return any status or closure entries. In this case, resolution

46

CHAPTER 4. AUTOMATIC DIRECTORY RESOLUTION

Initial state (Volume Root)

Partitioned Operations

nkdir E/F

touch F/ G touch D/ H

touch E/ XY touch E/ X/ Z
B C

Replica at server 1

Replica at server 2

This figure shows the state of a volume subtree before and after a partition. If resolution isinvoked
first for directory F, server 2 cannot return the status of F or its ancestorsto the coordinator. However,
server 1 returns the status of A, D, E and F. Therefore, resolution is started for F's parent directory,
i.e. E. E'sresolution will discover that directory D must be resolved first. Note, if resolution is first
invoked for X, both servers will return the status of A, D, E and X to the coordinator, and resolution
will beinvoked for D.

Figure 4.4: Enforcement of Top-down Resolution

is not being performed top-down since the parent of D,., has diverging replicas. The
coordinator recognizes this condition, finds the highest ancestor with diverging replicas
using information returned by the other subordinates, and then initiates resolution for
that directory.

Computing the closure - The transitive closure of D,., may vary from one subordinate
to another since each server has participated in different partitioned transactions. Thus,
the set of directories to be resolved together, called the global transitive closure, can

4.2. PROTOCOL OVERVIEW 47

only be constructed at the coordinator by taking the union of transitive closures returned
by the subordinates. To complete the computation, the coordinator must request each
subordinate for the closure of all directoriesinthe global transitive closure. Thisiterative
process could take several rounds and stops only when the closures returned by the
servers are identical, i.e. taking their union does not add a new directory to the global
transitive closure. Since at least one new directory is added to a closure in any iteration,
the number of iterations needed to compute the global transitive closure is bounded by
the number of directoriesin the volume.

Every iteration of the closure computation requires a message exchange between the
coordinator and the subordinate servers. For efficiency reasons, the coordinator imple-
mentation stops the closure computation after the first iteration. The benefits of this
optimization come at a cost: the closure thus computed may be incomplete. Consider a
volume with two replicas V; at server 51 and V, at server S,. Partitioned cross directory
renames in V; require directory A to be resolved with B and directory C' to be resolved
with D. On the other hand, partitioned updates in V> require directory A to be resolved
with directory '. During the resolution of directory A, the closure computed by the
coordinator in the first iteration consists of directories A, B and C' ({4, B} U {4, C}).
If the computation is stopped at thisiteration, then the closure isincomplete since it does
not include directory D even though it includes directory C'.

In practice, this problem occurs rarely since renames involving multiple directories are
infrequent (< 2% of all directory mutations) and the probability of a rename during a
partition is even smaller. However, in the event that subsequent phases of the protocol
discover this problem, the partitioned updates are considered un-resolvable and the
relevant directories marked in conflict. In the example above, directories C' and D will
be marked in conflict when the servers performing resol ution discover arenameinvolving
these two directoriesin C’slog and do not find D inthetransitive closure. Thistechnique
does not compromise correctness but reduces the usability and availability of the system.
However, the reduction in usability is far outweighed by the performance benefits of a
simpler and more efficient implementation.

Recall from above that the status of al directories in the transitive closure of D, is
returned to the coordinator by each subordinate. Since the closure returned by each
subordinate may be different, the status of the replicas of some directories in the global
transitive closure may not be available at the coordinator after the first message exchange.
In the example above, the status of B, is not returned by S, in the first iteration. To
obtain the status for such directoriesin the closure, if any, the coordinator may exchange
one more message with the subordinates.

48 CHAPTER 4. AUTOMATIC DIRECTORY RESOLUTION

4.2.2 Phasell: Collecting Logs

This phase isresponsible for collecting logs of al directoriesin the global transitive closure of
D,.;. It consists of three steps.

e Request log - This phase begins with the coordinator requesting each subordinate to
return the logs of directories in the global transitive closure. The request is made via
an RPC named ResFet chLog. Since the closure is not known to the subordinates, it
is sent as a parameter of the request. In preparation for receiving logs, the coordinator
allocates one buffer per subordinate. The size of this buffer is subordinate specific and
was obtained in the previous phase. It isthetotal size of all resolution logsin the volume
containing D,.,. Though thisis an overestimation of the space needed, it guarantees the
log returned by each subordinate will not overflow the buffer.

e Log record marshalling - When a subordinate receives the log request, it verifies that
the volume lock is till valid. If so, it locks all the directoriesin the closure and collects
their logs. The logs may have a tree structure and have absolute pointers between
records. In preparation for sending the logs to the coordinator, they are marshalled into
a linear in-memory buffer and the data and pointers converted into a host-independent
byte-order. Log records belonging to a directory are stored contiguously in memory and
are ordered according to their age, oldest first. Furthermore, each log record includes
the subordinate’s address so that its source is identifiable once it gets distributed to the
other servers. Thisinformation is crucia for identifying the partitioned updates missed
by each replica.

e Mergelogs - Once the logs are marshalled into alinear buffer, they are transferred back
to the coordinator as a side-effect of the ResFet chLog RPC using the bulk-transfer
mechanism, SFTP, of the RPC package. The coordinator receives each log in its pre-
allocated buffer. Next, it mergesthelogs in preparation for the next phase. Sincethelogs
are self contained and already in host-independent byte-order, they are merged simply by
concatenating them together into a large buffer.

This marks the end of the second phase of resolution. Now, the coordinator is ready to
redistribute the logs it has collected, back to the subordinates.

4.2.3 Phaselll: Verify & Perform

This phaseisthe heart of the resolution protocol and isresponsiblefor two tasks. First, it checks
the resolvability of the partitioned updates to ensure correctness and second, it re-executes the
partitioned updates missed at each server. Both these tasks are performed at all subordinates

4.2. PROTOCOL OVERVIEW 49

using the logs collected by the coordinator in the previous phase. The steps used to achieve
these tasks are described below.

e Log shipping - The coordinator initiates this phase by invoking an RPC in paralel to
each subordinate. One of the parameters of the RPC is the size of the log that needs to
be transferred. Each subordinate allocates a buffer of that size and fetches the log from
the coordinator using SFTP.

e Log record unmarshalling - Each subordinate unpacks the newly received log into
the individual records but maintains certain groupings/orderings on them. Records are
grouped based on the server where they were created. Within each group the records are
ordered intwoways. First, they are sub-grouped by the directory they belong to. Second,
they are sorted inthe order of their creation. Therefore, not only does each record contain
the server and directory it belongs to, but it also contains a version-stamp that increases
monotonically within each volume replica as transactions are executed. The order of
records in the sorted log is the order in which they will be examined in ensuing steps of
this phase. By the end of this step, each subordinate has the transaction history of each
directory replicainvolved in the resolution.

e Deducing unique partitioned operations - The log received by each subordinate con-
tains redundant entries of two kinds. First, it contains records of partitioned transactions
that have already been executed by this subordinate server. Second, it contains duplicate
records of partitioned transactions that were executed with an AVSG of two or more
servers. For resolution, each subordinate ignores records of the former kind and uses
only one copy of the latter kind. To recognize the redundant records, the entire log is
sorted based on transaction identifiers and adjacent duplicate records removed.

e Locking vnodes - Recall that the volume lock acquired in the first phase does not
exclude read requests within the volume containing D,..,. Therefore, thisphase must lock
directories exclusively before they can be modified. Each subordinate scans the record
groups and composes asorted list of directory f i ds that areinvolved in any transaction.
This list is then used to lookup and exclusively lock the directory descriptors, called
vnodes, in fid-order. All server threads enforce fid-order locking to prevent cycles in
the wait-for graph and thus avoid deadlocks. If the lookup of a vnode fails because the
directory was removed or wasn't created at this volume replica, the server still continues
processing the list. Later steps of this phase will decide if this condition is fatal.

Once a vnode has been locked, a copy of it is inserted into a list that will be used by
ensuing steps of this phase. Changes to the vnode are made to this copy and committed
to stable storage only when the phase completes.

50

CHAPTER 4. AUTOMATIC DIRECTORY RESOLUTION

Transaction Type Integrity checks
chown[directory, user] directory vnode exists
chnod[directory, user] directory vnode exists
ut i mes|directory, user] directory vnode exists
set ri ght s[directory, user] directory vnode exists
I i nk[directory, name, file, user] file vnode exists

file vnode existsin directory
name does not exist in directory

unl i nk[directory, name, file, user] file vnode exists
name existsin directory
name is bound to file's vnode

r ename[directoryl, namel, directory2, name2, object, user] | namel € directoryl
object € directoryl
namel is bound to object
linkcount of object is one

nkf i | e[directory, name, file, user] name ¢ directory
file doesn't exist

nmkdi r [directoryl, name, directory2, user] name ¢ directoryl
directory2 doesn't exists

nmksym i nk[directory, name, symlink, user] name ¢ directory
symlink doesn’t exist

r nf i | e[directory, name, file, user] name € directory
file vnode exists
name bound to vnode of file

r mdi r [directoryl, name, directory2, user] name € directory?2
directory2 vnode exists
name bound to vnode of directory2

r msym i nk[directory, name, symlink, user] name € directory
symlink vnode exists
name bound to vnode of symlink

Table 4.1: Integrity Checks Made for each Directory Transaction Type

e Transaction checking, performing and logging - During this step, each subordinate
iterates over each log record, validates it and then executes the contained transaction.
Validation performsfour kinds of checks.

— Certification: The goal of certificationisto ensurethat thetransaction is serializable
with respect to the update history of the objects being modified. It does so by
comparing the current value of the objectsin the transaction’sread-set to their value
when the transaction was executed during the partition. The latter valueisavailable
in the log record. Consider, for example, a partitioned r nf i | e transaction. The

4.2. PROTOCOL OVERVIEW 51

record for this transaction contains the file replica’'s version number when it was
removed. Certification uses this version number to check if the file replica, that
wasn't removed, has changed (due to a st or e transaction) since the partitioned
rnf i | e transaction was executed. If thisisthe casethenther nf i | e transaction
isnot serializable with the st or e transaction.

— Integrity: This check ensuresthat performing the transaction will not violate any of
the system invariants. For example, the name component inankf i | e transaction
should not exist in the parent directory. Further, the file's vhode should not exist in
the volume. The integrity tests for each transaction type are listed in Table 4.1.

— Closure completeness: Recall from Section 4.2.1 that for efficiency reasons the
closure computed during resolution may not be complete. This check ensures that
all directories accessed by this transaction are in the computed closure and are also
being resolved in this instance of the protocol.

— Resource: This check ensures that the transaction can be executed without over-
flowing the volume's quota.

If a transaction is validated successfully, its mutations are performed tentatively on
the volatile copy of the referenced vnodes and directory pages. Callback promises to
clients are broken, and alog record for this transaction is created in volatile memory and
appended to atentativelist. Theidentifier of the original partitioned transaction isreused
for this log record to ensure this operation will not be repeated in future resolutions.
However, the identifier isn't installed on the directory itself since a new one will be
generated just before the changes are committed to stable storage.

If validation fails for a transaction, objects in its write set are marked in conflict and
the server continues validating ensuing transactions in the log. Validation of an ensuing
transaction fails if it reads or writes an item marked in conflict. Therefore, only those
ensuing transaction that do not access any object in conflict can beresolved automatically.
The advantage of thispolicy isit reducesthe burden on the user by minimizing the number
of transactions he needs to resolve manually. An alternative strategy in which resolution
stops validating any more transactions after one fails validation would unnecessarily
burden the user with the resolution of transactions whose read or write sets include
completely different data items.

e Marking status- Once all transactions have been validated and performed, each subor-
dinate installs a new unique storeid for each modified object. Having a different storeid
for each replica makes the execution of the transactions appear as though they were
performed at each server in an independent partition. Therefore, each subordinate can
commit its changes regardless of the success of resolution at the other servers. If the
coordinator crashes after this phase, the protocol can be simply restarted with a new
coordinator.

52

CHAPTER 4. AUTOMATIC DIRECTORY RESOLUTION

e Committing vnodes and logs - In this step, the subordinate makes the changes to the

vnodes and directory pages permanent. All changes, including the addition of new
log records to the resolution log, are written to stable storage in a single transaction
using a failure-atomic procedure. VVnode locks, obtained at the beginning of this phase,
are relinquished as a side-effect of the transaction commit. Implementation details of
transactions and their failure-atomicity are described in Section 4.4.1.1.

Returning conflicts - A list of al the objects that were marked in conflict during this
phase is returned to the coordinator by each subordinate. Each entry in the list contains
thenameand f i d of the object in conflict along with the f i d of its parent directory.

The reason for returning the conflicts to the coordinator is to ensure that they are propa-
gatedto al replicasof the object. Conflictsarisingfromafailureintransaction validation,
may not be detected at all subordinates. The following example shows how this might
happen. In partition P, ar nfi | e transaction 77, removes areplica of filebar / f 0o0.
However, in partition P, a st or e transaction 75, updates a different replica of f 0o.
Because of Coda stop-down resolution policy, only 7' is considered during theresolution
of bar . T; cannot be certified at the subordinates € P,, because the status of f 00 has
changed due to the prior execution of 7. However, subordinates € P; do not detect the
conflict because 75 isn't considered during this invocation of the protocol.

424 PhaselV: Commitment of Resolution

The goal of this phase is to finalize the results of resolution. If all partitioned histories of a
directory were validated and executed successfully, thenitsreplicas haveidentical contents but
different storeids. The storeids must be matched before a client can service any requests. If the
histories couldn’t be resolved successfully, then the directory’s replicas are till diverging and
must be made inaccessible until they arerepaired manually. The steps taken by the coordinator
and subordinates to achieve these tasks are described bel ow.

The coordinator performsthree steps:

e Unpack and collate conflicts: The list of conflicts, returned by each subordinate in the

previous phase, are merged and duplicate entries are removed.

¢ Generate new version identifiers: The coordinator creates a list of new storeids for

directoriesin the closure without any conflicts. It generates unique storeids by appending
amonotonically increasing counter to its Internet address.

e Marshal lists: After creating the two lists above, the coordinator marshals them into an

in-memory buffer. This buffer is transferred to each subordinate server using SFTP.

4.3. SERIALIZABILITY ISSUES 53

Once the buffer is transferred, each subordinate performsthree steps:

e Unpack list of conflicts and version identifiers - The two lists contained in the buffer
are unmarshalled. Every directory inthe resolution closure belongs to one of theselists.

e Perform the operations - This step is responsible for installing new storeids on the
vnodes of directories that were successfully resolved and marking the vnodes of the
remaining directories in conflict. For fault-tolerance reasons these changes are made
atomically in stable storage using a method similar to that described in Phase I1I. It
consists of the following five sub-steps.

— Lock vnodes of objects: Vnodes of al objects that need to be modified are locked
exclusively and copied from stable storage to a temporary copy in memory.

— Create objects if necessary: As shown in thernfil e example above, some
objects in the list of conflicts may not exist at a subordinate. These objects are
created and their names inserted tentatively into their parent directory.

— Changevnodestatusblocks: The status block of each object’svnodeistentatively
changed, either with a new storeid or with a flag indicating the conflict. Further,
callbacks are broken for clients that may have cached any of these objects since the
end of Phase lll. Notethat installing a new storeid invalidates al cached copies of
the directory and every client is forced to re-fetch it on the next access.

— Put objectsback in stablestorage: All the changes made in the previoustwo sub-
steps are committed atomically to stable storage in a single transaction. Further, the
locks obtained on vnodes are released.

e Unlock the volume - Each subordinate releases the volume lock, thus allowing all
transactions to access objects in the volume containing D,...

The coordinator communicates the success or failure of the protocol to the client as a return-
code of the Vi ceResol ve RPC. If the code indicates that resolution of D,., succeeded, then
Venus can fetch its new contents and continue to service the file system request that triggered
resolution. In the case of afailed resolution, the error is propagated up to the user application
that made the request.

4.3 Serializability Issues

The goal of certifying each transaction during Phase |11 of the resolution protocol is to verify
the serializability of partitioned updates. The basic ideais to use the update histories, i.e. the
resolution logs, to check if the partitioned execution of each transaction is equivalent to its

94 CHAPTER 4. AUTOMATIC DIRECTORY RESOLUTION

execution in a seria global history, that includes updates from all partitions. The history of
partitioned transactions and the seria global history are equivaent iff they produce identical
final system states starting from the same initial state. Resolution succeeds only if al servers
can verify the serializability of the partitioned transactions.

Previous approaches for testing serializability of partitioned operations, for example David-
son’s method [9], verify the existence of one serial history that is equivalent to the complete
set of partitioned histories. Such approaches are centralized in that they collect and verify se-
rializability of the partitioned histories at one host. Then, the seria history is propagated to all
servers. If some server cannot maintain the serial ordering of transactions, it undoes the cul prit
transactions and re-executes them according to the correct serial order. Thisisn't possiblein
the Coda inferred transaction model, since transaction undo/redo information isn’t available.
Instead, Coda uses a distributed approach. Each server tests the equivalence of the partitioned
transactions to a different serial history: its own transactions are serialized before partitioned
transactions from any other server. Therefore, if resolution is successful, not only are the
partitioned histories serializable but they also have multiple serial equivalents. Furthermore,
aswe will seelater, al the seria histories yield equivalent final states.

The following sub-sections describe the methodology for testing the equivaence of histories
and formally prove the correctness of the mechanism used by directory resolution. First, we
introduce the notation that will be used in the rest of this section.

4.3.1 Notation and Assumptions

A server is denoted by S; and the partition it belonged to is denoted by P;. We assume there
are s servers 51, .5, ..., .S, and thus the number of active partitions with at least one server is
< s. The history of updates performed by server S; in apartition F; are denoted by #,; and the
transactionscomprising ; aredenoted by ¢, ., ¢;,, ..., ;.. Sinceh; isserializable (Section 3.2.3),
it has an equivalent serial history denoted by /,. :; and h; will be used interchangeably to refer
to the same history. 4., isused to denote the multi-partition history consisting of updates from
al partitioned histories, i.e.
Pomp = haU ho U ... U hy,

During resolution, a partitioned transaction is replayed at sites that missed it due to a failure.
To distinguish the execution of the original partitioned transaction from its execution during
resolution, the latter is denoted by upper-case letters. Thus, the transactions from P; performed
by S; during resolution aredenoted by 73, T;,, . . . etc. and the history of transactionsfrom 7 is
denoted by #;. The“-” operator is used to specify the execution order of transactions contained
in aserial history. T; - T, specifies that 77 commits before 7, commences. The “-” operator
can aso be used between two histories, for example, Hy - H», to specify that all transactions
€ H, are committed before any transaction € 1 is started. During resolution each server S,

4.3. SERIALIZABILITY ISSUES 55

verifies serializability by testing if #,,, is equivalent to aseria history denoted by H;c,. * The
ordering of transactions in each of the seria histories H1¢,, Hic,, . .. Hic, Will be defined in
Section 4.3.3.

The symbol d will be used to denote data items (files or directories) in the system. A special
symbol do, will be used to denotethe value of adataitemintheinitial or pre-partition state. do,
will denote the value of the dataitem after executing an operation Op. The operation can either
be atransaction ¢;; or T}, or be ahistory h; or H;. Thus d, isthe value of d after executing
the first transactionin /; and dj,, isthe value of d after executing all transactionsin ;.

4.3.2 Equivalence Testing

One method for testing the equivalence of two histories, is using the view-equivalence crite-
rion described by Bernstein et. a. [3]. Two histories /3 and s, consisting of the same set
of transactions are said to be view-equivalent if and only if they satisfy the following two
conditions. First, each transaction ¢;, € h; and its corresponding transaction ¢,, € h, must
have the same reads-from relationship. That is, ¢;, reads the dataitem d written by transaction
ta,, iff t5, reads d written by transaction ¢»,. Second, if ¢4, is the last transaction to write d in
ha,i.e. dy, = d,, , then the corresponding transaction ¢,, is also thelast oneto write d in h», i.e.
dy, = dy, . If al transactionsin h; and /. satisfy these two conditions, the system state they
generate IS equivalent. Since each transaction reads the same value in both histories, it also
writes the same value. Furthermore, since the same transaction writes the final value of adata
item modified in either history, the system state is guaranteed to be equal.

Version-id certification View-equivalence can be implemented by associating a version-id,
with each object. A version-id uniquely identifies the last transaction to modify the object. A
new version-id is installed every time an object is modified. Therefore, when a transaction
commences its view consists of the version-ids of all objects it accesses. View-equivalence
can be tested by comparing the version-id of each object accessed by a transaction in the two
histories. This processis called certification. If all transactionsin each history can be certified
successfully, then the histories are view-equivalent, otherwise they are not.

An advantage of version-id certification is that its space cost is small and independent of the
object’'ssize. In Coda, aversion-id of 64-bitsis sufficient to uniquely identify all transactions.
An overhead of 64 bitg/transaction is acceptable if the size of the item being modified is much
greater than 8 bytes. This is true for files since they are typically more than a few hundred
bytes long and a file mutating transaction rewrites its entire contents. Even though a directory
istypically afew kilobytesin size, transactions read/write only the relevant entries not itsentire

¢ in Hye, isan abbreviation for one-copy and H 1, should be read as the one-copy history at server S;.

56 CHAPTER 4. AUTOMATIC DIRECTORY RESOLUTION

contents. Therefore, the system must maintain one version-id for every entry i.e. 2562 per
directory. Furthermore, the size of a directory entry is typically in the range of tens of bytes
and consequently, the space overhead for maintaining version-ids may be significantly high.
Maintaining version-ids at a coarser granularity, for example, one per directory, increases the
likelihood of false conflicts. As shown in Figure 4.5, certification of multi-partition histories

operating onthe samedirectory will fail evenif theview of thetransaction inthe single-partition
and multi-partition history isthe same.

Pre-partitionstate: foo (fid 1.1) (Version-id 249)

Partition 1 Partition 2
Transaction-id 275 Transaction-id 359
nkdir (1.1, bar, 3.2, 2336) nkdir (1.1, baz, 5.5, 122)
Readsversion-idf oo: 249 Readsversion-idf oo: 249
Writesversion-idf oo: 275 Writeversion-idf oo: 359

Neither single-partition history is view equivalent to the multi-partition history

Hone—partl Hone—partz
T(275) (Reads from T(249)) T(359) (Reads from T(249))
T(359) (Reads from T(275)) T(275) (Reads from T(359))

The figure shows two partitioned transactions nkdi r f oo/ bar (id:275) and nkdi r f oo/ -
baz(id: 359). The identity of the last transaction to modify f oo before the partition is 249, and
both partitioned transactions have a reads-from relationship with this transaction. Using object-
level version-ids, this reads-from relationship cannot be maintained in a seria history containing
both partitioned transactions. Two possible serial histories are shown in the figure. In the serial
history labelled H . — pari,, transaction 359 reads-from transaction 275, not from transaction 249.
Similarlyinhistory H ,,,.— part,, transaction 275 reads-from tranaction 359, not from tranaction 249.
If version-ids were associated with the individual items of directory f 00, then each transaction
would read-from a transaction that previously wrote the entries bar or baz respectively. This
reads-from relationship would still hold in the single-partition history.

Figure 4.5: Problemswith Object-level Version-ids

Value-certification Dueto the shortcomingsof version-id certification, Codausesan alterna-
tive certification strategy, called value-certification. The basic ideaisto change the certification
mechanism to compare the value, instead of the version-id, of each item read by a transaction
in the two histories. For this purpose, values of items changed by a transaction are recorded,

4.3. SERIALIZABILITY ISSUES 57

Partition 1 Partition 2
Tl nkfile (1.1, core, 2.2, 2336) | T3 nkfile (1.1, core, 4.5, 122)
T2 rnfile (1.1, core, 2.2, 2336) | T4 rnfile (1.1, core, 4.5, 122)

This history is value-certifiable because the value read by a transaction, i.e. the value of
d. dat a[cor e] , ineither serial history T1.-T2-T3- T4 or T3.T4-T1-T2, isthe same as the value of
d. dat a[cor e] read by atransaction in the history above. However, this history is not version-
certifiable because its transactions can never have the same reads-from view as transactionsin either
seria history. Thisistrue even if version-ids are maintained at the directory item level, because
each transaction modifies the same item (d. dat a[cor e]).

Figure 4.6: A History that is Value-certifiable but not Version-certifiable

implicitly and explicitly, in each partitioned history log. Asin version-id certification, value
certification declarestwo historiesto be equivalent only when their respective transactionsread,
and consequently also write, the same value for each dataitem.

Intuitively, logging values for certification should require more space than storing version-ids.
However, thisisn’t the case in practice. Logging records the value of only those items that are
modified in the transaction history. Therefore the space overhead is proportional to the number
of transactions and the size of the modified data items. Maintaining a version-id, on the other
hand, has a fixed overhead for every independently modifiable object, regardless of whether
the object ismodified in any history. Since the number of transactionsis much smaller than the
number of objects in the system and the size of directory items is typically in the 10-40 byte
range, recording values for certification is feasible.

In comparison to version-id certification, val ue-certification recognizes more multi-partitioned
histories having an equivalent single-partition history. Clearly, all version-certifiable histories
are value-certifiable. Furthermore, partitioned histories containing identity subsequences, that
are not version certifiable, can sometimes be certified by value (Figure 4.6). An identity
subsequence consists of transactions 7;,...,7; such that the state of the system after 77 is
committed is identical to the state before 7'; began. Figure 4.6 shows an example two-partition
history containing identity subsequences. Such histories are acommon occurrencein the Unix
environment and are caused by the execution of bad program binaries.

Another advantage of value-certification is it doesn’t suffer from the false conflict problem.
The history log records precisely what has changed and nothing more. Certification fails when
a transaction reads different values for an item in the two histories, corresponding exactly to
those situations when the histories are indeed not equivalent.

58 CHAPTER 4. AUTOMATIC DIRECTORY RESOLUTION
4.3.3 Certification Methodology During Resolution

During resolution, the goal of certification is to verify correctness of the» partitioned histories
hi, ha, ..., h, Of each directory being resolved. Recall that the correctness criterion is the
equivalence of the multi-partition history 4 ,,,, to a serial execution of the same histories in
a single partition. That is, the final state after executing 4., serially and the states after
executing Hic, a S1, Hic, & So, ... Hic, @ S5, are al identical if started from the same
initial state. Here H;¢, isthe serial history consisting of the original partitioned transactions
€ h; followed by Hy, Hy, ..., H;—1,Hi11, ..., H,. The ordering of transactions in H;¢, is
}Ali'gl'gz'...'[A{Z’_l'gi_|_1'...'f{5.

The equivalenceof £.,, and Hy¢, istested by each server S; using the val ue-certification scheme
described in the previous section. Certification is performed incrementally at each server S;
in the order specified by Hic, — h;. h; does not need to be certified because S; has already
executed that history during the partition. The read-set of each transaction 7', is certified
by value and its updates performed temporarily. This ensures that transactions that have a
read-from relationship with 7';, can be certified successfully. If al transactions € H;, certify
successfully, then the updates are committed atomically to stable storage. Inthiscase, Hyc, is
asingle-partition serial equivalent of #.,,,.

Each server S; tests the equivalence of Ha¢, with #,,,, independently. Resolution succeeds only
if al servers successfully certify the serial histories. In this case, the histories H1¢,, Hic,, - - .,
Hic, areall equivalent to one another and are the serial equivalent of #,,,,,. If some transactions
cannot be certified successfully, the objects they access are marked in conflict. In this case,
user intervention is needed to decide the correct serial ordering of transactions.

Theorem 4.1 If each server S; from partition P; can successfully certify all transactions
€ Hic,, then the system state after executing transactions in the order specified by Hi¢, is
identical at all servers, S;,¢ =1,...,s.

PROOF:
Assume that each server S; is ableto successfully certify all transactions € Hic,. Then we will
show that the final system state is guaranteed to be the same at al servers.

Lemma 4.1.1 Each transaction executed in Hy, reads and writes the same values as it reads
and writes when executed in h;,: = 1,..., s.

Each server S; doesn’t re-execute #;, thereforethis claim is trivially true for transactions € #;.
Since each transaction 7' € (Hic, — h;) is certified by value, it can be executed only if each
dataitem has the correct value. More specifically, 7' € H; can be executed only if the value of
each dataitem d it reads matches the value of d when ¢ was executed in £ ;. If each transaction
reads the correct values, it also writes the correct values since it is deterministic.

4.3. SERIALIZABILITY ISSUES 59

Lemma 4.1.2 Assuming certification succeeds at all servers, one of the following is true for
each data item d in the system:

4.1.2.1 disnot modified in any partition
4.1.2.2 dismodified in exactly one partition

4.1.2.3 If d ismodified in more than one partition, then the final value of d in each
partition must be the same as the initial pre-partition state, do.
Suppose not. Let dy,, (# do) bethe final value of d after it is modified in partition
P;. Since d is also modified in another partition P}, let ¢;, be the first transaction
in P;toread d. Thevalueof d read by ¢, isdp. At resolutiontime, 77, will not be
certifiable at \S; because the value of d isd;, and not dop. Contradiction.

Lemma 4.1.3 One of the following is true for du,. , i.e. the value of a data item d after
executing the transaction history H¢,:

4131 dchi = dp. Thisfollowsfrom4.1.2.1 and 4.1.2.3 above.

4132 If dp,, # do, dm,. 1s written by the same transaction that wrote the
value last in the partitioned history that modifies d. Assume dchi # dop. From

Lemma 4.1.2, d is modified in exactly one partition, say F;. In ?Lj, there is one
last transaction to modify d, say ¢;,..,. Since transactions are certified in the
order specified by /;, the transaction 7, _, correspondingto ¢;, , is aso the last

transaction to modify d in Hi¢,.

last

The theorem statement follows from the three lemmas as follows. At each server S;, each
data item d isin the pre-partition state do, or isin a different state d;,,. If 32, dy, # do, from
Lemma 4.1.3 it is clear that d is modified in exactly one partition P; and is last written by
transaction ¢;,_,. From Lemma 4.1.3, the same transaction (17, _,) writes d,, at each server.
From Lemma 4.1.1, 7}, , writes the same value at each server, regardiess of whether it is
executed as apart of 4; (at server S;) or asapart of Hic,. Thus d has the same final value at
each server. O

From the description of the certification mechanismitisevident that if some partitioned histories
are declared resolvablethey areguaranteed to be serializable. If therearen partitioned histories,
there are s equivaent serial histories, Hic,, Hic,, . .. Hic, (from Theorem 4.1). If the histories
are not serializable, then they will not be certifiable or resolvable.

The resolvability of a set of transactions from the same partition is sensitive to the order in
which they are certified. Itisimportant that transactionswithin the same history /;, be certified
in the order defined by the equivalent seria history 4;. Otherwise, the history may falsely

60 CHAPTER 4. AUTOMATIC DIRECTORY RESOLUTION

be declared to be uncertifiable. Consider a partitioned history that contains two transactions
ridi r f oo followed by nkdi r foo. During resolution, it is imperative that these two
transactions are certified in this order. Certification in the opposite order, i.e. nkdir foo
followed by r mdi r f 00, is guaranteed to fail.

Unlike transactions from the same partition, transactions from different partitions can be certi-
fied in any order without affecting the resolvability of the partitioned histories. Thisis proved
in the following corollary.

Corollary 4.2 The order in which the partitioned histories H;, Ho, ..., H, are certified does
not change the resolvability of the updatesin H, U H, U ... U H,,.

PROOF:

To certify H, U Ho U ... U H,, server S; certifies H; after H; since it has already committed
transactions € h; (its partitioned history) and they cannot be undone. Similarly, server 5;
certifies H; after H;, sinceit hasalready committed transactions € 4;. The partitioned histories
areresolvableif andonly if certificationsucceeds at al servers. Inother words, H,UH,U. . .UH,
is resolvable iff V¢, both H; - H; and H; - H; are certifiable. Thus the order in which the
histories are certified does not affect their resolvability. 0

In other words, the partition histories are commutative with respect to resolvability. This
corollary simplifies the implementation of certification since history logs can be examined in
any order as long as the intra-history ordering of transactionsis preserved.

Recall from Chapter 3, that agroup of historieswasresolvableif and only if it was serializable.
If the partitioned transactions are such that the histories containing them are serializable but
not commutative, then the system will declare a conflict. Figure 4.7 shows one such example
and this shortcoming exists due to the inferred transaction model. Since Coda does not provide
explicit transactions, it has no way of undoing them. If two histories H; and H; are serializable
but are not commutative, i.e. H; - H; iscertifiablebut H; - H; isnot, thenitis necessary for 5
to undo some transactionsin H; and redo them in the correct serial order after the transactions
from H;. Sincetransactionundoisn’'t feasible, directory resolution is conservative and wrongly
declares such histories to be unresolvable. In our experience, such situations have been rarein
practice and the advantages of a simpler implementation have outweighed these shortcomings.
In the future, if the system is extended to support explicit transactions, such situations will
become common and it will be necessary to address thisissue.

4.4 |Implementation Details

This section focuses on three main aspects of the implementation, fault-tolerance of the reso-
lution protocol, the structure of the resolution log and some optimization details.

4.4. IMPLEMENTATION DETAILS 61

Partition 1(H1) Partition 2(H>)
Ty:setrights (1.1, 2336) Ty link(1.1, foo, 2.3, 2336)
Read Set={1.1, 1.1.right5[2336] } Read Set={1.1, 1.1.right§[2336],1.1.data[foo], 2.3}
Write Set={1.1.right5[2336] } Write Set={1.1.data[foo], 1.1.length, 2.3.linkcount }

Thefigureshowstwo transactionsexecuted in separate partitions. 7, correspondstoachnod bar
operation, and 7%, correspndsto al n bar/ baz bar/f oo operation. Thefi dsof bar and
bar/baz arel1. 1 and 2. 3 respectively. H, U H; isserializable (H, - H1 isthe equivalent serial
order) but not resolvable because H; - H, isnot certifiable. Certification failsat serversin partition
1, sincethevalueof anitem (1. 1. ri ght s[2336]) read by 7%, hasbeen modified by 71,. Note,
that H, - H iscertified successfully at serversin partition 2.

Figure 4.7: Historiesthat are Serializable but not Certifiable

4.4.1 Fault-tolerance of the Resolution Protocol

The resolution protocol is susceptible to three kinds of failures: coordinator and subordinate
crashes, and network failures. Since a network failure appears as a coordinator crash to the
subordinate server and vice-versa, the discussion below describes only the mechanism used
to survive server crashes. Recovering from a server crash is particularly difficult since its
persistent store could be in a partially modified and inconsistent state.

An obvious method of providing tolerance to server crashes during the protocol is using dis-
tributed transactions. The coordinator starts adistributed transactioninvolving al subordinates
during the first phase of the protocol, and commits it during the last phase. The commit pro-
cedure typically takes two rounds of messages - a prepare to commit request followed by a
finalize message. All mutations during the execution of the protocol are made within the scope
of this transaction. Permanence and atomicity of updates are guaranteed by the distributed
transaction facility. As aresult, the implementation of the protocol is simplified. In the event
of acrash, the protocol can be restarted or completed by the coordinator.

The disadvantage of using distributed transactions is that the failure of one server at critical
points in the protocol can block other servers for arbitrary long periods of time. For example,
a coordinator crash between the prepare to commit, and finalize requests might force the
subordinates to keep vnodes locked and make them unavailable until the coordinator recovers.
This is antithetical to Coda's philosophy of providing the highest possible availability. As a
result, distributed transactions are not a viable approach for providing fault-tolerance in the
context of Coda.

Coda uses an alternate approach for providing fault-tolerance, consisting of two distinct but

62 CHAPTER 4. AUTOMATIC DIRECTORY RESOLUTION

complementary techniques:

e First, each server hasamechanismtomakelocal updatesusing afailure-atomicprocedure.
This mechanism is local in the sense that it provides fault-tolerance independent of the
state of other servers.

e Second, each server uses timeouts to avoid blocking due to remote server crashes. Inthe
event of a crash of acritical server during the execution of the distributed protocol, the
protocol is restarted without that server, if possible.

Unlike distributed transactions, these techniques do not hamper availability since the servers
never block for arbitrary long periods of time. However, this advantage comes at a cost: each
phase of the protocol must be made idempotent so that it can be restarted easily.

These two techniques used in Coda are described in greater detail in the following sections.

44.1.1 Local Fault-tolerance

Fault-tolerance of mutations during resolution is complicated by two factors. First, multiple
data structures are associated with most objects. For example, a directory has data pages
and a vnode containing its meta-data. Second, each mutation typically changes both the data
and meta-data of the object it modifies. For example, adding a new entry to a directory also
changesits| engt h or I i nkcount field in its vnode. Atomicity and permanence of these
updates is imperative for providing fault-tolerance. A typical way of achieving these in Unix
environmentsis outlined in the following five steps:

e Map the vnodes and data-pages of each object to separate Unix files.

o Makefrequentcalstof sync() toguaranteeall dirty datain the buffer cacheiswritten
out to disk.

¢ Enhance the kernel’s understanding of the dependency between operations so that they
are written out in the correct order.

¢ Organizethe object layout on disk to minimizethe chance of recovering to aninconsistent
State.

e Finaly, use specia recovery code that can recognize all possible states after a crash and
has the knowledge to decide which consistent state to move to.

4.4. IMPLEMENTATION DETAILS 63

Two problems with this object specific approach are its ad-hoc nature and more importantly its
inflexibility. The ad-hoc nature makes it difficult to verify correctness of the algorithm since
every combination of operation ordering and fault occurrence must be considered. Inflexibility
of the approach makes the task of adding a new data type to the persistent store very difficult.
A new data type changes the list of possible states for the persistent store after a failure and
may require a complete rewrite of the recovery algorithm.

Instead of using object specific recovery techniques, Coda uses a simple and general fault-
tolerance facility called RVM [50] for fault-tolerance. RVM alows an application to dynam-
ically map segments of persistent store into its address space and update it in a transactional
manner. Applications see a consistent state as long as all updates are performed within the
scope of a transaction and all transactions transition the system from one consistent state to
another. Crash recovery is handled entirely by RVM. RVM isimplemented as alibrary and is
linked in with applications that need fault-tolerance. As shown in Figure 4.8, the RVM library
isinterposed between the kernel that provides the functionality for reading/writing to persistent
storage and the application that requests the updates.

The next few sections present the details of RVM and its use in the context of the Coda servers.

Coda Server

RVM

Atomicity
Permanence: process failure

Operating System

Permanence: media failure

Figure 4.8: Layering of Functionality Using RVvM

The RVM library

RVM is designed for Unix applications with persistent data that must be updated in a fault-
tolerant manner. RVM, like its predecessor, the Camelot distributed transactional facility [13],
provides the recoverable virtual memory abstraction using awrite-ahead log to synchronously
flush modifications to disk. Recoverable virtua memory refers to regions of an application’s
virtual address space to which transactional updates can be made. Unlike Camelot, RVvM

64 CHAPTER 4. AUTOMATIC DIRECTORY RESOLUTION

is built without extensive operating system support. It is more portable and efficient than
Camelot. However, it provides only two of the three properties of transactions, i.e. atomicity
and permanence but not serializability. If needed, serializability can be enforced by the higher
layers of the application software. Similarly, RVM does not provide any support for nesting
or distribution of transactions and leaves it up to the higher layersto do so. These simplifying
assumptions allow thelibrary to provide efficient and fast transaction services. Table 4.2 shows
the main routines that interface an application with RVM.

RVM manages the persistent store of the application in segments. The backing store of
a segment, called the external data segment, may be a Unix file or a raw disk partition.
An application explicitly maps regions of a segment into its virtual memory using the map
operation. The map operation specifies the ssgment and the range of virtual memory addresses
to which it must be mapped. To prevent aliasing, the map call ensures aregionis never mapped
to more than one area of memory at the same time. Furthermore, mappings cannot overlap in
virtual memory. Once an application has finished using a segment, it can be unmapped from
the virtual address space. Typically, an application maps regions at start up and unmaps them
just before termination.

Once a region is mapped, addresses in its range can be used in transactional operations.
Atomicity of mutations to that region is achieved by bracketing the updates in a pair of
begi n_transaction and end_transacti on. A begin_transaction returns a
transaction identifier (ti d), that can be used by the application for explicitly aborting the
transaction, using an abort _t ransact i on, or informing RVM about its updates using a
set _range cal. By usngaset _r ange, the application can specify which old-valuesRVM
should record to handle aborts and which values it should write to the log at commit time. The
change records are appended to the write-ahead log at transaction commit time.

Structure of recoverable storage at the server

Each Coda server has a single recoverable data segment. The segment is divided into two
unequal regions. The first region, the recoverable static area, contains recoverable global
variables and pointersto the roots of the recoverable heap contained in the second region. The
recoverable heap is much bigger than the first region and it allows storage to be dynamically
alocated. Figure 4.9 shows the layout of the server’s address space after the recoverable
segment is mapped in. The segment is mapped in soon after the server starts and is unmapped
just before shutdown. Since the pointers in the recoverable data structures contain absolute
addresses, it is imperative that the segment is mapped at the same address every time. For this
purpose, the first page of the recoverable segment contains the address this segment should be
mapped to. Thisinformationis obtained by temporarily mapping thefirst page of the segment.

The data stored within arecoverable segment at each server isgrouped by volume. Asshownin
Figure4.10, aserver maintainsthe meta-data of its volumes, filesand directoriesin recoverable

4.4. IMPLEMENTATION DETAILS 65

RVM Interface Routine Description

Initializing and Mapping Operations

initialize initializes state internal to the package.

map maps a recoverable segment region into the address space of the
application.

unmap unmaps a previously mapped region.

term nate cleans up state before terminating a session with the package.

Transactional Operations

begi n_transacti on initiates a transaction.

set range defines a modification range pertinent to an active transaction.
abort transaction aborts an active transaction.

end_transaction commits an active transaction.

Log Control Operations

flush forces buffered log records for committed transactions to the
RVM log on disk.
truncate applies change records in the RVM log to the recoverable seg-

ment(s), then discards those records.

These are the main exported routines of the RVM library. A few additional routines are exported
for setting options, collecting statistics, and so on. Consultthe RVM manual [31] for further details.

Table 4.2: RVM Library Interface Routines and Descriptions

memory. Directory contents, and resolution logs are also stored in the recoverable segment.
The volume meta-data contains administrativeinformation, likeitsnamne, cr eat i on dat e,
guot a informationetc. Sincethisdatahasalong lifeand afixedlength, itisstoredinthestatic
recoverable area. Directory and file vnodes containinformationlikethef i d, name, length etc.
Since the number of vnodes cannot be determined a priori and they are often short-lived, they
are stored in the recoverable heap. Directory contents and resolution logs are also stored in the
heap since their length changes dynamically.

Unlike directory data, a file's data isn't stored in recoverable storage because doing so is
impractical: the number of files and the amount of data they contain is significantly higher
than directories. Furthermore, the fine-grain byte level atomicity of updates provided by RVvM
is needed only for directory mutations. Consequently, a server stores a file's data in a UFS
container file and records the container’s inode number, in the file's vhode in recoverable

66 CHAPTER 4. AUTOMATIC DIRECTORY RESOLUTION

0
Text
Segment Rec .
static
storage
Data
<
Segment
Recoverable
Segment
Rec.
heap
storage
Stack
Segment
— 2°"32-1
Server’s Address Space Segment L ayout

Figure 4.9: Organization of the Server’s Address Space

storage. Since files are almost always written in their entirety, a simple shadowing technique
can provide the fault-tolerance guarantees. Details of this technique are provided in the next
section.

The size of a server’s recoverable segment is fixed when the segment is initialized. However,
the amount of recoverable storage used by each volume may grow and shrink over itslifetime.
If the server exhausts the recoverable storage, another external segment can be initialized and
added dynamically. However, in our experience, we have not had a need to extend the size
of the recoverable segment. For 2 gigabytes of disk storage for container files, a 75 megabyte
recoverable segment has been sufficient — 1 megabyte for the static region and 74 megabytes
for the heap. Table 4.3 shows space requirements of three types of volumes. user, object and
project. As expected, the ratio of the recoverable storage used by avolume to its total sizeis
smallest for the object volumes since the size of object files and binaries is much higher than
average.

The servers currently use a 10 megabyte write-ahead log. To ensure that the log has sufficient
space to flush each transaction’s changes at commit time, it is truncated periodically in the
background. In our environment, truncation is triggered when the log is 50 percent filled. The

4.4. IMPLEMENTATION DETAILS 67

Volume M eta-Data

Name: u.pkumar
Quota: 50 Meg
Backup Date: Feb 10, 1993

Directory Vnode (pkumar) File Vnode (test)

Fid: 7f0000104.1.1
Owner: pkumar
Resolution Log:
Inode;

/]

Fid: 7f0000104.4.8
Owner: pkumar
Inode Number: 94

Inode 94 (test)

Directory contents Resolution Log for 1.1
Dir: 1.1

e i 0\
Jogin 7f000104.38.44 Opeode.kf i | e

etc 7f000104.97.72 Fid: 38. 44
Name: . | ogi n

lib 7f000104.91.93 S
Opcode: nkdi r
Fid: 97. 72
Name: et ¢
Dir: 1.1
Opcode: nkdi r

Fid: 91. 93 .
Name: | i b

I

Directory

File

This figure shows the meta-data and data layout of a volume named u. pkumar . The volume is
mounted at / coda/ usr/ pkumar . Shaded blocks represent data stored in recoverable virtual
memory. For brevity, the structure of only one directory (the volume root) and one file (test) is
shown. The directory’s vhode, contents and resolution log are shown in detail. Note that the
contents of the file named / coda/ usr/ pkumar / et c/ t est are stored directly on disk under a
Unix file inode whose number is stored in its vnode stored in RVM.

Figure 4.10: Volume Data Structuresin Recoverable Memory

68 CHAPTER 4. AUTOMATIC DIRECTORY RESOLUTION

time needed to truncate the log varies, depending on the kinds of mutations it contains. This
IS not a major concern since new transactions can append data to the log while it is being
truncated.

Volume Name File Dir. Dir. | Res. | RVM | RVM RVM
Vnodes | Vnodes | pages | Log | usage | +UFS | Total Disk

User Volumes

u. pkumar 300 214 | 465 | 76| 1,055| 36141 29
u. satya 440 227 504 74 | 1,245 | 67921 18
u. dcs 233 142 322 | 15 712 | 62368 1.1
User Object Volumes

u. pkumar. obj s 45 42 88 12 187 | 44910 04
u. satya. obj s 98 81 180 | 21 380 | 56326 0.7
u. dcs. obj s 209 57 176 5 447 | 118478 04
Project Volumes

p. coda. src 121 71 156 17 365 | 31901 11
p.trace 67 51 119 19 256 | 32137 0.8
p. odyssey 61 51 117 12 241 6551 3.6

This table shows the RVM usage in Kilobytes for 9 volumes. The space used by each volume's
vnodes, directory pages and resolutionlogisshownin columns2-5. Column 6 showseach volume's
total RVM consumption. Column 7 shows the total space consumed by each volume. This number
includes the RVM usage and the space used to store the contents of the volume's files in the UFs.
The last column shows each volume's RVM usage as a percentage of the total space it uses. A
user volume containsa user’shome directory and his personal data/source code files etc. An object
volume contains only object files and binaries. Project volumes contain data files, source codefiles
and some binary files.

Table 4.3: RVM Usage for some Volumesin the Coda File System

Transactional updates

Each phase of the resolution protocol modifies persistent store using the following five steps:
lock relevant vnodes, validate/certify updates, perform updates, commit changes and unlock
vnodes. These steps are enclosed withinabegi n_t ransacti onandend_t ransacti on
pair, and all modificationsto datain recoverablestorage arerecordedusing RVM’sset r ange
facility. This method ensures atomicity and permanence of updates to data items stored within
RVM but not for persistent objects stored directly on disk, i.e. containersfiles. Therefore, each
server needs to augment the functionality provided by RVM with data-specific techniques to

4.4. IMPLEMENTATION DETAILS 69

achieve fault-tolerance. These techniques address two important issues: undoing mutations on
container filesif the whole phaseis explicitly aborted and more importantly recovering from a
crash that leaves the persistent store in an inconsistent state.

Explicit aborts As mentioned before, the server uses a shadowing technique to undo muta-
tions involving containers. The execution of each phase is set up such that it can be aborted
explicitly only during the first three steps. If a file's data needs to be changed, a shadow
container is created and used to store its new contents. If the transaction aborts, its updates are
“undone”’ by removing the shadow container. The pointer to the container in thefile'svnodeis
changed only after the third step. Finally, the old container is removed at the end of the phase
after thecall toend_t r ansact i on completes successfully. If afile needsto be removed, its
container on disk is marked for removal but deleted only at the end of the phase. If the phase
aborts explicitly, the delete is undone by un-marking the container.

Recoveringfrom crashes The Unix file system does not guarantee permanence of filesacross
system crashes. For example, afile containing a partially written disk block will be removed
by the f sck utility when the system restarts. Since container files are stored in the UFS, each
server must check the state of all such files whenever it recovers from a crash. The purpose of
this check is to ensure mutual consistency between the RVM state and the container file state.
The module in the server responsible for verifying this consistency is called the salvager.

The salvager performs two tasks. First, it checks if each file vnode's container file exists. If
not, it creates anew container and marks the object in conflict. This makesthefileinaccessible
until the problemis corrected by the user, and preventsthe damage from spreading. The second
task performed by the salvager is removing garbage container files, i.e. containers that are no
longer referenced by any vnode. This condition may arise, for example, if a crash occurs soon
after afile’s vnode is removed but beforeits container is deleted. 2

The data-specific techniques described above assume that commitment of a transaction guar-
antees the permanence of its updates. For example, deleting the marked file after its vnode has
been removed assumes that the vnode will never reappear. Making this assumption simplifies
the code but also has a disadvantage: the server is unable to utilize some of the performance
optimizations provided by RVM. For example, the server cannot use the no_f | ush option
for transaction commits. The no_f | ush option allows an application to delay flushing a
transaction’s mutations to disk and to improve its performance by batching writes of severd
transactions.

2Since the container files do not have any parent in the UFs hierarchy, the f sck program on the servers is
modified to not garbage collect them.

70 CHAPTER 4. AUTOMATIC DIRECTORY RESOLUTION

44.1.2 Global Fault-tolerance

This section describes the mechanism used by Coda to tolerate coordinator and subordinate
crashes during the resolution protocol. The technique addresses two issues: (a) the recovery of
a crashed coordinator or subordinate and (b) a subordinate’s tolerance to coordinator crashes
and vice-versa.

Neither the coordinator, nor the subordinate store any protocol-specific state in stable storage.
Therefore, they recover using the normal server recovery mechanism. A newly recovered
server has no knowledge if it was participating in a resolution protocol when it crashed and
does not try to re-establish communication with any server. Since a subordinate modifies
vnodes in persistent storage during the third and fourth phases of the protocol, care must be
taken to ensure that the protocol will function correctly if it is restarted after a premature abort
due to a crash.

At each subordinate, updates during thethird phase are made in amanner indicating the protocol
has not completed. The vnodes are marked with a version stamp unique to each subordinate.
Thus, the replicas of the directory being resolved still appear diverging to a client, even if
certification has succeeded and their contents are identical. This guarantees that the protocol
will be restarted whenever the user accesses the directory again. Marking the vnhodes with a
unigue version stamp is not necessary during the fourth phase, sinceit is the last phase of the
protocol. The protocol doesn’'t need to be restarted if the subordinate crashes after this phase.
However, if the crash occurs before the phase is complete, local fault-tolerance guarantees the
server will recover to the state that existed at the end of phase three, and the protocol will be
restarted as discussed above.

To maintain mutual consistency between the state of a directory replica and its resolution
log, the updates made by a subordinate during the protocol execution are recorded in the
resolution log. This invariant is necessary to ensure that a subordinate will not perform an
update multiple times if the protocol is restarted after a crash. Local fault-tolerance at each
subordinate guarantees that the directory and log updates are performed atomically.

The coordinator avoids blocking due to subordinate crashes, by using an RPC timeout mecha-
nism. A subordinate crash is detected when an RPC madeto that server returns atimeout error.
The timeout interval in the current implementation is fifteen seconds by default, but can be
changed at server startup time viaa command-line argument. When a subordinate crashes, the
coordinator executes the remaining phases of the protocol with the subordinates that are still
accessible. Since a subordinate has no knowledge of other subordinates participating in the
protocol, no special machinery is needed at the subordinate servers that are still participating
in the protocol.

A coordinator crash does not affect the subordinate's execution. Once a subordinate receives

4.4. IMPLEMENTATION DETAILS 71

an RPC request to perform aparticular phase, it executes that phaseinisolation 3 and returnsits
result to the coordinator when execution completes. Furthermore, the subordinate pessimisti-
cally assumes that a coordinator crash might occur and therefore records al its updates in the
resolution log. If the coordinator crashes while the subordinate is servicing its request, the
result of the request is discarded.

Recall that a coordinator locks the volume, containing the directory being resolved, for the
duration of the protocol’s execution. Therefore, if acoordinator crashes each subordinate must
unlock its volumereplica. Otherwise, the restarted protocol will block in thefirst phase. Since
a subordinate never makes an RPC to the coordinator, it uses a daemon thread that probes the
latter periodically to ensure it is still accessible. If the coordinator does not respond to the
probe, the volume locked on its behalf is unlocked. A problem with this approach isit is not
tolerant to errors. For example, abug in the coordinator’simplementation may cause it to enter
an anomalous state in which it responds to probes but does not perform any useful work. If the
volume is locked when the coordinator enters this state, then the volume will remain locked
and unavailable until the subordinate servers are restarted. To overcome such shortcomings,
the volume locks aretimer based, i.e. thelock expires after afixed timeinterval. Thislimitsthe
duration for which avolume may be unavailable due to an error in lock management. The lock
expiration interval must be longer than the time needed to resolve any directory. To safeguard
against premature expiration of avolumelock, the subordinate checksthevalidity of the volume
lock at the end of each phase of the protocol. If thelock isnot valid, the protocol is aborted and
restarted. Inthe current implementation, thelock expirationinterval ispessimistically set toten
minutes. In our usage experience, thisinterval has been more than sufficient for all invocations
of resolution.

The responsibility of restarting the protocol when a coordinator crashes lies solely with the
client. A coordinator crash is detected by the client when the Vi ceResol ve RPC returns
with atimeout error code. If the client can access more than one replica of adirectory and they
are diverging, it restarts the resolution protocol by chosing one of the accessible servers as the
coordinator. Of course, the protocol can proceed only if the volumeis not locked.

4.4.2 Resolution Log

As mentioned earlier, the resolution protocol uses a data structure called the resolution log that
is maintained by each server. The resolution log contains a history of all directory operations
performed at a server. Logging directory mutations at the server is feasible and practical
because (a) there are only afew and fixed number of possible directory operationsand (b) these
operations are visible at the server-client interface. As aresult, the server can log individual

3The subordinate might transfer data from/to the coordinator using SFTP. If the coordinator crashes during the
data transfer, SFTP returns with an error condition and the subordinate aborts the execution of the whole phase.

72 CHAPTER 4. AUTOMATIC DIRECTORY RESOLUTION

operationsefficiently requiringonly few tens of bytes per record. The next few sectionsdescribe
how the resolution log is managed by each server.

4421 Log Structure

Theresolution log is stored in persistent storage so that it can survive crashes. For correctness,
log modifications must be made in a fault-tolerant manner. Not only should each modification
be permanent but should also be atomic with respect to the directory update it represents. This
is achieved by placing both the resolution log and directory contents in RVM and modifying
them within the same transaction. Since the resolution log records operations and RVM'’s
write-ahead log records values, placing the resolution log in RVM combines the well-known
strengths of operation logging and value logging.

Each server maintains a separate resolution log for each volume replica it manages. The
decision to do so was motivated by three considerations. First, a per-volume log achieves a
reasonabl e balance between resource usage and efficiency. A single log per server would have
achieved better utilization of RVM by reducing fragmentation, but would have given the server
no control over the usage of RVM by individual users. At the other extreme, aper-directory log
would have been more efficient since irrelevant entries would not have to be examined during
resolution. But that approach would have resulted in much greater internal fragmentation of
RVM space. A second consideration is that a per-volume log is consistent with Coda's policy
of associating disk quotas with volumes. A final consideration is that the operands of system
calls in Coda may span directories but never a volume boundary. Consequently, a volume is
the smallest encapsulating unit whose log is guaranteed to contain all the information needed
to resolve an update.

The physical organization of the resolution log meetstwo requirements. First, it makes efficient
use of log storage. Second, it supports efficient recording of updates during normal operation,
aswell as efficient traversal of log entries during resolution.

The first requirement is met by organizing the log physicaly on a per-volume basis and
designing it in amanner that conserves storage. The volumelog is divided into smaller blocks,
each containing a fixed number of records. A block is added dynamically when needed, and
reclaimed when none of the recordsit contains are being used. An allocation map, stored with
each volume log, records the free entries in every block. The algorithm for reclaiming log
records is described in Section 4.4.2.3. This organization conserves log storage in two ways.
First, it doesnot requirethelog to be pre-allocated. Second, it providesasimpleand lightweight
compaction scheme: blocks are reclaimed independent of the state of adjacent blocks. In the
worst case, each block has only one allocated record and the ratio of used space to allocated
space would be 1/N, where N is the number of records per block.

The second requirement is met by organizing the log logically on a per-directory basis. A
per-directory log is redlized as a doubly-linked chain of log entries embedded in the volume

4.4. IMPLEMENTATION DETAILS 73

Volume Root

Resolution D2
Logs

L ogical organization

Physical organization

Type
independent 31
part Nume Log
Type Block O ~ 0
dependent
part = -1
/ 2
. 31 I 3
I 4
Block 1
-5
0 1 2 . 31 N
Block 5
Allocation m
% 4 bytes
40000000 | e0000000 0 0 0 40000000 . 0
0 1 2 3 4 5 N-1

This figure shows the logical (top) and physical organization of a volume's resolution log. The
logical organization shows a volume's subtree containing two directories D1 and D2 with their
respective resolutionlogs, and twofilesfi | el andf i | e2. Filesdo not have any resolution logs.
The physical organization showsthe block structure of the volume’slog and the chaining of records
belonging to D1 and D2. The allocation map shows the records being used. Note that blocks 2, 3
and 4 have been reclaimed even though block 0, 1 and 5 have valid records.

Figure4.11: Logica and Physical Organization of a Volume's Resolution Log

74 CHAPTER 4. AUTOMATIC DIRECTORY RESOLUTION

Typeindependent fields

Type dependent fields

Pri/vJ/ l Dir.\LFid l Fixed Variable

Next Trans. Type Size of type Length Length

Part Part
Trans. Id dependent part

Thisfigure showsthetypeindependent fields of each log record. Type specific fieldsof every record
contain data items of two kinds: fixed length and variable length. The latter typically consists of
name strings.

Figure4.12: Log Record Format

log. Figure4.11 showsthelogical and physical organization of the resolution log for avolume.
Recording a directory update consists of finding a free entry in the allocation bitmap, setting
the bit, filling the fields of the corresponding record and then linking the record at the end
of the directory’s log. A logical per-directory log is useful, because during resolution it is
usually sufficient to examine the log entries of only the directory being resolved. Only on rare
occasions, when the transitive closure includes multiple directoriesis it necessary to examine
the logs of other directories.

4422 Record Format

There are nine types of log records for the different kinds of Coda directory transactions. As
shown in Figure4.12, each record is divided into two parts. atypeindependent part and atype
dependent part. The type independent part contains fields common to al log records: pointers
to next and previous records of the same directory, the corresponding transaction’s type and
identifier, the f i d of the directory this record belongs to, and the length and address of the
type dependent part. The type dependent part of each record consists of two kinds of items.
Thefirst kind consists of fixed length items, likef i ds of objects being deleted or created due
to the transaction. The second kind, that are stored at the end of the record, are variable length
and consist of names of the mutated children.

Each log record contains the information needed to certify the transaction it contains. This
includes the read/write and the increment/decrement set of the transaction. Table 4.4 shows the
fields in the type-dependent part of each log record.

4.4. IMPLEMENTATION DETAILS 75

Transaction type Field names

chown, chnod, utines, store transactiontype, new owner,
mode, author, mtime, version information

nkfile new fid, owner, name

nksym i nk new fid, owner, name

l'ink fid, version information, new name

nkdi r new fid, owner, name

unl i nk fid, name, version information

rnfile, rnmsymink fid, version information, name

rdir fid, version information, log pointer, name
renane type (source or target), other directory’s fid

fid, version information,
deleted target’s fid, version information, log pointer
old name, new name

Table 4.4: Log Record Types and their Type-dependent Fields

Three record types, correspondingtother nfi | e,r ndi r andr enane transactions, are more
complex than the rest. Records for the del ete transactions contain the state of the object being
deleted, in addition to itsname and f i d. A file's state is captured by its version-vector. A
directory’s state, on the other hand, is captured by the contents of itslog, a pointer to whichis
stored inther ndi r transaction record. The deleted object’s state is used during resolution to
ensure that the delete transaction is serialized after all other transactions for that object.

Therecord correspondingto ar enarne transaction ismost complex sinceit hasthelargest read
and writeset. If thetransactioninvolvestwo directories, then arecordisinserted in each of their
logs. Further, if the transaction removes an object, the state of the deleted object is captured
in the record to check for serializability. Finally, r enane transaction records belonging to the
same directory are chained together to make the computation of the transitive closure efficient.
Computing the closure of a directory involves finding all objects it participated in a rename
transaction with. These objects can be found by following the links in the rename transaction
records instead of scanning the entire log of the directory.

4.4.2.3 Finiteness of L og Space

Conceptually, a resolution log contains the entire list of directory mutating operations on a
replicasinceits creation. The discussion so far has ignored the fact that log space isfinite. The
serversaddressthelimitationsonlog space intwoways: first, they prevent thelog from growing
too large and second, they reuse records if the log exceeds a certain limit. The maximum size
for each volume'slog is set by the system administrator.

76 CHAPTER 4. AUTOMATIC DIRECTORY RESOLUTION

Keeping the resolution log small If a user-initiated directory transaction is executed suc-
cessfully at all replicas, then its replicas are guaranteed to be equal. This follows from two
observations: first, the directory’s replicas were identical when the transaction started, since it
was certified successfully at all servers, and second, executing the same transaction at identical
replicasresultsinidentical final states. Therecord for the last successful transaction isidentical
at all replicas and is called the latest common entry, or LCE for short.

Recall fromthe previous sections that each transaction’slog record is used to certify and execute
it during resolution. If adirectory’sreplicas are identical then their log records are useless for
the purpose of resolution and records prior to the LCE can be discarded. The LCE itself cannot
be discarded since it marks the point until which replicas were identical and is used to deduce
the set of partitioned updates for each replica during resolution.

Confirmation that arecently spooled log recordisthe L CE isavailable fromtwo sources. When
user-initiated requests are executed, this information is available during the second phase of
the update protocol. For updates performed during resolution, the list of sites where resolution
was successful isdistributed during the fourth phase of the protocol.

Coda s update protocol proceedsin two phases. During thefirst phase, the client requests each
server to perform the update. Each server certifiesthe transaction, mutates the rel evant objects,
spools a log record to the resolution log and returns a code to the client indicating success
or failure. During the second phase, the list of servers that succeeded in the first phase is
distributed to all servers. If the transaction is committed successfully at all servers, thenthe log
record for thistransaction isthe LCE and all previously spooled log records are discarded. Log
space is reclaimed eagerly in the absence of failures and the number of recordsin adirectory’s
log oscillates between two and one. In the presence of partitions/failures, the log grows as
transactions are committed. It is truncated if and when a resolution that spans al replicasis
successful.

Logoverflow A longlastingfailure, for example, dueto server hardware crashes, or an active
user during a partition, can fill the volume log. The problem can be avoided by increasing
the volume's quota for the resolution log, but any practical implementation must limit the
Size to some reasonable level. Therefore, the key question is what does a server do when a
volume log becomes full? One approach would be to disallow updates to that volume until all

replicas are accessible and a resolve reclaims some log records. However, this is antithetical
to Coda’'s goal of providing the highest availability. The approach used in Coda, is to allow
updates to continue by overwriting entries at the head of the log. This causes the LCE of the
resolution log of some directoriesto be overwritten, a condition that will prevent the resolution

algorithm from deducing their partitioned updates. In this case, the resolution protocol will

mark these directoriesin conflict. This strategy enhances update availability and provides an
easily-understood tradeoff between resource usage and usability: the larger a log, the lower

4.4. IMPLEMENTATION DETAILS 77

the likelihood of having to resort to manual repair. However, it would be a simple matter to
make the choice between disallowing updates and overwriting log entries a volume-specific
parameter.

Note, that thedirectory whose log entriesare overwritten becomesunavailableuntil itisrepaired
manually. Sincethe availability of adirectory affectsthe availability of al its descendants, itis
important to prevent the log of adirectory with many descendants from being overwritten. An
example of such adirectory is a volume's root directory and Coda's policy overwrites its log
only as alast resort. The depth of a directory in the volume is another stochastic measure of
the number of descendants — directories deeper in the volume subtree have fewer descendants.
Therefore, the optimal log overwrite strategy is volume specific — it depends on the structure of
the volume's directory hierarchy and the locality of updates exhibited by users of that volume.

4.4.3 Other Details

This section describes four minor details of the implementation: the first is necessary for
correctness; the next is an optimization that improves the system’s performance; the third
increases the system’s availability and the fourth improves both performance and availability.

4.4.3.1 Resolvingwith IncompleteVSG

When resolution proceeds without all V SG members, partitioned updates must be repropagated
when other members become accessible. To prevent a site from performing the same operation
twice, Codalogstransactions during resol ution with theidentity of the original transaction. The
log entry contains the same information as the original update’s entry to ensure correctness of
futureresolutionsevenif thesitewherethe original updatewas performed becomesinaccessible.

Log entries spooled during resolution do not provide the same guarantee as that provided by
entries for client-initiated transactions. if two replicas logs have the same log entry created
during resolution, the replicas need not have been identical at that point. Therefore, the step
of the protocol that finds the L CE to deduce the partitioned transactions, ignores log records
spooled during resolution. To make these two kinds of entries distinguishable, log entries
spooled during resolution use special opcodes. However, there is one exception to this rule.
The log of a directory created during resolution is initialized with a record containing the
opcode of the user-initiated nkdi r transaction. This guarantees that a future resolution of this
newly-created directory will correctly deduce its partitioned transactions.

78 CHAPTER 4. AUTOMATIC DIRECTORY RESOLUTION
4.43.2 Performance Optimization: Connection M anagement

As mentioned earlier, the coordinator uses RPC to communicate with the subordinates. Each
RPC request is made through a connection established via an RPC_Bi nd request. Recall
from Figure 4.3, that the bind request is made during the first phase of the resolution protocol
and can potentially be a high latency operation if the target of the request, i.e. a subordinate,
is inaccessible. The delay is as long as an RPC timeout which is set to 15 seconds in our
environment. To enhance performance, each server employstwo mechanisms: first, it maintains
a cache of connections with other servers; second, it maintains the state of each server by
probing at regular intervals. The bind request is made only if a server is accessible. The
former mechanism improves performance by avoiding the cost of abind request every timethe
protocol is started. The latter mechanism avoids the potential delay if a server isinaccessible.
Of course these optimizations come at their cost: extra space is needed to maintain the state of
each server and the cache of connections; network resources are consumed to probe the servers
periodically. However, the overhead is negligible in the Coda environment since the number
of serversis assumed to be small.

4.4.3.3 Availability Optimization: Twin Transactions

In some situations, as shown in Figure 4.13, the same transaction might be executed in mul-
tiple partitions. For example, the user might initiate ar nfi | e(cor e) transaction during
a partition, then move to another partition, rediscover the cor e file and initiate another
rnfil e(core) transaction. Such transaction pairs are called twin transactions [25] because
they perform identical operations. Their certification is guaranteed to declare a conflict since
their read and write setsareidentical. However, if themodel treats twins as one transaction and
requires each server to execute only one of them in the global serial history, then the conflict
can be eliminated.

Codarecognizesthreekinds of twin transactions: twin renames, twin linksand twin deletes, i.e.
rnfile,rndir andrnsymnl i nk transactions. Note that twin creates are impossible in the
Coda model because an object cannot be created in multiple partitions since itsf i d depends
on the server where it is created. However, the | i nk transaction is an exception to this rule
since it does not createanew f i d.

The servers use a simple technique to recognize twin transactions. During resolution, if a
transaction T cannot be certified, but the value of itswrite-set is aready reflected in the system,
then atwin transaction existsfor T. Inthiscase, T isignored and the server continues processing
therest of thelog. This approach does not guarantee finding all twin transactions: if the write-
set of either twin transaction is modified by any transaction that appears later in the history,
then the twin transactions will appear to be in conflict.

4.4. IMPLEMENTATION DETAILS 79

Partition 1 Partition 2
Tlrnfile (d, core, 2.2, ul) |[T2rnfile (d, core, 2.2, u2)

These historiesare not resolvable because T1 and T2 conflict: their read and write sets areidentical.

Figure 4.13: A History with Twin Transactions

Partition 1 Partition 2
Tl nkfile (d, core, 2.2, ul) | T3: nkfile (d, core, 4.5, u2)
T2:rnfile (d, core, 2.2, ul)

These histories are not resolvable because T1 and T 3 conflict: each creates afile named corein the
same directory d. However, if the identity sequence T1, T2 is not certified during resolution, then
T1, T2, T3 areresolvable.

Figure 4.14: A History that is Resolvable only if the Identity Sequenceis Ignored

4.4.3.4 Performance and Availability Optimization: Identity Sequences

File system activity often exhibits a cancelling behavior, i.e. a user initiates a transaction to
undo the effect of a previously executed transaction. A common example is the creation of
a temporary file followed by its deletion. Sometimes, the cancelling behavior is exhibited
by a sequence of updates containing more than two transactions. As mentioned before in
Section 4.3.2 (on page 56), such sequences are called identity sequences. An identity sequence
consists of transactions whose final write values are identical to their initial read values.

Intuitively, records of transactions bel onging to an identity subsequence could be removed from
the resolution logs without changing the resolvability of the partitioned histories. Doing so
reducesthework and improvesthe performanceof thethird phase of resolution. Furthermore, as
shown in Figure4.14, ignoring an identity sequence sometimesincreases the number of histories
that are accepted as resolvable. This increases the availability of the system. However, for
correctness, records belonging to an identity sequence must be inserted in the resolution log of
every replica: if the protocol proceedswithout all VSG members, atail of theidentity sequence
might need to be propagated when other members become available.

Recognizing an identity sequence has high space and time overheads due to the combinatoric

80 CHAPTER 4. AUTOMATIC DIRECTORY RESOLUTION

explosion in comparing read/write sets of arbitrary transactions. The servers try to mini-
mize this overhead by limiting the sequences they recognize to the ssmplest form, namely
acreate-obj ect (foo) followed by adel et e- obj ect (f 00), and no transaction in
between these two operations accesses the object f 00. The object f 0o can be afile, directory
or symboliclink. A create-delete pair isfound by grouping the history of transactionsaccording
to the object they access and then ordering them by their commit time. Using this strategy
strikes the right balance between resource cost and performance benefits: the ssimplest identity
sequences are found easily and at the same time provide most of the availability benefits.

Chapter 5

Automatic File Resolution

The goal of file resolution is to make diverging replicas of a file identical. Like directory
resolution, file resolution requires semantic knowledge of the data to perform its task. But,
unlike directory resolution, file resolution cannot use a uniform system-wide policy because
(a) the structureand semantics of afile’s datacan be uniqueand (b) the system has no knowledge
of these semantics. Consequently, only the user or the application that modifies the file has
enough knowledge to resolve it. Programs that incorporate application-specific knowledge to
perform resolution are called Application-Specific Resolvers (AsR). Thus, the goal of automatic
file resolution is to invoke an appropriate ASR transparently when needed.

A file's replicas often differ because a subset of them are stale due to a missed update rather
than because of concurrent updates in multiple partitions. Usage experience with Coda has
shown that the former reason accounts for 99% of all cases in which file replicas differ. This
is because files are rarely shared for writing in the Unix environment and consequently they
are not susceptible to concurrent updates in multiple partitions. Unlike a file with diverging
replicas, a file with some stale replicas can be resolved without any semantic knowledge of its
data - its latest replica can be distributed to all serversin its VSG. Since this situation occurs
often in practice, Coda addresses it using a specia technique, based on version-vectors [39].
Thistechniqueisapurely syntactic approach and is more efficient than a semantic approach like
application-specific resolution. The version-vector approach has two goals: first, to determine
if afile'sreplicas differ dueto staleness and second, to recognize the replicawith the latest data
and propagate it to all VSG members.

The rest of this chapter is divided in three parts. It first describes the version-vector approach.

Next, it focuses on the design and implementation of the interface used to specify and invoke
ASRs. Finally, two example applications that use the ASR interface are described.

81

82 CHAPTER 5. AUTOMATIC FILE RESOLUTION
5.1 Syntactic Approach: Version-Vectors

For every replicaof afile, each server maintains an array, called a version-vector. The number
of elements in aversion-vector is equal to the number of file replicas and each element counts
the number of updates made at the corresponding replica.

When afileiscreated, its version-vector elementsare initialized with the value 1. For example,
the initial version-vector state of afile f oo replicated at three serversis[1 1 1], and this
vector is stored with all three replicas. The vector elements are incremented as the replicas
are updated. Recall from Chapter 2 (Section 2.2.2 on page 11) that an update is propagated
from the client to all accessible replicasin parallel. An update transaction is performed in two
phases. In the first phase, Venus requests all serversin the AVSG to execute the transaction -
each server certifies and performs the update. During file-update transactions, i.e. st or e
and set ri ght s, each server aso increments the vector element that counts its own updates.
During the second phase, Venus distributes the list of servers that completed the first phase
successfully. Each server increments the vector elements corresponding to the replicas that
were updated successfully in the previous phase. Consider an update for file f 00 mentioned
above: after thefirst phase, the version-vector values of thethreereplicasare[2 1 1],[1 2
1] and[1 1 2]; after the second phase, all three replicas have an identical version-vector,
[2 2 2].

Since Coda does not use the standard two-phase commit protocol [17, 28] to propagate updates
from clientsto servers, the update count in aversion-vector isnot alwaysaccurate. For example,
if aserver’'s reply message at the end of the first phase is lost, Venus assumes the operation
failed at that server. Asaresult, none of the other servers increment the counter corresponding
to the “failed” server in their vectors, even though the “failed” server itself incrementsits own
counter. But this inaccuracy is harmless because it is always conservative. In other words,
a server may fail to notice an update but it will never erroneously assume that a replica was
updated. A server’s estimate of updatesto itself is, of course, always accurate.

In the absence of failures, the version-vectors of afile's replicas will be identical after each
update. However, if a file is updated during a partition, then its replicas’ vectors will be
different. Figure5.1 showsthe state of the version-vectors of afile'sreplicaswhen it is updated
during a partition. Venus invokes resolution for a file when it detects that the file's replicas
have different version-vectors. As in directory resolution, Venus appoints one of the servers
in the AVSG as the coordinator of the file resolution protocol. The coordinator collects the
vectors of all accessible file replicas and compares them pair-wise. Comparing two vectors V3
and V5 yields one of the following results:

1. Vi isidentical to V43, in which case the corresponding replicas are identical.

2. V1 dominates V5 (or vice-versa), i.e. every element of vector V; is greater than or equal

5.1. SYNTACTIC APPROACH: VERSION-VECTORS

83

.. Server 1 Server 2 Server 3
Initial Sate

Single Partitioned Update

|
|
2 2 1 2 2 1 i 1 1 1
|
Partition A ! Partition B
Resolve
Sate During Resolution

Vector 2 2 1 2 2 1 2 2 1

Distributed

After

Phase 1 3 2 1 2 3 1 2 2 2

After

Phase 2 3 3 2 3 3 2 3 3 2

Concurrent Partitioned Updates

|
|
4 | 4 | 2 4423333
|
|

Partition A Partition B

Resolution detects conflict -- use ASR

This figure shows the version-vectors of afile's replicas when they are modified during a partition
and resolved thereafter. The file has three replicas. The figure shows two scenarios: first, only
two of the three replicas are modified in a partition and the file is successfully resolved when the
partition ends; second, the replicas are updated concurrently in two partitions and can be resolved
only by an AsR.

Figure5.1: Using Version-vectorsfor File Resolution

84 CHAPTER 5. AUTOMATIC FILE RESOLUTION

to the corresponding element of vector V5. Inthis case, the replicawith vector V3 (or V5,
if V, dominates V1) has the newer version of thefile's data.

3. V1 conflicts with V5, i.e. a least one element of V; is greater than the corresponding
element of 1, and vice-versa. In thiscase, the two replicas are diverging.

If one replica’s vector dominates the vectors of all other replicas, then that replica contains the
latest version of thefile's data. Thisreplica's contents and version-vector are distributed to all
servers in the AV SG by the coordinator using a two phase protocol. This protocol is similar
to the one used by Venus to perform updates: during the first phase the coordinator collects
the dominant replica’s contents and version-vector and then distributes them to all the AVSG
servers; the list of subordinate servers that completed phase one successfully is distributed
during the second phase. The state of the version-vectors of a file during the two phases of
resolution is shown in Figure5.1. If the coordinator finds a pair of conflicting vectors, then an
ASR is needed to perform the resolution. Details of the ASR mechanism will be provided in the
next section.

Theversion-vector techniquedescribed aboveis spaceandtimeefficient. Itsspacerequirements
aremodest - afilewith » replicas, requires extraspace for storing »2 integers (for » vectorswith
n integers). If s isthe number of serversinthefile’s AV SG, the time spent by the coordinator for
collecting the vectorsis O(s.n) and the time needed to compare the vectorsis O(s2.n) —there
are (3 (or O(s?)) vector pairs and comparing each pair requires n comparisons. Furthermore,
the time needed to collect and distribute the dominant file replicawith b bytesis O(s.b). Thus,
the total time needed for resolution is O(s2.n + s.b). Since s and n are typicaly less than 4
in our environment, the dominant term for most filesis s.b, the time needed to propagate afile
with b bytesto s servers.

Since the vector elements are only a conservative estimate of the real update count, their com-
parison during resolution is also conservative. It never falsely declares equality or dominance
but may declare a false conflict when none exists. Figure 5.2 shows an example of afalse
conflict. A common situation in which false conflicts are reported occurs when resolution
is invoked between the two phases of the file update protocol. At this point of the update
protocol, each server hasincremented only its own update count and the vectors corresponding
to any two replicas appear conflicting, even though the replicas themselves are identical. This
situation, illustrated in Figure 5.2, occurs frequently if afileiswrite or read shared by multiple
clients. In our environment, false conflicts occur more frequently due to a user accessing her
files from multiple clients, rather than due to multiple users sharing afile. For example, users
often update a program file on their desktop machine but use a different client as a compile
engine. Due to a delay between the two phases of the update protocol, the recently stored file
appears to have diverging replicas when accessed from the second client. To recognize this
frequently occurring situation, each server augments the basic version-vector with the identity
of the last transaction to update the file replica. This identifier is called the storeid. If the

5.2. SEMANTIC APPROACH: APPLICATION-SPECIFIC RESOLUTION 85

vectors of two replicas are conflicting, but their storeids are identical, then their contents are
equal and the replicas are weakly-equal. If the resolution coordinator detects weak equality
amongst agroup of replicas, it makes their version-vectors identical.

State before update
Server 1 Server 2 Server 3
1 1 1 1 1 1 1 1 1
l Phase 1
|
State after Phase 1 1
|
2 1 1 1 2 1 l 1 1 2
|
|
|
l Phase 2 |
|
State after Phase 2 |
|
2 2 1 2 2 1 | 1 1 2
|
|
|

|
Partition

Thisfigure shows how lost messages result in false conflicts. The file being updated isreplicated at
3 servers. Thereply message from Server 3 during the first phase of the update protocol islost due
to anetwork partition. Asaresult, during the second phase, Server 1 and Server 2 do not increment
the update count for Server 3. Even though thefile'sreplicas are identical, the version-vector from
Server 3 conflicts with vectors from both Server 1 and Server 2.

Figure5.2: False Conflicts with Version-vectors

5.2 Semantic Approach: Application-Specific Resolution

Asmentioned before, asemantic method for file resolution is needed when thefile'sreplicas are
diverging due to concurrent updates in multiple partitions. The updates comprising the multi-
partition histories of the file's replicas are non-serializable and the main task of resolution is
imposing a seria order on the updates in the combined history.

One method of “performing” this task is forcing the user to perform compensation at each
diverging replica. While acceptable as a method of last resort, this method has two problems.

86 CHAPTER 5. AUTOMATIC FILE RESOLUTION

First, the task of resolution can be quite onerous to the user because he must understand the
semantics of updates made by all other users who also updated the file. For example, consider
afilef 0o. c, write-shared by two users. Before either user can decide the seria order of the
updates, each user must understand the code fragment updated by the other user. The other
problem with this approach is that restricting the resolution task to users limits the availability
of thefile —it isinaccessible until a user who understands the semantics of the file's data has
performed the compensation.

In many important cases, an application may itself have enough knowledge to perform resolu-
tion. Consider an appointment calendar maintained in afile with two replicas. A user makes
appointments and updates one replica during a network partition while a secretary adds ap-
pointments to the other replica. The two updates are not serializable when viewed as mutations
a the file granularity. However, if the appointments do not overlap, a utility program, i.e.
the calendar’s resolver, could merge the updates. Electronic project diaries and check-books
shared by users in the same organization are other examples of data that provide an increased
opportunity for write-sharing. Fortunately, applications that manipulate such data have well-
defined methods for performing updates and can be extended to perform application-specific
resolution.

Coda sdesign for application-specific resol ution concentrates on three issues: the methodol ogy
for invoking an ASR when needed, the interface for specifying a resolver for afile, and the
execution of the AsR. It does not address the design of the AsR itself. The rest of this section
focuses on these three issues.

52.1 ASR Mechanism: Design Considerations

Transparency isthe most important requirement for the AsR invocation mechanism. Forcingthe
user to runan AsrR manually should be avoided since doing so exposes himto the shortcomingsof
optimistic replication. One obviousstrategy isto havethe server coordinating thefileresolution
protocol invoke the ASrR when it detects conflicting vectors for the file's replicas. However,
this is undesirable in Coda for two reasons. First, security constraints make it inadvisable to
run arbitrary ASR programs at the servers - recall from Chapter 2 that Coda servers are required
to execute only trusted software. Second, scalability considerations suggest that the work be
off-loaded to the client.

Instead, Coda relies on the client to invoke and execute an ASR. This strategy allows the reuse
of some machinery already present at the client to implement ASR operations — performing
pathname resolution to access replicas of the file being resolved and collecting them from
the servers. As in directory resolution, Venus invokes the ASR lazly, i.e. only when a user
accesses a file with diverging replicas. Transparency is maintained by suspending the user’s
request until the ASR completes its execution. The only noticeable effect seen by the user isa

5.2. SEMANTIC APPROACH: APPLICATION-SPECIFIC RESOLUTION 87

longer pause for servicing the file request. This pause could be eliminated by implementing
an aggressive policy that executes an AsSR for each file with diverging replicas, as soon as
the partition heals. However, as in directory resolution, an aggressive policy would lead to
recovery storms. Furthermore, our usage experience with Coda shows that an ASR is invoked
rarely enough to obviate the need for such policies.

To assist Venus in finding the resolver corresponding to afile, Coda provides an interface for
users to specify thisrelationship a priori. Smplicity and flexibility were the foremost concerns
in the design of this interface. Simplicity is important to make the ASR mechanism usable;
flexibility simplifies changing the ASR specification for debugging or maintenance purposes.
To satisfy these conditions, resolversfor filesin Coda are specified using rules similar to those
used by the Unix make utility. Most Unix users are already familiar with such rules and should
find them easy to use. This approach is flexible because the ASR specification for afile can
be changed by ssimply modifying its rule. Obvioudly, this approach assumes the nake syntax
is acceptable to most users. An aternative strategy would extend the system call interface to
allow application writers to specify the resolver for each file asit is created. Thisinformation
would be maintained along with each file and be transparent to the user. But the resolver
could be changed only viathe system call interface and be less flexible than Coda's rule-based
approach.

Security is one of the design considerations for the execution of the ASR because it uses client
workstation resources. Since an ASR may need to access arbitrary files and directories, one
obvious strategy is to ignore security constraints and allow it to access any object. However,
doing so violates Coda’s security guaranteessince ASRs are user programsthat cannot betrusted.
Coda s strategy isto execute the ASR as a separate process on behalf of the user who made the
AsR-triggeringfile request. All requests from this process are subject to the same access checks
as any other request from that user. The advantage of this scheme is the scope of the damage
is limited to those objects that are accessible to the user whose request triggered the Asr. Of
course, the disadvantageisthat it does not providethe highest availability since an ASR may fall
because it has insufficient privileges to modify a critical file. The reduction in availability is
acceptable since only the file with diverging replicasisinaccessible. Thisis contrary to Coda's
philosophy for directory resolution where the price of afailed resolution is much higher and
unacceptable since none of the descendants of the unresolvable directory are accessible.

Fault-tolerance of the ASR execution is another important design consideration. Atomicity
and isolation of updates made by an AsSR are the main guarantees needed for providing fault-
tolerance. Atomicity is necessary to avoid partial ASR updates resulting from a client crash
during its execution. Otherwise, the partial updates themselves need to be resolved after
recovery. Isolation is important for two reasons: first, to ensure a file is not being resolved
simultaneously by multiple ASRs, and second, to prevent applications from using incomplete
results of an Asr. For example, consider a calendar that is managed in two files A and B, and
both files have diverging replicas. The Asr resolvesfile A successfully and a calendar manager

88 CHAPTER 5. AUTOMATIC FILE RESOLUTION

opens this file while the ASR is executing. Then, due to some condition in file B, the ASR
decides to undo its changes to file A. The user, who has already seen the ASR’s updates to file
A, will get an inconsistent view if and when the calendar manager opens file B. Details of the
fault-tolerance mechanisms for the execution of an Asr will be provided in the next section.

5.2.2 ASR Mechanism: Design and | mplementation

Viewed from a high level, the ASR mechanism works as follows. On every cache miss Venus
verifies that al replicas of the file being accessed are identical. If thereplicas’ version-vectors
indicate that they diverge, Venus searches for an ASR for this file using the rules specified by
the user. If an ASR is found, it is executed on the client workstation. The ASR’s mutations
are performed locally on the client’s cache and written back to the server atomically after the
ASR completes. The application that requested service for the file is blocked while the ASR is
executing. Thismechanism for running an AsR isloosely analogous to awatchdog as proposed
by Bershad and Pinkerton[4]: it extends the semantics of the file system for specific files to
be resolved transparently when needed. The rest of this section describes the details of the
invocation and execution of the ASR.

5.2.2.1 ASR Invocation

To execute an ASR on the client, Venus makes a request to a specia process called the
ASR-starter, as shown in Figure 5.3. As its name implies, the st art er process is
responsible for finding and executing an AsSR for a file. No ASR can be executed unless a
st art er process is executing on the same host as Venus. This policy provides one method
of disallowing AsSRs from executing on workstations whose primary users are concerned about
security.

The functionality of the st art er process could be provided as a library within Venus.
However, we chose not to do so for two reasons. First, Venus code is complex and its binary
image is already very large, about 5 Megabytes. Second, the design and development of the
starter was greatly smplified - its compile time was much smaller and it could be tested
independent of Venus. The disadvantage of this approach is a higher latency for starting an
ASR. But, thisisnot a serious bottleneck since an AsR isinvoked rarely.

The Venus process consists of multiple threads of control, and a subset of these threads, called
workers, servicefilerequestsfromusers. Therequest to start an ASR ismade by aworker thread
when it notices that the file it is servicing has diverging replicas. This request is made viaan
RPC, caled | nvokeASR,tothest art er process. If therequest issuccessful, the process-id
(pi d) of the newly started Asris returned to the worker and it blocks awaiting the result of the
ASR’s execution. Asaresult, the user process being serviced by the worker thread also remains

5.2. SEMANTIC APPROACH: APPLICATION-SPECIFIC RESOLUTION 89

suspended until the AsrR completes. If an ASR isnot started due to an error, resolution fails and
aconflict indicator is returned to the user process.

The | nvokeASR RPC has two parameters: the pathname of the file needing resolution and
the identity of the user requesting service for that file.

The pathname of thefile with diverging replicasis used by the st ar t er processto find an ap-
propriateAsR. Recall that an Asrfor afileisspecified usingrules. Theresolutionrulesarestored
inaspecia filenamed Resol veFi | e,alaMakefi | e. RulescontainedinaResol veFi | e
apply to all files in the subtree rooted at the directory containing the Resol veFi | e, except
where overridden by another Resol veFi | e lower in the tree. This scoping mechanism is
similar to lexical scoping used in programming languages and its advantage is that resolution
rules are automatically inherited as new objects are created. For example, auser may have only
one set of resolution rulesin a Resol veFi | e in his home directory, which appliesto all his
files. Thus, to find the resolution rule for afile, thest art er searchesfor aResol veFi | e
in its ancestors, bottom-up. The ancestors are obtained from the pathname parameter in the
RPC request. The search stops when it finds aResol veFi | e, or it reaches the system root,
i.e. / coda. To simplify sharing of rulefiles, the Resol veFi | e entry in a directory can be
a symbolic link. For example, an application-writer could provide a Resol veFi | e for the
application’s files. All users of this application can share the Resol veFi | e by creating a
symbolic link to it in their personal directory containing the application’s datafiles.

The second parameter of the | nvokeASR request, i.e. the user’s identity, is used by the
st art er toexecutethe AsrRontheuser’'sbehaf. Therefore, thest art er processmust have
sufficient privileges to do so.

Once the ASR completes execution, itsresult isreturned to Venus by thest ar t er viaan RPC
called Resul t _OF _ASR. The pi d of the recently completed ASR is aso returned to Venus
so that it can resume the worker waiting for this Asr. If the ASR succeeds, the worker retries
servicing the user’s request.

5.2.2.2 TheASR RuleLanguage

LikeMakef i | es, Resol veFi | escontain multipleresolution rules separated by one or more
blank lines. Each rule has the following format:

<obj ect-list> : <dependency-Iist>
<conmmand- | i st >

The object-list isanon-empty set of object namesfor which thisresolution rule applies. Object-
names can contain C-shell wild-cards like “*” and “?”, thus allowing one rule to be used for
multiplefiles. For example, arulethat specifies* . dvi initsobject-list appliesto all fileswith
a. dvi extension. Typically, such files are created by the IAT2X document-processing system

90 CHAPTER 5. AUTOMATIC FILE RESOLUTION

Client Workstation

This figure shows the message exchange between processes involved in an ASR invocation on a
client workstation. Seven events responsible for the ASR invocation and execution are labelled in
the Figure: events[1] and [2] are the user request for afile that has diverging replicas; event
[3] isthel nvokeASR RPC; event [4] isthe execution of the ASR commands; the ASR result is
returned to Venus viathe Resul t .OF _ASR RPC labelled as event number [5] ; events[6] and
[7] returntheresult of the user request. The dotted arrows from the ASR and the st ar t er show
the message exchange to service their Coda requests.

Figure 5.3: ASr-Invocation

and require the same programs to be executed for their resolution. Allowing wild-cardsin the
object-list permits concise specification of the resolution rules.

The dependency-list contains a, possibly empty, list of object names whose replicas must be
equal when the rule is utilized. This facility provides a useful check for resolvers that re-
generate a file based on the contents of another source file. Consider once again the example
of afilewitha. dvi extension. Its contents can be re-generated by processing the source file
with IATEX. However, this strategy is usable only if the source fileitself does not have diverging

5.2. SEMANTIC APPROACH: APPLICATION-SPECIFIC RESOLUTION 91

replicas, a condition that can be checked automatically by adding the name of the source file,
i.e. thefilewiththe. t ex extension, to the dependency-list.

In principleit would be possibleto recursively resolve objectsin the dependency-list. However,
to keep theimplementation simple, an ASrR invocationisaborted if any object in the dependency-
list hasdivergingreplicas. Otherwise, the system would need to detect cyclesinthe dependency-
list. The disadvantage is an increased likelihood of conflicts due to a false declaration of
resolution failure.

* dvi: $*.tex
file-resolve $</ $>
| atex $*.tex

For afile / coda/ usr/ pkumar/f oo. dvi, theruleexpandsto:

file-resolve /coda/usr/ pkumar/foo. dvi
| atex foo.tex

And isexecuted only if thereplicas of f 00. t ex are not diverging.

Figure 5.4: Macro-expansion of a Resolution Rule

The command-list consists of one command per line. Each command specifies a program
to be executed along with its arguments. Since the object-list may contain wild-cards, some
file-names that need to be passed as argumentsto the resolver programs are not known until the
ruleisbeing utilized toinvokethe AsSR. Therefore, the rule-language provides macrosthat serve
as place holders for these file-names. The language provides three nak e-like macros, $*,
$> and $<. The $* macro expands to the string that matches the wild-card in the object-list;
$< expandsto the pathname of the parent of the file being resolved and $> expandsto thefile's
name. These macros are expanded dynamically if and when a rule containing them is used to
execute an ASR. Figure 5.4 shows the macro expansions using a simple example.

Tofind arulethat appliesto afilef 0o, thest ar t er processfirst parsesthe Resol veFi | e.
The parser is implemented using yacc. Table 5.1 shows the grammar rules for the rule-
language syntax. The string f 0o is matched against the names in the object-list of each parsed
rule. The first rule containing a match is used as the resolution rule for f 0o. If no match is
found or a syntax error isfound in the Resol veFi | e, thest art er assumes no ASR exists
for f 00 and returnsan appropriate error codeto Venus. BeforeinvokingtheAsrthest art er
expands all macros in the dependency-list and the command-list of the rule and ensures none
of the objects in the dependency-list have diverging replicas.

92 CHAPTER 5. AUTOMATIC FILE RESOLUTION

Start — Blank-line | Rule-Ilist
Rule-list — Rule-list Rule | Rule
Rule — Object-list : Dep-list New-line Cnd-11i st
oject-list — Object-list , Object-name | Object-name
Dep-list — Dep-list Dependency-name | ¢
Crd-list — Cmd-list Crd Cnrd- Ter m nat or
Crd-list — Cmd Crd- Ter m nat or
Cmd — Cmd-Name Arg-1li st
Cmd- Termi nator — New-line | ;
Arg-list — o
Arg-list — Arg-list Arg
Arg — Arg-Name Rep-specifier | Replica-count
Rep-specifier — ¢ | [Index]
| ndex — Integer | *

Terminals of the grammar are shown in boldface.
Table 5.1: Grammar for the Resolution Rule-language Syntax

5.2.2.3 Exposing Replicastothe ASR

Recall from Chapter 2 that Venus makes replication transparent to applications. TheAsR, onthe
other hand, requiresreplication to be exposed since it needs to examine the individual replicas
of the file being resolved.

One obvious strategy for exposing replication is making each replica accessible in a non-
replicated region of the file system. Since the granularity for replication in Coda is a vol-
ume, this strategy would make each volume replica a separate entity in the non-replicated
name space. For example, consider a volume named u. pkumar that is replicated at two
servers and its root directory is normally accessible as / coda/ usr/ pkumar. The indi-
vidual replicas of this volume could be nount ed at / coda/ nonr ep/ pkumar . r ep0 and
/ coda/ nonr ep/ pkumar . repl. Using this strategy, the replicas of the file / coda/ -
usr/ pkumar/f oo would be accessible as / coda/ nonr ep/ pkunmar . r ep0/ f oo and
/ codal/ nonr ep/ pkumar . repl/ f 0oo. This approach is simple and needs no specia im-
plementation at the client. The disadvantage is the pathnames of the file's replicas are signifi-
cantly different from the file's replicated pathname. This difference can be problematic if the
ASR’s execution depends on the replicated pathname of the file, for example, a resolver that
uses mak e whose rule file contains absolute pathnames.

5.2. SEMANTIC APPROACH: APPLICATION-SPECIFIC RESOLUTION 93

To overcome this shortcoming, Coda uses an alternative strategy. Before invoking an ASR,
Venus explodes the file in-place into a fake directory. The directory is“fake” because it exists
temporarily at the client that is going to execute an ASR but not at the server or other clients.
Each replica of the file appears as a unique child of this fake directory and is named using
the name of the server it is stored a. In the example above, replicas of file f oo would be
accessible as/ coda/ usr/ pkunmar/ f oo/ server 1 and/ coda/ usr/ pkunmar/ f oo/ -
server 2 whereser ver 1 and ser ver 2 are the names of the servers that store the volume
u. pkumar . Other filesin this volume that have identical replicas still appear non-replicated
to the ASR.

Filereplicasinafakedirectory areaccessiblefor reading viathe normal ursinterface. However,
the only mutating operation alowed on the fake directory isther epai r pi oct | , that takes
the name of a“new” file asinput. The “new” file can exist in the local UFs at the client or it
can be one of thereplicas of thefile being resolved. Its contents are used to atomically set the
contents of the diverging replicas to a common value. Once this operation succeeds, Venus
collapses the fake directory back into afile.

For the duration of the ASR’s execution, the volume containing the file being resolved is forced
into a special fakeify mode. In this mode, any file in that volume with diverging replicas, is
converted to a fake directory dynamically, i.e. if and when it is accessed. This functionality is
necessary for an ASR that simultaneously resolves a group of files with diverging replicas. For
example, auser’s caendar might be maintained in multiple files, and its ASR needs to examine
the replicas of al files to perform resolution. Of course, this approach assumes that al files
mutated by the application are contained in the same volume.

To convert afile into a fake directory, Venus assigns it a specia fi d that is not assignable
by any server. This ensures that no operation on this directory will erroneously force Venus
to contact the server. The children of this directory are created as special symbolic links: the
links are named using the names of the serversin thefile's V SG; the content of each link isthe
non-replicatedf i d of the corresponding filereplica. Thesymboliclink isspecial becauseit has
the format of amount point. Since Venus already contains special code to handle mount points,
modifying it to access/fetch each file replica when the corresponding symlink is accessed was
simple: all changes were localized to a small segment of the code.

Since the names of the diverging replicas are not known a priori, the rule-language syntax
provides three additional macros, [], [*] and $#, that serve as replica specifiers. [¢] is
substituted by the name of the :th replica and [*] is substituted by names of all replicas
separated by white space. The $# macro is substituted by the replication factor for the file
being resolved and is useful for resolvers that need this number to correctly parse the argument
list. Figure 5.5 shows the use of these macros with a simple example.

94 CHAPTER 5. AUTOMATIC FILE RESOLUTION

*. ch:
mer ge-cal -replicas $< $# $>[*]

expands to

mer ge-cal -replicas /coda/usr/pkumar 2 \
mycal . cb/ server1l nycal . cb/ server?2

This figure shows the macros expansion for a file whose replicated pathname is/ coda/ usr/ -
pkumar/ nycal . cb. Thefile'svolumeisreplicated at two servers, server 1 andser ver 2.

Figure 5.5: Macro-expansion of a Resolution Rule with Replica Specifiers

5.2.2.4 Execution of the ASR

The ASR is executed after all macros in the resolution rule have been expanded. Multiple
programs may be executed in asingle ASR invocation, since arule’s command-list can contain
more than one command. Since these programs may take an arbitrary long time to execute,
they are executed by a separate process, caled the command- execut er , that isf or ked by
thest art er process. Thest ar t er process, meanwhile, returnsthepi d of theexecut or
to Venus. Executing the ASR from the execut or allowsthe st ar t er process to continue
servicing other requests from Venus.! Once the ASR completes, its result is returned via the
Resul t OF _ASRRPC.

The execut or runs with the identity of the user whose request triggered resolution. It
executes the commands in the command-list sequentially, each in a separate process. If any
command fails, theexecut or isaborted and an error returned to Venus.

Since Venus runs on multiple hardware platforms, the execut or must have the ability to
choose the binary appropriate for the client machine. To achieve this functionality, it uses
the @ys pathname expansion capability of the Coda kernel. The kernel evaluates the @ys
component, if present in a pathname, to a unique value on each architecture. This mechanism
allows a single resolution command pathname to be used for any client machine. For exam-
ple, the pathname / usr/ coda/ r esol ver s/ @ys/ bi n/ mer gecal endar, evaluates
to /usr/ codal/ resol ver s/ pmax_mach/ bi n/ mer gecal endar on the DECstation-
5000 clients and to / usr/ coda/ r esol ver s/ i 386_mach/ bi n/ ner gecal endar on
the Intel-386 clients.

Thest art er isrunasapart of theadvi ce- noni t or [11] that isused by Venus to obtain user feedback
for caching strategies etc.

5.2. SEMANTIC APPROACH: APPLICATION-SPECIFIC RESOLUTION 95

The rest of this section discusses security, robustness and fault-tolerance of the ASR execution.

Security issues Recall that an ASR is executed on behalf of the user who triggers resolution.
This strategy strikes the right balance between availability and security. It does not provide
the highest availability because an AsR can perform its task only if the user who triggered
resolution has sufficient rightsto modify thefile being resolved. Asmentioned in Section5.2.1,
the alternative strategy in which an ASR operates without any security checks would provide
higher availability. However, this strategy would be insecure as Coda clients cannot be trusted.
Executing an ASR on behalf of a special Asr-id is also unusable: the password of the Asr-id
would have to be shared by all users who need to execute an ASR. Furthermore, the availability
provided by this strategy would be limited only to those files that are writable by the Asr-id.

An advantage of executing an ASR on the behalf of the user is that the damage caused by a
malicious ASR is limited only to those objects that are accessible to the user. However, the
disadvantageisit exposes the user’s personal datato the Asr and may be problematic if the ASR
ismalicious. For example, auser’s private files are accessible to an ASR while it is executing.
This problem is particularly serious because a user is unaware of it since an ASR is executed
transparently. To safeguard against this problem, the user may disallow the execution of an
ASR selectively, using several methods. First, shutting down the st ar t er process prevents
any ASR from executing. Second, the cfs pi oct| interface to Venus alows the user to
selectively turn off/on Asr execution for all files belonging to avolume. Finally, the user may
specify a list of directories that is used to search for an AsR. An ASR is allowed to execute
only if it belongs to one of the directoriesin thislist. This strategy assumes these directories
are protected and the user trusts all programs belonging to them. Of course, preventing the
execution of an ASR using these methods results in loss of transparency in some cases.

Robustness A mis-behaved ASR may decrease the robustness of a client. For example, an
ASR whose return code indicates success even though it is unable to resolve the file will cause
the Venus worker thread to loop indefinitely: the worker, when resumed, will re-invoke the
mis-behaved AsSr sincethefile’'sreplicasarestill diverging. Resolverswith programmingerrors
likeinfiniteloops can end up starving user processes of critical resources. Recall, that aworker
thread servicing the resolution-triggering user request is blocked until the AsR completes. Since
the number of worker threads is finite, multiple executions of a mis-behaved Asr could block
all worker threads and deny service to other users. Coda addresses these problems by limiting
the execution time of an ASR to two minutes and the frequency of ASR invocations for an object
to once every five minutes. In our limited experience, these default limits have been sufficient
for most Asks. The system allows these limits to be changed dynamically for specific objects
viathe pi oct | interface for Venus. Of course, no statically set limit can be perfect: there
will always be situations where a perfectly good ASR execution is aborted due to one of these

96 CHAPTER 5. AUTOMATIC FILE RESOLUTION

limits being exceeded. In the worst case, some transparency will be lost since the user will be
required to resolve the file manually.

Isolation To avoid multiple ASrRsfrom resolving afile ssimultaneously, thest ar t er ensures
only one ASR is executing on a client workstation. A worker thread, requesting the execution
of an ASR, isblocked if an ASR is already executing on the client. To avoid deadlock, all locks
held by the worker are released before it is blocked. To maintain transparency of resolution,
the worker reguests the ASR execution again when it is resumed after the currently executing
ASR completes. Of course, the worker does not wait, but returns with an error, if the request
triggering an ASR is made by an executing ASR. For example, consider an ASR for file A,
that accesses another file B. If file B also has diverging replicas then ssmply blocking the ASR
request for B will result in a deadlock since the AsSR for A will wait for itself indefinitely.

The above strategy only ensures local serialization of ASRs. It does not prevent multiple clients
from running an AsR for the same file simultaneously. To detect this condition, Coda uses an
optimistic strategy similar to that used for concurrency control of normal updates. Each ASR
performs its updates in the client’s cache assuming no other client is executing an AsR for the
same file. However, when committing the updates made by an ASR, each server verifies that
none of the objects in the ASR’s write-set have changed since the AsSR started executing. |If
this isn’'t the case, then none of the mutations made by the ASR are committed. Therefore, if
multiple AsRs are resolving a file from different client workstations simultaneously, only the
first ASR to finish succeeds.

Mutations performed by an ASR in the client’s cache are undone if it doesn’t complete suc-
cessfully. To prevent other applications from accessing partia results of an ASR execution,
Venus implicitly locks the volume, containing the file being resolved, exclusively for the ASR
before invoking it. The volume remains locked while the ASR is executing and is unlocked
implicitly when the st ar t er makesthe Resul t O _ASR RPC. This strategy assumes that
an ASR mutates objects only in the volume containing the file being resolved. Whilean Asris
executing, any user request for an object in that volumeis blocked. Recall that an Asr itself is
executing on behalf of the user. Therefore, to distinguish between ASR and hon-ASR requests,
Venus uses the process-group mechanism of Unix. All the commands in theresolutionrule are
executed using the same process group number. This group number is returned to Venus by
thel nvokeASR RPC. Furthermore, the Coda kernel is modified to includein each request for
Venus, not only the identity of the user on whose behalf the request is being made, but also the
identity and group number of the process making the request. Any request for an object in the
volume being resolved is blocked unless it originates from a process having the ASR’s process
group number. This strategy assumes the ASR processes do not deliberately change their group
number while executing.

5.2. SEMANTIC APPROACH: APPLICATION-SPECIFIC RESOLUTION 97

Atomicity An ASR execution may abort due to a variety of causes such as client failure,
coding bugsinthe AsrR and exceeding AsR time limitsimposed by thest ar t er . Coping with
the partial results of an aborted ASR execution can be messy, especidly if they lead to further
conflicts. Toalleviatethisproblem, Codaensuresthat the updates performedby an ASR are made
visible atomically. This transactional guarantee can be provided by Venus because it knows
the boundaries of an ASrR computation (bracketed by | nvokeASRand Resul t .OF _ASRRPC
requests) and because it can distinguish requests made by the ASR (using the process group
mechanism described above).

Venus expl oits the mechanism for disconnected-operation [25] to make ASR execution atomic.
The basic idea behind disconnected-operation is to log al mutations made at a client while it
is disconnected from a server. Then, thislog is used to reintegrate the updates with the server
when connection is re-established. The updates are committed at the server atomically, using
the transaction mechanisms described in the previous chapter. To make the updates of an ASR
atomic, its updates are not written through from the client’s cache to a server but logged asin
disconnected-operation. If the AsR aborts, its updates are undone by purging the log and the
modified state in the client’s cache. However, if the ASR completes successfully, its updates are
reintegrated with the servers atomically.

The implementation of disconnected-operation maintains a state variable for each volume.
A volume may be in one of three states. connected (a.k.a. hoarding), disconnected (ak.a
emulation) or reintegrating. In the connected state, al read requests for objects in the volume
are serviced using the client’s cache or the server if a cache-miss occurs, and all updates are
written through the client’s cache to the server.? In the disconnected state, all read requests
in the volume are serviced using data from the cache and an error is reported if a cache-miss
occurs. Updates are reflected on the local cache and recorded in a per-volume modify-log,
but not propagated to the server. The reintegration state is transitory and exists only while a
volume’s modifications during disconnection are being propagated to the server. Details of the
implementation of these three states are provided in Kistler's thesis [25].

The mechanisms for disconnected operation cannot be used directly for providing atomicity of
updates made by an ASR since it may need to access objects that are not in the client’s cache.
Thus, to provide atomicity of updates made by an AsSR, Venus maintains a fourth state for
each volume, the write-disconnected state.® This state is a hybrid between the connected and
disconnected states: all reads are serviced using the local cache or the server, but writes are
not propagated to the server even if it is accessible. Two operations, purge-log and commit-log
are provided to purge the mutations in the modify-log or to reintegrate them with the server,
respectively. Thevolumecontainingthefilebeing resolvedisforcedintothewrite-disconnected
state before an Asr isinvoked by Venus. The modified state transition diagram for avolumeis

2File updates are written through to the server only when thefile is closed.
3The dual of thisstate is read-disconnected. Both read- and write-disconnected states are collectively referred
to as pseudo-disconnected states.

98 CHAPTER 5. AUTOMATIC FILE RESOLUTION

shown in figure 5.6. The volume remainsin this state while the ASR is executing. Therefore,
none of its changes are propagated to the server. When the result of the ASR execution is
returned to Venus, it commits or aborts the ASR’s mutations depending on whether the ASR
succeeded or failed. Commit-log is invoked if the ASR computation was successful and the
server is accessible: the volume first transitions into the reintegration state, when the AsR’s
updates are propagated to the server, and then into the connected state. Purge-log is used to
undo the changes made by the ASR if its computation failed.

//_\\
s
/

Start ASR , Wite
Connectedf ~— =~~~ -~~~ -~ = Di

g-
\connect ed/
/

Di sconnecti on

D s-
Connect edT

Reconnecti on

Thisfigure showsthemodified statetransitiondiagram for avolumewiththe new write-disconnected
state. The new state and its related transitionsare shown in dotted lines/arrows.

Figure 5.6: Volume State Transitions

The write-disconnected state for a volume was implemented with small modifications to the
implementation of the disconnected and connected states. Servicing a read in this state is
similar to servicing aread in the disconnected state if the object being accessed is cached, and
similar to servicing aread in the connected state if the object isn't cached. Servicing an update
in this state and the disconnected state is similar except for one small difference - mutation of
fileswith diverging replicas. Since such filesare not cache-able, they cannot be modified in the
disconnected state. However, the write-disconnected state must allow these files to be mutated
since that is the motivation for executing the AsrR. As described in Section 5.2.2.3, such files
can only be modified viathepi oct | interface. To supportther epai r operationinthewrite-
disconnected state, a new record type is defined for the client modify-log. Furthermore, the
reintegration routines at the server, that receive and process the modify-log, are a'so modified to
recognizethisrecordtypeandto performther epai r operation. The system providesaspecial
wrapper program called fi | e-repai r fortherepair pioctl. This program takes as
input the name of thefile with diverging replicas and the name of the file whose contents should

5.3. EXAMPLE APPLICATION-SPECIFIC RESOLVERS 99

replace the diverging replicas. If the latter parameter is missing, then all the diverging replicas
of the file are truncated.

5.3 Example Application-Specific Resolvers

This section shows the use of the resolution rule language using two example AsrRs used in the
CMU/Coda environment: aresolver for acalendar application cboar d, and a resolver for a
file created by the make utility. The ASRs use different strategies to perform their task. The
ASR for the cboar d application resolves its files by merging their diverging replicas, while
the resolver for the make application reproduces afile’'s data from its source files. Unlike the
cboar d resolver, whose actions are dependent on the contents of the diverging replicas, the
actions of the latter ASR are independent of the contents of the file replicas being resolved.

Before closing, this section also shows how the rule-language can be used to automatically
invoke afile repair-tool when needed. The repair-tool uses feedback from the user to perform
resolution.

The purpose of using these examples is to show different kinds of AsrRs implemented in the
Coda environment. Itisnot, by any means, an exhaustive list or an argument for completeness
of the resolution rule-language.

5.3.1 Calendar Application

The cboar d application maintains a calendar of events in a database. Typically, each user
maintains her appointments in one or more databases. For example, a user may have a
per sonal database, for making private appointments, and an of f i ci al database that she
shares with her secretary, for recording business appointments. In the CMU environment,
the cboar d application maintains an additional database, the sy st emdatabase, that contains
announcementsfor public presentationsin theuniversity. Thisdatabase isaccessed inread-only
mode by most users, except for the administrative staff responsible for posting announcements
to this database. The cboar d application allows events to be copied from the syst em
database to a personal database, so that users can set up reminders for specific events. In
genera, the syst emdatabase and auser’sof f i ci al database, exhibit some write-sharing
and are thus prone to concurrent updates in multiple partitions.

Each database is maintained in two separate files, an eventsfileand akey file. Theformerfileis
stored in ASCII format containing one record for each event. The key file, on the other hand, is
stored in binary format and containsahash-tableindex of the eventsfile. The hash-table buckets
are sorted based on the time of an event, so that the events for a particular date can be obtained
efficiently. These two files are named uniquely using the name of the database concatenated

100 CHAPTER 5. AUTOMATIC FILE RESOLUTION

File Events View Oplions Help Choards Exposeiie Perodic Events

Juily 19'9-1'
& DAy [CEH-d)
Sumi Mom Tae Wed Tla Fri Sak
Week [Clrd-w)
1 . Wonih {Cid-m)
3 4 5] T B a G To,... |
i) 11 13 14| 15| 1% Tadary [Ciri- 1)
Heaw Reminder
17| 18| 19| 20§ 21| 22| 23 Praw {mﬂ-ml
Uil Reminder Delatas
o | ol ey 2 ZH| 20 an Mt { R -) |
il
TR Ml Salya G115 Mean Hall
1 Wem 1 hour Bantisd Appoindsent Craig Sireed
Jo om0 miredes Special PN Sesinar S0 Ve Mall
Gy Wpe 30 mirmtes my PEmEy Fohenley Park Trail

This figure shows the Tcl/Tk based interface for browsing events in the calendar. The menu is
used to invoke functionslike selecting a database, inserting and deleting events etc. The top frame
shows the calendar and highlights those days whose events are being viewed in the lower frame.
The user may view events for a day, week or month. The lower frame shows a one line summary
for each event. Details for an event can be seen by clicking on its summary line. The application
uses a dialog-box to remind users about an event and a window-based form to receive user input.

Figure 5.7: User Interface for the Calendar Manager

with special extensions. The events file uses a. cb extension and the key file uses a. key
extension. The files storing the sy st emdatabase, for example, are named syst em cb and
system key.

The cboar d application provides tools for users to browse through a calendar database or
mutate it. The user interface, implemented in Tcl/Tk [36] on the X11 windowing system from
MIT, is shown in Figure 5.7. The application allows three kinds of mutations* on a database:
inserting new events, removing cancelled events and updating modified events. A new event
isinserted at the end of the events file of a database. To remove an event from the database,
its record in the events file is invalidated, i.e. removed logicaly from the calendar, but not
deleted physically from the file. Finally, updating an appointment is equivalent to invalidating
its record and inserting a new one with the updated data. In all three cases, the hash-table’s

4The cboar d application provides other methods of updating a database. However, these methods are either
not relevant to our discussion or are equivalent to one of the three methods described here.

5.3. EXAMPLE APPLICATION-SPECIFIC RESOLVERS 101

buckets corresponding to the changed records are modified and both the key file as well as the
eventsfile are written to disk.

Since each calendar mutation modifies the events file and the key file, a concurrent partitioned
update to the calendar causes both these filesto have diverging replicas. Therefore, aresolution
rule for the cboar d application contains both these filesin its object-list. The resolution rule
for this application is shown in Figure 5.8. The dependency-list of the rule is empty, since the
calendar’s resolver does not require any other file to have non-diverging replicas. The resolver
is executed in three steps. First, the mer ge- cal program merges the diverging replicas of
the events file. The number of replicas and their names are passed in the argument list of
this program. The merged events file and its corresponding key file are first written to a new
database since the fileswith diverging replicas can be mutated only viather epai r pi oct | .
The name of the new database is aso specified in the argument list. In the rule above this
new database isstoredin/ t np/ newdb. cb and/ t np/ newdb. key. In the next two steps,
the new database is used to atomically update the contents of the diverging files using the
fil e-repai r command provided by the system.

The ner ge- cal program, provided by the cboar d application-writer, performs its task as
follows. It parses the replicas of the events file and builds a hash-table index for each replica
A deleted event, that appears as an invalid record in the events file, isincluded in the index so
that the resolver can disambiguate between recent del etes and new insertions. Once theindices
are built, they are merged using a straightforward algorithm. First, a unique copy of each valid
record is preserved; next, any record that has been invalidated in any replicaisinvalidated in
the merged index. This agorithm guarantees that all insertions and deletions are preserved.
Recall, that an update event appears as a deletion followed by a new insertion. Therefore, in
case an event is updated simultaneously in separate partitions, the merged index will contain
multiple records for this event, one for each partitioned update. The update mechanism could
be easily changed so that the merge algorithm can detect concurrent partitioned updates and
report a conflict. However, we chose not to do so for two reasons. First, changing the update
algorithm required additionsto the record structure that would prevent the cboar d application
from being backward compatible, an important requirement for a calendar manager. Second,
in our experience with cboar d, such updates occurs so rarely that this shortcoming has not
caused any problem.

The cboar d application was designed and implemented at CMU more than a decade ago. We
chose this as one of our test applications due to its wide-spread use. There are approximately
90 usersinthe CMU SCS community using thisapplication on adaily basis. The user-interface
for thecboar d application, when it was originally implemented, was based on ASCI| terminal
input/output. The more recent implementation, based on windows and Tcl/Tk and shown in
Figure 5.7, is not as widely used as the first implementation. Currently there are 10 users using
this version of cboar d on adaily basis. We hope it will be used more widely as it becomes
stable.

102 CHAPTER 5. AUTOMATIC FILE RESOLUTION

*. key, *.cb:
nerge-cal -replicas -n $# -f $</$*.cb[*] -db /tnp/ newdb
file-repair $*.cb /tnmp/newdb. cb
file-repair $*. key /tnp/ newdb. key

Figure 5.8: Resolution Rule for the Calendar Application

From the above discussion it is clear that an ASR can be implemented for applications with
structured data files. Examples of such applications include news-reading applicationsliker n,
gnus, nessages (Andrew) etc. and electronic-mail reading programs like mh and mai |
etc. Consider the . newsr ¢ file maintained by news reading applications. This file contains
a user’s subscriptions and a list of article numbers he has read. This file is typicaly not
shared by multiple users and is thus not prone to concurrent partitioned updates. However, it
may be “shared” by a user with himself while reading news articles from two different client
workstations. When this occurs, the file's resolver could merge the diverging replicas of the
. newsr c file by computing the union of all articlesread by the user.

5.3.2 MakeApplication: Reproducing a File's Data

Another ASR commonly used in the Coda environment is for files produced by make-like
applications. A characteristic common to such filesistheir contents are produced by processing
another source file with some application program. If such a file has diverging replicas, its
contents can be reproduced by processing the source file again with the application program;
assuming of course, that the sourcefile itself does not have diverging replicas.

Files whose names have a. dvi extension or a. o extension are common examples of files
produced by application programs without user intervention. The former are created by LATEX
and the latter are produced by the C compiler. The resolution rules for these two file types are
shown in Figure 5.9.

Note that both rules have a non-empty dependency-list, which is typical for applications that
regenerate the file's contents. To resolve diverging replicas of a file named f 0o. dvi , its
ASR reproduces its contents by processing f 0o. t ex with IATEX, provided f 0o. t ex itself
does not have diverging replicas. Recall, that all mutating operations, except r epai r, are
disallowed for a file with diverging replicas. Since IATEX needs to modify f oo. dvi , the
file must either be repaired before LATEX is executed, or IATEX must be modified to issue the
appropriate pi oct | . We chose the former approach since it requires no modifications to
IATEX. Executingfi | e-repair foo. dvi resultsinempty replicas for the filef oo. dvi

5.3. EXAMPLE APPLICATION-SPECIFIC RESOLVERS 103

* . dvi: *.tex
file-repair $</$>
| atex $*.tex

*.0. *.cC
cc -c $*.c -o /tnp/$*..0
file-repair $> /tnmp/$*..0

Figure 5.9: Resolution Rules for the Make Application

and allows IATEX to be executed without problems.

A similar methodology can be used to resolve a file named bar . o provided the source file
bar . ¢ doesnot have diverging replicas. Its contents can be reproduced by processing bar . ¢
with the C compiler. Since the C compiler provides a mechanism for redirecting the compiled
code to afile named differently from the source, the contents of bar . o can be first produced
in atemporary file (/ t np/ bar . . 0). Then thisfileisused asinput tothefi | e-resol ve
program to atomically set contents of all replicas of bar . o.

The two examples above show that a file, produced by a program execution, can be easily
resolved transparently. The limitation of such AsRsis they fail if the source file has diverging
replicas. Our experience with AsRsisn't sufficient to predict the frequency of this failure.

5.3.3 Automatically Invoking the Repair-tool

For situations in which an AsR execution fails, Coda provides a repair-tool that uses feedback
from the user to resolve the diverging replicas of afile. Thistool could aso be invoked as an
“ASR” for afilethat does not haveitsown AsR. To achieve thisfunctionality, thefollowing rule
could be added to the Resol veFi | e:

* -

xfrepair $</$>

Since the name “*” in the object-list matches the name of any file, this rule must be specified
at the end of the Resol veFi | e. Any rule that appears after this rule will never be used.
xf repai r is the name of the program binary corresponding to the repair-tool. The tool
takes as input the name of the file with diverging replicas, specified by the $</ $> macro. The
advantage of using thisruleisthetool isinvoked automatically when the divergence is detected,

104 CHAPTER 5. AUTOMATIC FILE RESOLUTION

and the user can resolve the divergence immediately. Details of the design and implementation
of the tool are deferred until the next chapter.

Chapter 6

M anual Resolution

The responsibility of performing resolution falls on the user when the automated facilities,
described in the previous two chapters, discover conflicting transactions in the partitioned
histories of an object. For example, two users may have created files with the same name in
partitioned replicas of a directory. Or, a user and her secretary may have inserted different
appointments for the same hour in partitioned replicas of a calendar file. In both cases,
the partitioned transactions were correct when they were performed in isolation, but violate
an invariant when they are merged. The directory updates violate the invariant requiring a
directory to contain unigue file names; thefile updates viol ate the invariant requiring a calendar
to never contain multiple appointments for the same hour. In either case, the user intervention
is needed to merge the conflicting updates.

The term repair is used to refer to the manual resolution of an object. The system provides
assistance to the user for repairing an object in two ways. First, it provides means by which
a user can examine the state of each replica of the object being repaired. Second, it provides
a repair tool that helps a user in finding the differences between replicas of an object and
performing compensation at each replica.

This chapter describestherepair facility for the Codafile system intwo parts. The design ratio-
nale for the facility is described first, followed by the details of its design and implementation.

6.1 Design Rationale

The repair facility is required to preserve the diverging replica states as evidence for the user
and notify him about the conflict. This is achieved by marking the diverging replicas of the
object with a special inconsistency flag. An inconsistent object cannot be accessed by normal
applications using the Unix API. Thus, the damage is prevented from spreading and the state

105

106 CHAPTER 6. MANUAL RESOLUTION

of thereplicasis preserved. The user is “notified” about the conflict lazly, i.e. the conflict is
discovered by a user only when he tries to access the object. Of course, a disadvantage of the
lazy scheme isthat a conflict may remain unnoticed for along time.

An alternative strategy for preserving replica state, is moving the replicas to a specia conflict
region of the file system, (alal ost +f ound directory of the Unix file system). The Ficus
system [20] uses this strategy and notifies the owner of the moved object via electronic-mail.
This strategy has two disadvantages. First, it is inconvenient because the object disappears
temporarily from the name space and remains unavailable until the owner repairs it. Other
users who share this object are forced to wait for the owner even though they are capable of
performing the repair. Second, moving the object causes some evidence for the conflict to be
lost: the conflicting updates may have been made as part of an encapsulating computation that
modifies other objects, but these objects are not moved to the conflict region if they don’t have
any conflicting updates. Coda's strategy makes the context for the conflict available to the
user since the inconsistent object appears in the directory in which it existed at the time of the
conflicting updates.

Although replication is normally transparent to the user, it must be exposed during the repair
so that the user can examine the individual replicas of the object he is repairing. To expose
the replicas of an object, the repair facility borrows the technique used for application-specific
resolution, i.e. theinconsistent object is exploded in-place into afake directory with each of its
replicas appearing as a child of thisdirectory. The in-place explosion of the inconsistent object
is performed by Venus only when the user indicates that he is ready to repair the object.

The replicas that appear as children of the fake directory are accessible via the normal Unix
API and can be examined and compared using Unix utilities like di f f. However, normal
applications are disallowed from mutating these objects to prevent any accidental destruction of
evidence for the conflict. The only means of mutating an inconsistent object is a DO.REPAI R
operation provided by Venus pioctl interface and is used by the repair tool to perform its
function. Exporting this functionality as a pioctl allows it to be used by the repair tool as
well as by applications that want to provide their own specialized repair facility. To make
the interface genera and extensible, the input to the DO_REPAI R operation is specified in a
repair-file — new commands can be added easily to this file without modifying the interface to
the operation.

Sincetherepair-fileis constructed by a user, it may contain errors—for example, the repair com-
mands may violate security constraints or system invariants. Therefore, each repair command
must be validated before its updates are performed. Even after the validated repair commands
have been executed, the replicas of the inconsistent object are not guaranteed to be identical.
As aresult, an additional responsibility of the system isto verify that the object being repaired
has identical replicas beforeit is made accessible to normal applications.

The DO_REPAI R operation is performed at the servers on behalf of the user. 1t may be aborted

6.2. REPAIR TOOL: DESIGN AND IMPLEMENTATION 107

if the server crashes or finds an incorrect command in the repair-file. In either case, undoing
the partial mutations can be cumbersome, especially if multiple objects have been mutated.
To make the DO_REPAI R operation fault-tolerant, the repair commands are executed within
the scope of a transaction. Updates are made in memory as each command is executed and
committed atomically to stable storage at the end of the DO REPAI R operation. To prevent
exposing partial results of the repair, an exclusive lock is held on the objects being mutated for
the duration of the DO.REPAI R transaction. Atomicity of the updates guarantees the objects
being repaired will be in amutually consistent state if the operation is aborted.

6.2 Repair Tool: Design and I mplementation

When a user requests service for an inconsistent object, Venus prints an advisory message on
the console of the client workstation and denies access to the object. The user must repair the
object before he can access its data.

Briefly, a repair session proceeds as follows. The user begins the session by requesting the
system to expose the replicas of the inconsistent object. Venus explodes the object in-place
into afake directory, and makes each of its replicas accessible as a child of thisdirectory. The
user cannot mutate these replicas but he may examine them using any Unix utility to determine
therepair strategy. The user’s repair request is propagated to the servers by Venus. Each server
validates and performs the commands requested by the user. If the repair is successful, Venus
implodes the fake directory back into aregular object and fetches its status and contents from
the servers. However, if the repair is unsuccessful, the object’s replicas are still diverging and
it remainsin the fake directory state.

A user’s repair request differs according to the kind of object being repaired. To repair
an inconsistent file, the user prepares a file whose contents replace the diverging replicas.
However, to repair a directory, the user provides a file containing the compensating updates
to be performed on each replica. This distinction arises due to the difference in the structural
properties of files and directories. Since directories are navigational objects, their structural
integrity iscrucia for the accessibility of their descendants. Therefore, to prevent a corruption
in the directory structure, the servers never accept entire directory contents from clients but
perform the directory operation themselves. On the other hand, for afile update or repair, they
do accept its updated contents from the client.

Therest of this section describes the implementation detail s of therepair facility. Codaprovides
separate toolsfor repairing directoriesand filesdueto the differencein their repair methodol ogy.
However, the two tools use the same methodology for preserving and exposing the diverging
replicas of an object. Therefore, thisfeatureisdescribed first. Then, the two tools are described
in separate sub-sections.

108 CHAPTER 6. MANUAL RESOLUTION

6.2.1 Preserving and Exposing Replicas

An inconsistent object is presented to the user as a dangling symbolic link. Thus, applications
are prevented from using or modifying inconsistent data. The target name in the symbolic link
has a special format containing the f i d of the inconsistent object. For example the result of
the Unix command, | s -1 L, for an inconsistent object f 0o would be

lr--r--r-- 1 root 27 Nov 4 09:35 foo -> @f00021le. 1c5. 9eb

where 7f 00021e. 1c5. 9e6 isthef i d of the object f 00.

When an applicationtriesto accessaninconsi stent object, therequest returnswithan ESYMLI NK
error code. Instead of adding a new error code to the Unix API, we used an existing error
code for backward compatibility. Since most Unix applications are expected to handle the
ESYM_I NK error code, they can be used unmodified in the Coda environment. Of course, the
disadvantage of this approachis that users of these applications need to be trained to recognize
this special symbolic link as arepresentation for an inconsistent object.

Since the client-server interface is not visible to applications, the servers use a distinct error
code, EI NCONS, to inform the client about the inconsistency. On receiving this error code, the
client presents the object as a symbolic link as described above.

To perform the repair, users need to access the replicas of an inconsistent object. Therefore,
once the replicas of an inconsistent object have been exposed to the user, the servers must
service requests for that object instead of returning an error code. To distinguish between
requests made after and before the replicas are exposed, Venus uses adifferent f i d parameter
for the requests.

Each replicated object in Coda has two fids: areplicated f i d that is shared by al replicas of
the object and a non-replicated fid that is unique to each replica. A request for an inconsistent
object isserviced only if it is made using the non-replicated f | d. Venususesthisf i d to make
requests for the inconsistent object’s replicas after they have been exposed to the user. Requests
that are made prior to this event use the replicated f i d and result in an error condition. Note
that no mutating requests are serviced for the individual replicas.

6.2.2 Directory Repair Tool

The directory repair tool user-interface, implemented using Tcl/Tk, isshown in Figure6.1. An-
other version of the tool based on terminal input/output is also available for users not running a
windowing environment. Thetool providesthreebasiccommands. TheSt ar t - New- Repai r
command allows a user to inform Venus that she is ready to repair an inconsistent directory.
The tool confirms that the object is inconsistent and then passes the request to Venus using the
BEGQ N_REPAI R pioctl. As mentioned before, Venus explodes the directory in-place into a

6.2. REPAIR TOOL: DESIGN AND IMPLEMENTATION 109

fake directory. Each replica of the directory is uniquely named using the name of the server
it is stored at. For example, the replicas of an inconsistent directory named f oo, that is
replicated at two serversser ver 1 andser ver 2, will be accessibleasf oo/ server 1 and
f oo/ ser ver 2 after the in-place explosion.

Start Mew Repair | Compare Dir Replicas | Do Repair | Remove Inc. Object | Quil| Help
Replicas for Acodafusripluman'snefines
dre=r==r== 2 plkumar 2048 Jun 29 14 45 puccini, coda. ca, caa. edu b
drw-r-—-r-—- 2 plkumar 28 Jun 29 1445 ressinl. cods. cs. caol echy JI
drw-r--r-- 2 plumar 2048 Jun 29 14:45 soarlatti. opda os. cmuo. edo ;
FRapar filg .. A

replica PUCGINI, CODA, G5, CHD. EDU d2000235
removefel cepeir. o

replice ROSSINI. CODA. G5. CMU_EDU 47000239
removefal cepair. c

replica BCARLATTI. CODA. CE. CMU. EOW d&000Z39

ﬂ'ltﬂl:‘ Pathnare of Dic Lo e tﬁ].l&.l.lf'l;llll ."l:'illja."l.lﬁII.I"]:Ikl.l.I'l-BI.'."EL'C.l"IIE'ﬁ

MANE T NANE CEVFEICT EXINTN FRR -
Folne: Sxdf0002H rOx?all, e PF SO0 3 80 8 8 GrixBiiddicd, eleefal
Folemes: Oxdf000239 (0x7alld Sedd) VW f3 3 00 0 0 0 O0xB002dEcd, 2eleoaiER)
Folemese: Oxdd00021 fOxFall Sdd) PP /2 3200 0 0 0 Q) oxBG024109, JeleaTal)
Should d&MDNEIS repair.c be repoved? [no]

Slould ASMOEFISfrepair .o be removed? [no] v

Should dFIESSfrepair . ¢ e removed? [na] v

Do you want to repair the naee/nare conflicts? [yes] no

Thetopmost row of buttonsisusedtoinvokethetool’scommands. TheCl ear - | nconsi st ency
command, that makes an inconsi stent object accessible to normal applications, should be used with
caution and therefore is disabled for normal use. The Renove- | nc- Gbj ect command is a
macro to repair and delete an inconsistent object. The top frame displays the replicas of the
directory being repaired, i.e. / coda/ usr/ pkumar/ src/ res. Thisdirectory is replicated at
three serversscar |l atti, pucci ni androssi ni . The contents of any replica can be viewed
by double-clicking on its name. The repair-file generated by the Conpar e- Di r - Repl i cas
command is shown in the next frame. The file can be edited in the frame before it is used by the
do-repair command. The bottom frame is used to obtain user input and display advisory messages.

Figure 6.1: User Interface for the Directory Repair Tool

The second command, Do- Repai r, is used to request each server to perform compensating
operations. The compensating operations are specified in arepair-file, whose nameis supplied
as a parameter of this command. The tool checks the repair-file for syntax errors before
propagating the request to the servers. The repair-file has a specia format containing multiple
groups of commands separated by the name of the server they are to be executed at. Each
group contains zero or more commandsthat are executed sequentially at each server. Figure6.2

110 CHAPTER 6. MANUAL RESOLUTION

shows an example repair file.

replica GRI EG CODA. CS. CMJ. EDU cc000110
renmovef sl adnon. h

repli ca WAGNER. CODA. CS. CMJ. EDU ce000110
renmovef sl adnon. h

repli ca HAYDN. CODA. CS. CMJ. EDU cd000110
createf advice.o 7f000116 2a2 206b
createf adsrv.h 7f000116 2a8 206c¢c
m/ | wp. c. BAK | wp. ¢ 7f 000194 535 4867 535 4867

The directory being repaired isreplicated at three servers. 7f 000116 isthe replicated volume-id
corresponding to the three volume-idscc000110, ce000110 and cd000110.

Figure 6.2: An Example Repair-file

To simplify theprocess of producing arepair-file, thetool providesaConpar eDi r Repl i cas
command. The goal of this command isto compare adirectory’s replicas and generate alist of
suggested compensating commands to be executed by each server. These commands are not
executed by the servers automatically; the user has ultimate control over the list of commands
sent to the server.

During the comparison, objectsthat exist at all replicasareignored. Version-vectorsof the child
objects are used to distinguish recent subset creates from subset removes. For the former kind
of objects, a compensating command to create the missing replicasis generated automatically.
However, for thelatter kind of objects, acompensating command to removetheexisting replicas
is confirmed with the user. There are four situations in which user confirmation is needed to
decide the compensating command:

1. Name/Name conflict: Inthissituation, two or more objectswith the same namearefound
in separate replicas of the same directory. The user decides which object to preserve.

2. Remove/Update conflict: In this situation, an object is removed from a subset of the
directory’s replicas. Some replicas of the object weren't removed by the automated
resolution facility because they were modified since they were partitioned from the
replicas that were removed. User confirmation is needed to decide if the updates are to
be preserved or discarded.

6.2. REPAIR TOOL: DESIGN AND IMPLEMENTATION 111

3. Rename/Rename conflict: An object’s replicas are renamed into different directories.
The user decides which directory should contain the object.

4. Access-control list updates: The access-control lists of a directory’s replicas were
modified during a partition. The user decides the changes required to make the lists

identical.

6.2.2.1 Compensation at each Server

Compensation at each server is initiated by Venus making an RPC named Vi ceRepai r.
The parameters of this call include the f i d of the directory to be repaired and the repair-file.
The repair-file is shipped in its entirety. Venus could send each server only those commands
corresponding to thereplicait stores. However, therepair fileistypically small, containing less
than ten commands per replica. Thus the simplicity of transferring the entire file outweighs the
overhead of sending extraneous information to each server. Table 6.1 shows the complete list
of compensation commands and their parameters.

createf <name> <fid>

creates <nane> <fid>

createl <name> <fid>

created <nane> <fid>

renmovef sl <nane>

renoved <nane>

my <src-name> <tgt-name> \
<src-dfid> <tgt-dfid>

set owner <owner-id>
set node <node-bit s>
setmine <time>

setacl <user> <rights>
del acl <user>

Create the named file

Create the named symbolic link

Create alink to the specified object

Create the named sub-directory

Remove the named file, link or symbolic link
Remove the sub-tree rooted at the named sub-directory
Rename object from <sr c- nane> to <tgt-name>
<src-dfi d>istheparent'sfi d beforethe rename
<t gt - dfi d>istheparent’'sfi d after the rename
Set a new owner-id for the directory

Set the directory’s mode-bits

Set the time a directory was last modified

Set the user’s rights in the access-control list

Delete auser’srights

All commands except nv, assumethey aretobe executed inthedirectory beingrepaired. Commands
for deleting objectsdo not specify any f i d because each name withinadirectory uniquely identifies

the object.

Table 6.1: Command Syntax for Repairing a Directory

On receiving arepair-file, each server selects the commands for the replicait manages. Before
executing the commands, it locks the vnodes of objectsit will modify during therepair. Thelist

112 CHAPTER 6. MANUAL RESOLUTION

of objectsto be locked is computed from the parameters of the commands specified. Once the
vnodes are locked, the server validates and executes the commands sequentialy. To validate a
command the server makes three checks:

e Security: This check ensures that a user can repair only those objects he has appropriate
rightsfor.

e Integrity: This check ensures that executing the repair command will not violate any
system invariant, for example, a directory must never contain duplicate entries.

e Resource: Thischeck ensuresthat arepair command can be executed without overflowing
the enclosing volume's quota.

Each command is executed only if it is validated successfully. The mutation is performed on
avolatile copy of the object and committed atomically to stable storage only if all commands
complete successfully. If some command fails validation, the repair session is aborted, its
mutations are undone and an appropriate error code is returned to the client. The updates
are performed atomically using RVM. Details of the implementation have been omitted here
because this approach is similar to the method used by the automated resolution facility as
described in Section 4.4.1.1.

An important implementation detail concerns the execution of arepair command that creates a
directory. Consider a repair session in which the user requests the creation of a sub-directory
f 00. Therequest is prompted by the existence of f oo at another replica and the user’s wish
to preserve the sub-treerooted at f 00. Should the server creating f 0o copy the entire sub-tree
from the replicawhere f 0o already exists? Or, should the user be forced to recursively repair
al directories in the tree rooted at f 00? Using the former strategy could make the repair
session very expensive while using the latter strategy would inconvenience the user immensely.
Instead, Coda uses the resolution facility to populate the newly created directory replica.

The directory replica created during a repair session is empty and marked with a special null
version-stamp. Such objects are caled runts. The non-runt replicas of this directory, that
existed before the repair, have a different version-stamp. Therefore, resolution will be invoked
for this directory when a user tries to access it. The resolution protocol treats such objects
specially —instead of using the resolution logsto perform compensating operations, it popul ates
the runt-replica with the contents of one of the non-runt replicas. A sub-directory of the runt
being populated is created as a runt and is populated only when it is resolved. Thus, in the
example above, the tree rooted at f 0o is populated lazily, as and when a user accesses its
descendants.

6.2. REFPAIR TOOL: DESIGN AND IMPLEMENTATION 113
6.2.2.2 Completing the Repair

Since the repair-file may be generated manually by a user, the replicas of adirectory being re-
paired are not guaranteed to beidentical after the compensating commands have been executed.
In fact, some directories are repaired in several iterative steps. For example, the first iteration
may delete some objects to repair a name/name conflict while the second iteration creates the
missing replicas of the object that wasn't deleted. Therefore, after executing the compensating
commands, each server stamps the directory replica it manages with a unique version number.
This guarantees that a comparison of the replicas’ version numbersindicates divergence. Fur-
thermore, the inconsistency flag on each replicais cleared only after the directory replicas have
been verified for equality.

Since Venus aready has the machinery to fetch a directory’s replicas from the servers, it is
logical to makeit responsiblefor verifyingtheir equality. Unfortunately, thiswould compromise
security since the client is not trusted. Therefore, thistask is performed at the servers with the
client being responsible only for its activation. If the compensation commands are executed
successfully, Venus requests one of the servers to verify that the replicas are equal.! The
appointed server fetches the directory’s replicas from al servers in the AVSG and compares
them byte by byte. If the replicas are equal, it generates a new version stamp for the directory
and requests all serversto clear the inconsistency flag. Now, the directory can be accessed by
normal Unix applications again.

6.2.2.3 Repairing with Incomplete VSG

Directory operations executed during a repair are not recorded in the resolution log for two
reasons. First, the reason for performing the repair may be an over-full resolution log and
spooling more log records during the repair may be impossible. Second, the user may not want
the operations propagated automatically to the inaccessible replicas. For example, a user may
decide to remove afilef 0o. ¢ whilerepairing adirectory named bar . However he may want
to preserve another replica of bar / f 0o. ¢, that was inaccessible during the repair. In any
case, if arepair session does not include all V SG members, the directory must be repaired again
when the AV SG expands.

To achieve this functionality, each server inserts arepair-record in a directory’s resolution log
while performing compensation. To ensurethat arecord can beinserted, it deletesall previously
spooled records for this directory. Resolution is invoked when the directory’s AV SG expands,
since the version stamps of the repaired replicas are different. If the resolution protocol finds
arepair-record in the resolution log of a subset of the replicas, it marks the directory with an

Thisrequestismade using the Vi ceResol ve RPC. The coordinator implementation recognizes aresolution
request for an inconsistent directory as a request to verify the replicas’ equality.

114 CHAPTER 6. MANUAL RESOLUTION

inconsistency flag, thus forcing the user to repair the directory again. However, it ignores the
repair-record if the record is found in the logs of al replicas.

6.2.3 FileRepair Tool

fcodajusr/pkumar /src/rvmres/ops.c
is inconsistent...

What do you want to do?
Remove Inconsistent file
Ezplode Inc. file into directory

+ Use another file| {tMp/mergedops.d

Use one of the replicas as the new version

-rw-r--r-- 1 pkumar 22047 Jun 29 16:48 puccini.coda. cs. cmu. edu
-ry-r--r-- 1 pkumar 22047 Jun 29 16:48 rossini. coda. cs. cmu. edu
-rw-r--r-- 1 pkumar 21439 Jun 29 16:59 scarlatti.coda. cs. cnu. edo
Take no action
0K Cancel

The tool displays the replicas of the inconsistent file and the list of options for the repair. The
inconsistentfile/ coda/ usr/ pkumar/ src/ rvnr es/ ops. c,showninthefigure, isreplicated
at threeserversscar |l atti,pucci ni andr ossi ni . Theuser chosetorepair it with anew file
named / t np/ mer gedops. c that he created. Instead, the user could have chosen to use one of
its replicas by clicking on the appropriate replica’'s name.

Figure 6.3: User Interface for the File Repair Tool

The user-interface of the file repair tool is also based on Tcl/Tk and is shown in Figure 6.3.
The name of the inconsistent fileis provided as a command line argument to the tool. Like the
directory repair tool, it exposes the replicas of the file using the BEG N_.REPAI R pioctl. The
file can be repaired in one of four ways. It can be

1. replaced by anew file prepared by the user, or

6.2. REPAIR TOOL: DESIGN AND IMPLEMENTATION 115

2. replaced by one of thefile's replicasitself, or
3. removed, or

4. exploded into a real directory containing all the file's replicas. In other words, each
replicaof the fileis now replicated at al serversinits VSG.

The basic operation used by the tool to implement these options is the DO.REPAI R pioctl
provided by Venus. Recall that this operation takes two inputs: the name of an inconsistent
file and the name of arepair-file. The contents of the repair-file are used to set the diverging
replicas of theinconsistent file to acommon value. It isobvious how the tool uses this pioctl to
implement the first two options. To remove an inconsistent file, the tool uses atemporary empty
file to perform the repair and then deletes the repaired file using the unl i nk system call. To
implement the last option, it creates atemporary replicated directory and copies the replicas of
the inconsistent fileinto this directory. Then it deletes the inconsistent file, as described above,
and renames the temporary directory to have the name of the inconsistent file. Note that unlike
the directory repair tool, the file repair tool does not provide a compare-replicas command,
since afile’'s replicas can be compared easily using thedi f f utility.

A file repair request is propagated to the servers by Venus using the Vi ceRepai r RPC.
The parameters of this call include the fi d of the inconsistent file, a version-vector that
dominates the vectors of all accessible replicas and the new contents of the file. Note that the
Vi ceRepai r RPC was also used for a directory repair but the version-vector parameter is
ignored in that case.

An optimistic concurrency control strategy is used to prevent multiple users from repairing a
file smultaneously. A client makes a repair request assuming no other client is repairing the
file. When performing the repair each server verifies that the version-vector of the file being
repaired is submissive to the vector sent by the client. Thistest will fail, and the repair will be
aborted, if thefile has changed since the client initiated the Vi ceRepai r request.

Due to considerations of security, the servers perform the repair only if the user has sufficient
rights to modify the file being repaired. The contents and version-vector of the inconsistent
file are updated using Coda’s two-phase file update protocol, as described in Chapter 5. Since
the file's replicas are updated simultaneously using the same repair-file, they are guaranteed to
be identical at the end of the Vi ceRepai r RPC. Thus, unlike directories, the inconsistency
flag on afileis reset automatically at the end of the Vi ceRepai r RPC. If the RPC returns
successfully, Venus implodes the fake directory back into afile and makes it accessible viathe
Unix APl once again.

116 CHAPTER 6. MANUAL RESOLUTION

Chapter 7

Evaluation

The resolution mechanisms presented in this thesis have been implemented as a part of the
Coda file system. Coda is being used on a daily basis since 1991. Currently it supports over
thirty-five users and this community is still growing. This chapter evaluates Coda's resolution
mechanisms empirically and quantitatively. The empirical evaluationisbased on evidencefrom
real use of the system, while the quantitative evaluation is based on controlled experimentation
using file system traces as well as synthetic benchmarks. Before discussing the evaluation, this
chapter describes the implementation status of the resolution mechanisms.

7.1 Status and Usage Experience

At the time of writing, there are ten Coda servers storing approximately four Gigabytes of
data. Access to this data is provided by approximately seventy-five clients. The resolution
mechanisms have been very successful in making the system more usable. Over aperiod of 10
months, from September 1993 to June 1994, there have been 12,496 attempts to automatically
resolve directoriesand 20,370 attempts to automatically resolve files. 98.9% of the former and
99.4% of the latter were completed successfully.

7.1.1 Evolution

Coda’s resolution mechanisms were developed in several stages. The first version of the
system contained only the simplest resolution mechanism, i.e. version-vectors. This version
of the system could automatically resolve files that had been updated in a single partition.
It could detect a directory with diverging replicas but was unable to perform the resolution
automatically. Therefore, it included a repair tool so that diverging directory replicas could

117

118 CHAPTER 7. EVALUATION

be resolved manually. This version of the system was operational by June 1990 and was used
by four users. Experience with the system made it clear that a mechanism for automating the
resolution of a directory was essential for usability.

A preliminary version of log-based directory resolution was operational by June 1991. This
version of directory resolution stored resolution logs in volatile memory only. By doing so,
the system did not have to address issues related to log storage management or fault-tolerance.
However, this simplification came at a price — adirectory could be resolved only if the servers
storing its replicas had not been restarted since the updates occurred. This version of the
system was used by eight people. Experience with the system convinced us that the storage
space needed to log directory updates was not excessive and that a log-based approach for
directory resolution was feasible in areal production system.

The latest version of the system which records directory updates in recoverable storage has
been operational since Spring 1992. It is being used on a daily basis by a community of over
thirty-five users. Thisimplementation of directory resolution has two limitations — partitioned
updates to directory access-control lists and partitioned rename operations involving multiple
directories must be resolved manually. We chose not to implement the enhancements required
to automate the resolution of these two operations for two reasons. First, these enhancements
require achangein the recoverabledata structures and acomplete re-initialization of our system
—atask that would inconvenience our users and have a high administrative cost. Second, the
enhancements are not critical since these operations occur rarely in practice. Anaysis of file
system traces from our environment shows that less than 3% of all directory updates are cross-
directory renames. The number of updates to directory access-control list cannot be estimated
because these updates are not uniquely identifiable in the traces. However, anecdotal evidence
suggests that such updates are rarein our environment.

Application-specific resolution of fileswas developed in two stages. The first stage was opera-
tional by June 1993 and only included the mechanism to find and transparently invoke an ASR.
It did not guarantee fault-tol erance of the execution of the Asr. The fault-tolerance mechanism
was implemented in the second stage that has been operational since May 1994. Sincethe ASR
mechanism was made available to the user community only recently, its evaluation is based
on limited experience. However, we hope to gain more experience with the ASR mechanism
since it will also be used in an extension of Coda to support Isolation-Only Transactions [30].
The goal of this project is to provide users with transactions at the file-system level so that
write-write as well as read-write conflicts can be easily detected. Once the conflict is detected,
an ASR is used to resolve the conflict automatically.

The repair facility has been operational since the first version of the system was released in
June 1990. At the beginning the repair facility did not provide the Conpar eDi r Repl i cas
command. Therefore, users were forced to create the repair-file manually. The next version of
the repair facility that provided this command was implemented by December 1990. Recently,

7.1. STATUSAND USAGE EXPERIENCE 119

in May 1994, the repair facility was modified to provide a graphical user-interface in addition
to the standard terminal based interface. The new interfaceis based on Tcl/Tk.

7.1.2 Coda Environment

The ten servers servicing the Coda community are divided into two groups of three servers
each and another group consisting of four servers. The former two groups of servers, running
the omega and beta versions of the server programs, store three-way replicated volumes. The
last group of servers run the alpha version of the server programs and store two- to four-way
replicated volumes.

The omega servers, running the most stable version of the software, store volumes containing
the home directories of the Coda user community as well as the source trees for application
software. Infact, the source trees for Coda and some related projects are stored entirely within
the Coda file system. To prevent loss of data due to hardware crashes or catastrophic software
errors, all data on the omega serversis backed up to tape every night.

Volumes stored on the beta servers contain files that can be reproduced easily — for exam-
ple, object files produced by compiling source files and files belonging to applications like
gnu- emacs, IATEX ete. that are archived regularly and available freely onthe Internet. There-
fore, these servers can be reinitialized easily in the event of an unrecoverablefailure. To stress
test the beta server software, each member of the Coda group has a volume on these servers
which he or she uses regularly to compile new software modules.

Theaphaserversare used for testing new server releasesand thereforestoretemporary volumes.
The server software can execute on two hardware platforms — the Mips R2000/R3000 and
the Intel x86 series. However, al server hosts in our environment are the 5000/200 series
DECstations containing the Mips R3000 CPU. Each omega and beta server has a disk storage
capacity of two Gigabytes. At the time of writing, each server contains about 1.7 Gigabytes of
data.

There aretwo kinds of clientsinthe Codaenvironment — desktop and mobile hosts. The desktop
hosts are mostly 5000/200 series DECstations while the mobile hosts are mostly DECpc 425SL
laptops. Inaddition, thereare afew 3100 series DECstations, Sun Sparcstationsand IBM PS/2-
L40 laptops in our environment. Servers and clients run version 2.6 of the Mach operating
system [1].

7.1.3 Usage

The nature of partitioned updates and their subsequent resolution is influenced by the kind of
data and its usage in our environment. There are currently 225 volumes managed by the Coda

120 CHAPTER 7. EVALUATION

servers. Forty-three of these volumes are user volumes containing the home directories of
users in the Coda community. To stress-test beta versions of the server software, members of
the Coda group store object files in twenty object volumes managed by the beta-servers. The
alpha servers manage 17 scratch volumes that are used to test new server software releases.
110 Project volumes contain files shared by project members, for example, project sources and
libraries of various software modules. Seven projects store their files in project volumes, but
most of these volumes are used for the Coda project itself. To support disconnected operation,
certain critical applications like gnu- emacs, X11, C++, etc. are stored in 35 application
volumes. Storing these applicationsin Coda allows users to utilize the small disks on mobile
hosts effectively. For example, a user can cache only those X11 applications he wants to run
while disconnected and still have sufficient space to cache other personal files also needed
during the disconnection.

Ten out of the forty-three user volumes belong to members of the Coda group who use the
system on adaily basis. Fifteen user volumes belong to users who use the system actively, i.e.
they have two or three sessions of file-system activity per week, while eighteen user volumes
belong to users who use the system occasionally. Although Coda's user community is quite
largeit isimportant to realize that it is homogeneous and consists of users that perform similar
tasks. All of the users are researchers in a University environment. They use the file system
primarily for two tasks — program devel opment and document processing.

Thefrequency of resol ution depends on thedegree of write-sharing and thefrequency of network
partitions in the environment. Files contained in a user volume do not exhibit a high degree
of write-sharing because they are usually modified by the owner of the volume. Application
volumes also do not exhibit write-sharing for two reasons. First, they are updated infrequently,
only when a new version of the application is released, and second they are typically updated
by one user, the maintainer of the application software.

Objects belonging to project volumes exhibit some write-sharing between members of the
project. However, we found the degree of write-sharing to be less than expected and can
attribute two reasonsfor this. First, project members sharefiles using arevision control system
and make private copies of the shared files while they are developing the software. Thus, the
shared copy of afileisupdated only when the user isready to check initsfinal version. Second,
project members typically develop independent modules of the system and therefore modify
independent sets of files contained within the same volume.

Even though afile or directory is write-shared infrequently between users, it is often “shared”

by one user accessing it from different clients. For example a user developing a software
module may use one client to run hiswindowing system and an editor, and use another client as
the compile engine. This scenario is common in our environment since most Coda users have
access to at least two clients, a mobile laptop computer and a desktop host; and, the mobile
host is often connected to the network during the day to ensure that its cache contains the latest
data.

7.2. EMPIRICAL MEASUREMENT FRAMEWORK 121

- .| Off-Line

Database Analysis

Data
Collector

Y
Data Reaper
Log

Figure 7.1: Data Collection Architecture

006

Anecdotal evidence indicates that partitioned activity is quite common in our environment.
Partitioned activity occurs whenever only a subset of the servers in an object’'s VSG are
accessible. A server may be inaccessible because of a network or software failure, or because
it is shutdown for software maintenance. Coda’s shutdown procedure ensures that at least one
server in each VSG is accessible at all times. All these events provide ample opportunity for
partitioned activity in our environment.

As aresult of the usage patterns described above, resolution is triggered most often by intra-
user cross-client sharing or partitioned activity during a server shutdown or failure. Since the
updates triggering such resolutions originate from the same user, the likelihood of a conflict
islow. This reason combined with the fact that write-sharing across usersis rare in the Unix
environment accounts for the high success rate of resolution.

7.2 Empirical Measurement Framework

To evaluate the techniques presented in this thesis, data was collected during real use of the
Coda system. This section presents the framework for data collection. Results from these
measurements are presented in the following two sections.

Figure 7.1 shows the architecture used to collect data from the Coda servers. Data resulting
from each server’s instrumentation is sent to a central data collector that storesthe datainalog
onitslocal disk. To minimizeloss of datadueto failures, each server sends datato the collector
every two hours. A reaper processes this data and inserts the results into a database. Storing

122 CHAPTER 7. EVALUATION

the datain a database allows us to answer various questions about the system’s usage long after
the data has been collected. The answers are provided by querying the database using SQL [7].

This framework was implemented by Brian Noble. Details of its design and implementation
are provided in [35]. The Coda serverswere instrumented using this framework for a period of
ten months, from September 1993 to June 1994.

7.3 Evaluation of Directory Resolution

The success of directory resolution in practice can be measured by counting the number of
instances in which it automatically resolves partitioned updates. Empirical results from our
environment confirmthat directory resolutionisvery effective. AsshowninTable7.1, 98.9% of
all directory resolution attempts were successful. Note that 88.9% of the successful resolutions
did not need to validate any transaction. In each of these instances the replicas of the directory
being resolved were equa even though they appeared to be diverging. This event occurs
frequently in our environment due to the intra-user sharing mentioned in the previous section —
auser updates a directory from one client and accesses it from another client before the second
phase of the update is complete. At that point, the directory’s version-vectors® are unequal and
make the replicas appear to be diverging even though they are not.

Although directory resolution is very successful in the Coda environment, it is important
to understand that the Coda user community is homogeneous and not representative of users
outside theresearch environment. Therefore, it ispossiblethat resolution will be less successful
in other environments, such as alarge product devel opment site, that exhibit different file usage
patterns.

Directory resolution fails for two reasons. (@) because the partitioned transactions on the
replicas are non-serializable or (b) because of shortcomings in the implementation including
the scarcity of resolution log space. Table 7.1 shows the number of conflicts caused by each
of these problems. Create transactions exhibited the highest number of conflicts. Anecdotal
evidence suggests that these conflicts are often caused due to the creation of afilenamed cor e
in the same directory in multiple partitions. The inability to resolve cross-directory renames
caused only 54 resolution attempts to fail. Unfortunately, we cannot report the number of
failures caused by partitioned access-control list operations since they were not counted by the
servers. The number of instances in which the resolution log filled up was much higher than
our expectation. Further analysis showed that the maximum log size for the corresponding
volumes was erroneously set too low by the system administrators.

Lversion-vectors for directories do not serve any purpose during resolution and are maintained purely for
historical reasons.

7.3. EVALUATION OF DIRECTORY RESOLUTION 123

Directory Resolutions Count
Attempts 12,496
Aborts 58
Conflicts 82
Successes 12,356

O transactionsvalidated | 10,981
> 1transaction validated | 1,375

Non-serializable Transactions

Create 35
Remove 14
Update (st or e etc.) 10

I mplementation Limitation Conflicts

Rename 94
Log Wrap 45

This table shows the results of directory resolutions observed from September 1993 to June 1994.
The resolution attempts are classified into three classes: those that had to be aborted, those that
resulted in conflictsand thosethat succeeded. The number of non-serializabl etransactionsobserved
in the same time period are also shown. Thelast group shows the number of resolution failures due
to shortcomingsin the implementation.

Table 7.1: Observed Directory Resolutions

Animportant point to noteisthat the number of conflictsreportedin Table 7.1 is overestimated.
A conflict is typically detected by more than one server participating in the resolution and
therefore is counted multiple times towards the total.

Our implementation of directory resolution incurs both time and space overheads. The time
overhead occurs at two points— first during the mutation to create and spool the resolution log
records and second during the execution of the resolution protocol. The space overhead arises
from the need to maintain logs at servers. The rest of this section answers the three obvious
guestions that follow from these observations:

e What isthe effect of logging on system performance?
e How fast does the log grow during partitioned operation?

e How well does resolution perform?

124 CHAPTER 7. EVALUATION

7.3.1 Performance Penalty dueto L ogging

Spooling resolution log records slows down the servers since they need to do more work for
each update transaction. Obvioudly, the increased latency of each mutation slows down the
client also. This section answers two questions. How does the latency of each operation
performed at a server with logging support compare with the latency of the same operation
without logging support? And, what is the increase in latency perceived by the client?

7.3.1.1 Methodology

To answer these two questions we used two sets of experiments.

The first set of experiments measured the latency of updates at a server. The latency of an
update transaction is the elapsed time between the server receiving a request and sending the
response to the client. Each experiment consisted of generating an update request at a client
and measuring its latency at the server using a microsecond timer. Measurements were made
for seven kinds of update transactions, creat e, |ink, unlink, renane, nkdir,

rmdi r and sym i nk. To measure the overhead of logging, each experiment was conducted
in two configurations, i.e. with and without logging support at the server. Mutations were
performed only on non-replicated objectsin order to minimizethe overheads dueto replication.

To measure the latency of mutations perceived by the client, the second set of experiments
timed awell defined task, the Andrew benchmark [22]. The benchmark takes as input a source
sub-tree and operates on a target sub-tree in the file system to be measured. It performs its
operationsin the target tree in five phases: the Makedir phase creates sub-directories; the Copy
phase copiesfilesfromthe sourcetree; the ScanDir phase opensall directoriesand examinesthe
status of all files; the ReadAll phase opens and reads all files; finally the Make phase compiles
an application. The experiment consisted of running the benchmark at the client and measuring
the elapsed time of each phase. It was conducted under two server configurations: with and
without logging support at the server.

To minimize experimental error, extraneous user applications like X, and system daemons like
cron and at d werekilled for the duration of both experiments.

7.3.1.2 Results

Since resolution logs are maintained in RVM, spooling alog record at the end of a transaction
requires afew additional modify-records to be appended to the RVM log. Therefore the time
overhead for logging should be small. Results from the first set of experiments confirm this
fact. Asshown in Table 7.2, the time overhead to log most directory mutations at the server
isaround 2 or 3 milliseconds. The two exceptions are ther enane and r ndi r transactions.

7.3. EVALUATION OF DIRECTORY RESOLUTION 125

Recall from Table 4.4 on page 75, that the log record for ther ename transaction is the biggest
and most complex. Thus, the overhead for spooling thisrecordishigh. Ther ndi r transaction
has a high overhead because it needs to scan and process the log of the sub-directory being
removed.

Transaction || Server Configuration || Overhead

Type NoLogging | Logging || Time | %
create 250 @7 277 @nl| 27 | 10
i nk 23.3 (54 259 o | 26 | 11
unl i nk 251 (64 277 @®3 | 26 | 10
rename 21.1 (s 262 @yl 51 | 24
mkdi r 328 (11 345 @s | 1.7 5
rdir 27.2 (62 325 En| 53 | 20
sym i nk 244 (50 275 @an| 31 | 13

This table shows the time for each update transaction with and without logging at the server. The
last two columns show the increase in latency for each operation. This data was collected using a
DECstation 5000/200 with 32 Megabytes of memory as a server. All numbers representing time
are in milliseconds and are the mean value from 15 trials. Numbers in parentheses are standard
deviations.

Table 7.2: Time Overhead at Server due to Logging

Results from the second set of experiments show that the time overhead due to logging is
not noticeable at the client. As shown in Table 7.3, the time for each phase of the Andrew
benchmark as well as its total execution time in the two server configurations is comparable.
The difference between the two configurations is less than one standard deviation of the mean
value. Thisresult is expected since the overhead due to logging is much smaller than the sum
of the network latency and the time for executing the operation at the server. Experimental
error, which is caused by a noisy network, completely masks the overhead due to logging.

7.3.2 Sizeof Log

To limit the growth of the log, Coda uses an aggressive policy to reclaim log space. Recall
that log records corresponding to non-partitioned operations, i.e. operations that succeed at all
serversin the VSG, are removed as soon as the operation succeeds. However in the presence
of a partition, resolution logs grow linearly with the amount of work. To estimate the rate of
log growth we made two sets of measurements. First, a trace-driven simulation was used to
estimate the log growth in the presence of long partitions. Second, in order to verify the results

126 CHAPTER 7. EVALUATION

Task Server Configuration Overhead
NoLogging | Logging | Time| %

Andrew Benchmark || 1125 @e | 111.5 (10 -10| -1
MakeDir 2.8 (04 3.2 (03 04| 14
Copy 20.2 (26 20.2 (09 00| O
ScanDir 8.0 (05 7.7 (05 -03| 4
ReadAll 13.6 @y 12.8 (09 -08| -6
Make 67.8 (19 719 @7 41| 6

This table shows the time spent in each phase of the Andrew Benchmark. The data was collected
using a DECstation 5000/200 with 64 MB of memory as a client and a DECstation 5000/200 with
32 MB of memory as a server communicating over an ethernet. The time values are in seconds
and show the mean value over 5 runs of the benchmark. Numbers in parentheses are standard
deviations.

Table 7.3: Time Overhead at Client due to Logging

of the simulation, the servers were instrumented to measure the log growth in practice. Each
of these studies is described below.

7.3.2.1 Trace-driven Simulation

The trace-driven analysisis based on about 4GB of file reference traces? obtained over aperiod
of 10 weeks from 20 Coda workstations. The usage profile captured in these traces is typical
of research and educational environments. These traces were used as input to a simulation of
the logging component of the resolution subsystem. The simulator assumes that all activity
in atrace occurs while partitioned and therefore never simulates any log truncation that might
occur in practice. It maintainsahistory of log growth at 15-minuteintervalsfor each volumein
the system. For each directory update in the trace, the simulator increments the corresponding
volume's log length by the size of the log record that would have been generated by a Coda
server. At the end of simulation, the average and peak log growth rates for each volume can be
obtained from its history.

Table 7.4 showsthedistribution of thelong-term averagerate of log growth over all the volumes
encountered in our traces. Thisaverageis computed by dividing thefinal log size for avolume
by the time between the first and last updates on it. The long-termlog growthisrelatively low,
averaging about 94 bytes per hour.

Focusing only on long-term average log growth rate can be misleading, since user activity
is often bursty. A few hours of intense activity during a partition can generate much longer

2The file-system traces were collected by Lily Mummert.

7.3. EVALUATION OF DIRECTORY RESOLUTION 127

Bytes per Hour | Percentage of Volumes
0to 100 66%
100 to 200 20%
200 to 300 5%
300 to 400 7%
400 to 500 2%
> 500 0%

This data was obtained by trace-based simulation and shows the distribution of long-term average
growth rates for 44 volumes over a period of 10 weeks.

Table 7.4: Observed Distribution of Long-Term Average Log Growth Rates

logs than that predicted by Table 7.4. To estimate the log length induced by peak activity, we
examined the statistical distribution of hourly log growthratesfor al volumesin our simulation.
Figure 7.2 shows this distribution. Over 94% of all data points are less than 1KB, and over
99.5% arelessthan 10K B. The highest value observed was 141K B, but this occurred only once.

A worst-case design would haveto cope with the highest growthrate during thelongest partition.
A morerealistic design would use alog adequate for alarge fraction of the anticipated scenarios.
Since hourly growth is less than 10KB in 99.5% of our data points, and since an hour-long
partition could have straddled two consecutive hours of peak activity, we infer that a20KB log
will be adequate for most hour-long partitionsin our environment. More generally, a partition
of N hours could have straddled N + 1 consecutive hours of peak activity. Hence a log of
10(N + 1) KB would be necessary. If a Coda server were to hold 100 volumes the total log
space needed on the server would be (N + 1) MB.

7.3.2.2 Measurementsfrom the System

To corroborate the simulations, the space used by the resolution logs in practice was measured
using the framework described in Section 7.2. The high-water mark reached for each volume's
log each day was reported to the data collector. At the end of the day the high-water mark for
each volume was stored in the database. The high-water mark isreset to the current size at the
beginning of each day.

Figure 7.3 shows the distribution of the high-water mark reached each day by each volume's
log. The mean of the distribution is 17.7KB implying that each volume has a modest sized
log. Most of the observed high-water marks were under 200 Kilobytes with only a few
outliers above the 250KB range. As predicted by the simulation, 99.5% of the resolution
logs grow less than 240KB per day. However, some of the predictions made by the trace-
driven simulation were gross over-estimates. For example, based on a peak log growth rate of

128 CHAPTER 7. EVALUATION

7 100.0%

1

: 10.0%
Samplesin Graph = 74,000

Number of Volumes= 44

71 1.0%

Percent of volume samples

71 0.10%

71 0.01%

1 1 1

y . 0.001%
0 20 40 60 80 100 120 140 160

Kilobytes per Hour

This figure shows the distribution of log growth rates for each hour for each volume reported by
the simulations. The traces used for the simulation were taken from 20 workstations and spanned

a 10 week period. The width of each histogram bar is 1KB. Note that the scale on the vertical axis
is logarithmic.

Figure 7.2: Distribution of Hourly Log Growth

141K B/hour, the simulation predicted the maximum high-water mark tobe > 3.3MB. However,
measurements from practice show that the maximum log size ever reached is 385KB. There
are two explanations for this“anomaly”. In practice, it isunusual for heavy demand on thefile
system to last for an entire day. Furthermore, even if the demand is high, the resolution logs
grow only when the servers are partitioned.

7.3.3 Performance of Resolution

A fair estimate of the time overhead due to resolution must account for the fact that resolution
will take longer when there are more partitioned updatesto resolve. Hence the metricwe usein
our evaluation is the ratio of two times: resolution time and work time. Resolution timeis the
elapsed time between detection of a partitioned update and return of control to the client after

7.3. EVALUATION OF DIRECTORY RESOLUTION 129

. 7 100.0%
Samplesin Graph = 99,884

Average High-Water Mark = 17.7KB

71 10.0%

71 1.0%

Percent of volume samples

71 0.1%

T T - T I T T T - 0 N 01%
0 50 100 150 200 250 300 350 400
Kilobytes

This figure shows the distribution of maximum log size reached each day by each volume. The
sizes were measured from resolution logs in actual use by the system from September 1993 to
June 1994. The high-water mark is reset each morning to the current log size. The width of each
histogram bar is 1KB. Once again, note that the scale on the vertical axes islogarithmic.

Figure 7.3: Daily High-Water Marks of Resolution Log Sizes

successful resolution. Work time is the sum of the elapsed times for performing the original
set of partitioned updates.

Resolution time is perceptible to the first user to access a directory after the end of a network
failure that resulted in resolvable partitioned updates. The elapsed time for failed resolution is
less important, since it is swamped by the time for manual resolution.

An increase in partitioned activity lengthens phases 2 and 3 of the resolution protocol. Phase
2 takes longer because larger logs are shipped to the coordinator. Phase 3 takes longer be-
cause of an increase in the transmission time to ship alarger merged log to the subordinates,
and because of an increase in the times at the subordinates for computing and applying com-
pensating operations. An increase in the number of replicas aso increases resolution time
because communication overheads are higher, and the computing of compensating operations
by subordinates takes longer.

130

CHAPTER 7. EVALUATION

Volume Type

Physical Characteristic User Project ‘ System ‘ BBoard All
Total Number of Volumes 786 121 72 71 1050
Total Number of Directories 13955 33642 9150 2286 59033
Total Number of Files 152111 313890 113029 144525 723555
Total Size of File Data (MB) 1700 7000 1500 560 11000
Directories/Directory 36 (134) | 30 (45 | 36 (104)| 68 (194 | 3.2 (83
Files/Directory 14.6 (30.6) | 16.2 (35.6) | 15.9 (36.9) | 66.9 (142.4) | 15.7 (34.5)
Hard Links/Directory 37 (124 | 20 (15| 40 B39 | 00 (@O0 | 34 (57
Symbolic Linkg/Directory 41 (101) | 34 (75 | 136 (453) | 6.0 (259 | 6.3 (24.9

Thistable, adapted from [12], summarizes various physical characteristics of system, user, project,
and bulletin board (“bboard”) volumesin AFs at Carnegie Mellon University in early 1990. This
datawas obtained via static analysis. The numbersin parentheses are standard deviations. The data

in thistable was collected by Maria Ebling.

Table 7.5: Sample Physical Characteristics by Volume Type

7.3.3.1 Methodology

To quantify the above effects, we conducted a series of carefully controlled experiments using
a synthetic benchmark. One instance of the benchmark, referred to as a work unit, consists of
104 directory updates. The execution of awork unit proceeds in three steps:

e create 20 new objects, consisting of 14 files, 4 subdirectories, 1 link and 1 symbolic link.

These values approximate the composition of atypical user directory in our environment
and were obtained from a static analysis of the AFs environment. Detailed results of the
analysis are shown in Table 7.5. Due to the high variance in the number of links and
symbolic links per directory, awork unit includes only one of each.

simulation of editor activity on the newly-created files. This is done by creating, then
removing, a checkpoint file for each file.

simulation of a C++ compiler’s activity on the newly-created files. For each such file,
foo.c, afilefoo..c is created; next, afile foo..o is created, then renamed to foo.o; finally
foo..c isremoved.

An experiment consists of first measuring the work time for performing a variable number of
work units on each of n partitioned replicas of a directory. Work-units are always performed

7.3. EVALUATION OF DIRECTORY RESOLUTION 131

sequentially, each unit creating a distinct set of files. When the work is to be performed
at multiple replicas the client communicates with one server at any time. All work-units to
be performed at that replica are completed before communication is established with another
server. After the work is completed, the partitions between the replicas are healed, resolution
istriggered, and the resolution time is measured.

We performed two sets of experiments, one involving partitioned work at one replica, and
the other involving partitioned work at all replicas. In each set, we examined configurations
involving 2, 3 and 4 replicas. For each configuration, we varied the load from 1 to 10 work
units.

7.3.3.2 Reaults

Tables 7.6 and 7.7 present the means and standard deviations of work and resolution times
observed in three trials of each experiment. They aso indicate the contributions of individual
phases to total resolution time. The tablesindicate that resolution timeincreases primarily with
load, and secondarily with the replication factor.

The primary conclusion to be drawn from this data is that a log-based strategy for directory
resolution is quite efficient, taking no more than 10% of the work timein all our experiments.
This holds even up to a load of 10 at a replication of 4, corresponding to over 1000 updates
being performed on each of 4 replicas of adirectory.

Graphs in Figure 7.4 show the contribution of each phase towards the total resolution time.
Phases 1 and 4 contribute very littleto the overall resolutiontime. Since these phases merely do
locking and unlocking, the time for them should be independent of load. But, as a sanity check
in our current implementation, the coordinator collects the replicas to verify equality before
unlocking in Phase 4. This accounts for the dependence of this phase on load and replication
factor in our experiments.

Phase 2 consists of extraction and shipping of logs by subordinates. The timefor this phaseis
dependent on the total lengths of the logs, which is only related to the total amount of work.
This is apparent in Table 7.6 where the time for phase 2 increases with load but is invariant
with degree of replication. The times for Phase 2 in Table 7.7 are significantly higher than in
Table 7.6. Thisis a consequence of our parallel RPC [51] implementation. A large log fetch
from one site and zero-length log fetches from the othersis much more efficient than anumber
of smaller, equal-sized log fetches from each site.

Phase 3 is typically the dominant contributor to the total time for resolution. This is not
surprising, since the bulk of work for resolution occurs here. This includes the shipping of
merged logs, computation of compensating operations, and application of these operations.

132 CHAPTER 7. EVALUATION

30 +

[] Phase 3
5 1 —
B Phase 2
Tg 20 1 BE Phases1& 4 -
2 _
E
= 15 4+
= _
S
§ —
?@ 10 1
5 1
0 -
load 1 2 3 5 710 1 2 3 5 710 1 2 3 5 710
Rep Factor 2 Rep Factor 3 Rep Factor 4
(a) Resolution Time After Work at One Replica
140 —
120 1 [Phase 3
o
w0 4 B Phase 2
g EF Phases1 & 4
g 8 -
E
c
S 60 1
3
T 40
20
0

123 5 710
Rep Factor 3 Rep Factor 4

(b) Resolution Time After Work at All Replicas

The data for these graphs is taken from Tables 7.6 and 7.7. The graphs show the time spent in
each phase of the directory resolution protocol. Most of the timeis spent in the third phase. When
work is done only at one of the replicas, the time spent in phase 1 and 4 is significant only at a
workload of 10 unitsand areplication factor of 4. However when partitioned work is performed on
all replicas, the time spent in these two phases is significant even at a replication factor of 2. The
times spent in the second phase isindependent of the replication factor.

Figure 7.4: Performance of Resolution

7.4. EVALUATION OF FILE RESOLUTION 133
Rep | Load | Work Time Resolution Time (seconds) ResTime
Factor (seconds) Total Phase1+4 | Phase2 | Phase3 | Work Time
2 1 279 (04)| 1500 |01 (00 |01(.0) | 1.3 (0.0) 5.4%

2 69.7 (63)| 29 (01 |02 (00| 010 | 27 (01) 4.2%
3 | 1116 (69 | 45 (00) |02 (00) | 0.1(00) | 4.2 (0.0 4.0%
5 |1880 (L0)| 7.8 (01) | 0.2 (0.0)|0.2(00) | 7.4 (0.0) 4.1%
7 3521 (75) | 12.0 (0.1) | 0.2 (0.0) | 0.2(0.0) | 11.6 (0.2 3.4%
10 | 5634 (39) | 182 (0.4) | 0.3 (0.0 | 0.3(0.0) | 17.6 (0.4) 3.2%
3 1 285 (21)| 1.9 (0.0) | 0.2 (0.0) | 01(00) | 1.7 (0.0) 6.7%
2 795 (25 | 3.7 (01 |02 (01)]01(.0) | 3.4 (0.1) 4.7%
3 |1181 (10.7) | 58 (03) | 0.2 (0.1) | 0.1(0.0) | 54 (0.2 4.6%
5 2248 (10.2) | 9.0 (03) | 0.3 (0.1) | 0.2(0.0)0 | 8.6 (0.3 4.0%
7 3371 (98 | 127 (03) | 0.2 (0.1) | 0.2(0.0) | 12.2 (0.2 3.8%
10 | 4752 (7.2) | 19.7 (0.3) | 0.4 (0.2) | 0.3(0.0) | 19.0 (0.3 4.1%
4 1 279 (02| 20 (@4 |02 (00 |02((02 | 1.7 (03) 7.2%
2 786 (7.00| 3.7 (0.0) | 0.2 (0.0) | 0.1(0.0) | 3.4 (0.0) 4.7%
3 1095 (32)| 56 (04) |03 (02 |0.1(0.0 | 52 (0.0 5.1%
5 2788 (29 | 9.7 (01 |03 (01) | 0.2(00 | 9.3 (0.2 3.5%
7 341.7 (9.0) | 145 (06) | 0.3 (0.0) | 0.2(0.0) | 14.0 (0.6) 4.2%
10 | 5252 (5.7) | 25.0 (45 |37 (41) | 03(0.0) | 21.1 (0.8) 4.8%

This data was obtained using a Decstation 3100 with 16MB of memory as client, and Decstation
5000/200s with 32MB of memory as servers communicating over an Ethernet. The numbers
presented here are mean values from three trials of each experiment. Numbers in parentheses are
standard deviations.

Table 7.6: Resolution Time After Work at One Replica

7.4 Evaluation of File Resolution

Recall that a file can be resolved by servers only if its replicas have not been modified si-
multaneously in multiple partitions. To estimate the frequency of this event, the servers were
instrumented as described in Section 7.2. The data collected from the servers over a period of
10 monthsis summarized in Table 7.8. Theresults confirm that servers could often resolvefiles
—99.4% of al file resolutions were performed at the servers. 48% of file resolves performed
by the servers completed without propagating any file data between the VSG members, while

134 CHAPTER 7. EVALUATION
Rep | Load | Work Time Resolution Time (seconds) ResTime
Factor (seconds) Total Phase1+4 | Phase?2 Phase3 | Work Time
2 1 72.1 (16.6) 1.7 (01)| 02 (00| 010 | 1.4 (01) 2.4%

2 187.1 (105 | 127 (15| 02 (0| 88 (L2 | 38 (19 6.8%
3 1988 (39| 120 (10)| 02 (01| 88 (L2 | 29 (01 6.0%
5 5174 (386) | 205 (21)| 0.7 (05) | 122 (20)| 7.6 (0.6) 4.0%
7 5789 (381 | 265 (17| 03 (0.1) | 136 (L2) | 125 (29 4.6%
10 9279 (16.8) | 395 (25 | 11.0 (0.0) | 11.7 (24) | 169 (0.2 4.3%
3 1 100.5 (12.0) 28 (03| 02 (O | 0100 | 25 (03 2.8%
2 1940 (45 | 106 (22| 02 (00| 42 @35 | 62 (13 5.5%
3 3299 (105) | 163 (31| 06 (06)| 82 (@35 | 76 (02 4.9%
5 569.1 (16.8) | 309 (6.1) | 57 (45) | 12.2 (20) | 13.1 (0.3 5.4%
7 847.0 (75.2) | 454 (86)| 7.2 (14) | 129 (42) | 25.2 (5.8) 5.3%
10 | 1296.8 (9.9) | 133.3 (13.9) | 17.1 (12) | 185 (1.7) | 97.7 (13.2) 10.3%
4 1 129.2 (15.9) 76 (03| 07 (07| 1522 | 54 (17 5.9%
2 3071 (323) | 261 (68)| 1.3 (1.0)| 7.6 (6.3) | 17.2 (7.5 8.5%
3 463.7 (375) | 388 (17.7) | 2.8 (28) | 15.7 (25) | 20.3 (125 8.4%
5 7796 (67.7) | 436 (99) | 7.2 (83| 122 (20)| 242 (13 5.6%
7 10194 (14.8) | 784 (29.6) | 17.1 (83) | 11.1 (4.2) | 50.2 (21.2) 7.7%
10 | 1837.5 (13.3) | 114.0 (16.7) | 17.6 (18.1) | 18.2(10.0) | 78.3 (12.8) 6.2%

This data was obtained from experiments using the same hardware configuration as for Table 7.6.
The numbers presented here are the mean values from three trials of each experiment. Numbersin
parentheses are standard deviations.

Table 7.7: Resolution Time After Work at All Replicas

46% of them were invoked with at least one empty replica. An empty replica could have been
created by either aresolution or arepair of its parent directory. Resolutions not involving the
transmission of dataare shown in Table 7.8 asresol utions of weakly-equal files, and resolutions
involving at least one empty replica appear as runt force resolves.

The rest of this section answers the following two questions:

e What isthe latency of file resolution?

7.4. EVALUATION OF FILE RESOLUTION 135

File Resolutions | No. of Cases
Attempts 20,370
Successes 20,237
Weakly Equal 9,766
Runt Force 9,338
Normal 1,133
Needing an ASR 133

This table shows the results of file resolutions observed at the servers over 10 months. Successful
resolutions are divided into three categories: weakly-equal, i.e. the replicas were equal but their
version-vectors were different; runt-force, i.e. one or more file replicas were empty; and normal,
i.e. asubset of the replicas were stale. The last row shows the number of occasions in which a file
could not be resolved by the servers.

Table 7.8: Observed File Resolutions

e What isthe cost of executing an AsR at the client?

7.4.1 Latency of File Resolution

The latency of resolution is apparent to the first user who accesses afile after a partition during
which it was modified. Like directory resolution, the resolution time for files is the elapsed
time between the invocation of resolution at the coordinator and the return of control to the
client.

The coordinator of the file resolution protocol performs five steps. lock replicas and fetch
version-vectors from subordinates, find and fetch the dominant replica, distribute that replica
to al servers, distribute the list of servers that successfully completed the previous step and
finaly unlock the replicas. The time for resolution is dependent on the size of the file being
resolved. An increasein file size lengthens the time needed to complete the second and third
steps because more data needs to be transferred over the network. However, the time needed
for the other steps remains unchanged. Increasing the number of file replicas lengthens the
time for each step because of extra communication overheads.

7.4.1.1 Methodology

A series of experiments were conducted to quantify the above effects. In each experiment, a
subset of afile'sreplicasismodified in apartition. Then the partition is healed and aresolution
for that fileistriggered. The elapsed time for resolution and each of its sub-steps is measured
at the coordinator server using a microsecond timer.

136

CHAPTER 7. EVALUATION

Resolution Time (msecs)

1800 -

1600 +

1400 -

1200 +

% 1000 -

Time (m:

600 -

400 4

200 A

800 A

140001 %
2000 .
1 L
o —o rep. factor 2 i?
e---a rep.factor 3 1
10000} & —a rep. factor 4 /,
i
8000[/l
]
6000 [/é/l
40001 /¢
7
2000 /6/
- /—
0 M 6 M —a 1 1)
256 1024 4096 16384 65536 262144 1048576

File Size (Bytes)
(a) Resolution Time for Varying File Sizes

Minimum Cost

[uniock
(Step 5)

E Fetch File
(Step 2)

Update Vectors
(Step4)

Propagate File
(Step3)

[Fetch Vectors
(Step 1)

\ 7

B

2\l

Y2\l

N
2\l

.

8K 32K 128K 8K 32K 128K 8K 32K 128K FileSize
Rep. Factor 2 Rep. Factor 3 Rep. Factor 4

(b) Execution Time for the Resolution Steps

The data for these graphs is taken from Table 7.9. Graph (a) shows the increase in resolution
time with increasing file size and replication factor. Note that the horizontal axis has a logarithmic
scale. Graph (b) compares the time spent in the five steps of resolution for three file sizes:
8 Kilobytes, 32 Kilobytes and 128 Kilobytes. The minimum-cost line shows the resolution time
with optimizations, i.e. when steps two and five are removed.

Figure 7.5: File Resolution Time

7.4. EVALUATION OF FILE RESOLUTION 137
Rep. | File Resolution Time (milliseconds)
Factor | Size Fetch Fetch Distribute Update Unlock Total Growth
Vv File File Vv Objects Time (msecs/KB)
2 0.5K | 14.6 (o0.6) 42.6 (47) 88.3 (6.9) 86.8 (5.8) 10.0 (o05) 2425 (125) -
1K | 145 (0.4) 434 (6.5) 88.4 (7.1) 82.9 (16) 9.9 (0.4 239.3 (68) -
2K | 14.6 (0.3) 454 (6.2) 89.9 (7.2) 87.2 (48) 10.0 (0.4) 247.3 (14.3) 8.0
4K | 14.3 (o) 52.0 (7.3) 104.6 (3.1) 89.2 (30) | 10.1 (0.9) 270.6 (7.0 11.7
8K | 14.9 (03) 63.4 (3.4) 170.8 (7.0 89.9 (23) | 10.0 (o.6) 349.3 (53) 19.7
16K | 14.6 (0.3) 66.6 (4.3) 301.6 (s.0) 93.4 (5.9) 10.7 (0.9) 487.1 (8.0) 17.2
32K | 145 (0.4) 92.0 (95) 324.7 (215) 100.0 (32) 10.5 (o5) 542.0 (20.6) 3.4
128K | 14.9 (o.5) 360.2 (16.0) 993.2 (70.4) 142.9 (5.0 10.1 (0.4) 1521.5 (63.6) 10.2
512K | 14.5 (03) 979.3 (14.7) 3721.3 (6200) | 178.0 (81) 10.6 (0.7) 4903.9 (s40.0) 8.8
1Meg | 13.9 (0.4) | 3300.1 (121.0) 8239.0 (998.0) | 257.9 (9.1) 10.7 (o.4) | 11821.8 (1064.7) 13.5
3 0.5K | 16.8 (o0.6) 47.9 (11.5) 93.4 (11.0) 90.5 (25) 11.3 (o.2) 260.1 (20.1) -
1K | 16.6 (0.4) 40.9 (5.1) 98.2 (8.5) 97.0 (12.2) | 11.7 (o.6) 264.7 (7.8) 9.2
2K | 17.0 (11) 50.4 (10.4) 102.2 (2.3) 95.3 (62) 11.8 (0.4) 277.0 (15.1) 12.3
4K | 16.5 (0.2) 54.6 (6.2) 119.0 (4.3 88.2 (5.5) 11.5 (0.2) 290.2 (73) 6.6
8K | 16.8 (0.2) 59.4 (10.3) 216.6 (36.1) 95.9 (29) 11.7 (o5) 400.7 (33.2) 27.6
16K | 16.8 (0.2) 74.9 (7.8) 301.3 (43.9) 97.2 (86) 12.7 (0.9) 506.6 (44.5) 13.2
32K | 16.6 (1.0 92.4 (3.1) 317.3 (ar.7) 96.6 (4.7 12.1 (o7) 535.3 (51.4) 1.8
128K | 16.9 (o.5) 372.5 (10.9) 961.7 (26.6) 166.4 (32.0) | 11.5 (0.2) 1529.2 (40.6) 10.4
512K | 16.3 (o) 962.7 (38.5) 3883.0 (333.0) | 180.7 (83) 11.7 (0.3) 5064.8 (347.4) 9.2
1Meg | 15.7 (o.2) | 3365.9 (109.5) | 10087.7 (348.0) | 2565.2 (6.5) 11.9 (o.6) | 13724.4 (447.7) 16.9
4 0.5K | 19.1 (o.9) 485 (9.2) 106.9 (10.8) 98.0 (10.6) | 13.3 (0.2) 286.1 (19.9) -
1K | 18.9 (0.2) 494 (a8) 108.9 (8.2) 93.0 (82) 13.1 (o0.2) 283.5 (5.2) -
2K | 18.4 (os5) 44.6 (45) 114.2 (7.9) 93.7 (55) 13.2 (o) 284.4 (11.9) 0.9
4K | 1819 (0.2) 53.2 (3.9) 133.8 (3.3) 94.1 (3.4) 13.3 (o0.2) 313.6 (38) 14.6
8K | 18.7 (o0.0) 59.5 (a5) 203.6 (5.3) 102.0 (5.8) 13.2 (0.4) 397.3 (82) 20.9
16K | 19.2 (o.7) 75.9 (11.2) 263.6 (33.7) 100.6 (5.2 13.3 (o0.2) 473.0 (36.7) 9.5
32K | 19.0 (o.2) 95.4 (5.0) 357.8 (48.7) 100.8 (3.7 13.5 (0.4) 587.5 (50.4) 7.2
128K | 18.8 (0.2) 385.1 (18.0) 1036.2 (77.1) 158.1 (5.0 13.2 (o0.2) 1611.8 (74.0) 10.7
512K | 185 (1.4) 9474 (7.3) 4005.7 (4536) | 179.4 (27) 135 (0.8) 5165.2 (456.7) 9.3
1Meg | 17.9 (o.6) | 3324.5 (15.4) 9782.5 (531.4) | 2704 (28) 13.1 (o.2) | 13409.2 (526.4) 16.1

This table shows the time spent in each step of resolution for files of different sizes and replication
factor. The last column shows the increase in resolution time for each additional KB of data in
the file being resolved. The experiments were conducted using Decstation 5000/200s with 32MB
of memory as servers communicating over an Ethernet. The time values are in milliseconds and
show the mean value from five trials of each experiment. Numbers in parentheses are standard
deviations.

Table 7.9: File Resolution Time

To study the effect of increasing file size, a set of ten experiments was conducted. In these ex-
periments, the size of thefile being resolved was changed from half aKilobyteto one Megabyte.
To study the effects of replication, each set of experiments was conducted for three replication
factors: two, three and four.

138 CHAPTER 7. EVALUATION
7412 Resaults

A study of Unix files on the Internet [24] showed that the averagefile size is 22 Kilobytes. The
same study also reported that the mode and median of the distribution of file sizesis between 1
and 2 Kilobytes. Therefore, from the resultsin Table 7.9, we can conclude that the resolution
time for most files is not noticeable to users. In fact, the resolution time for a file smaller
than 32 Kilobytesis less than half a second. As shown in Figure 7.5 (a), the resolution time
increases with file size growing to more than 10 seconds for files greater than 1 Megabyte. The
growth in resolution time with increasing replication factorsis sub-linear —infact itisless than
20% with the addition of each replica. Thisis explained by the fact that the coordinator uses
multi-RPC [51] to communicate with the group of serversin afile's VSG. Multi-RPC alows
a host to communicate with multiple hosts at a cost lower than the total cost to communicate
with the same set of hosts individually.

The increase in resolution time for each additional Kilobyte of file data is shown in the last
column of Table 7.9. In most cases the increase is less than 20 milliseconds/Kilobyte. This
increase is also apparent from the graph in Figure 7.5 (a). Note that the axis showing the file
size in this graph has alogarithmic scale. A linear regression analysis of the datain Table 7.9
yielded a very good fit. Using the file size as the independent variable yielded an 122 values
of 0.99, 0.98 and 0.99 for replication factor 2, 3 and 4 respectively. In al three cases the
regression coefficient for thefile size was 0.01, meaning the increasein resolution time for each
additional bytein thefileis 0.01 milliseconds or 10 milliseconds/Kilobyte.

The graph in Figure 7.5 (@) shows the increase in resolution time with size and replication
factor. Note that the horizontal axis, showing thefile size, has alogarithmic scale.

Figure 7.5 (b) shows the contribution of each resolution sub-step towards the total resolution
time for three file sizes: 8KB, 32KB and 128KB. As expected, the coordinator spends most
of itstime in steps two and three during which it fetches and distributes the dominant replica.
Steps one and five contribute very littleto the total resolution time since they merely do locking
and unlocking. The results in Table 7.9 confirm that the time taken by these two steps is
independent of the size of the file being resolved. However, contrary to our expectation the
execution time for step four is significant and not independent of the file size. This anomaly
occurs dueto an artifact of our implementation. The coordinator fetches the dominant replica’s
contents into atemporary file on the local disk. Thisfileis deleted only after its contents have
been distributed to all servers. The time to delete a file increases with its size because more
disk blocks need to be reclaimed. Sincethetemporary fileisdeleted in step four, the execution
time of this step also increases with file size.

The performanceof fileresol ution can beimproved with two optimizations. The unlock step can
be eliminated altogether by having the subordinates unlock all objects at the end of the fourth
step. The fetch-file step can be eliminated by choosing the server with the dominant replica as

7.4. EVALUATION OF FILE RESOLUTION 139

the coordinator of the protocol. The improvement in performance with these optimizationsis
shown in Figure 7.5 (b).

7.4.2 Overhead of the ASR Mechanism

An Asrisinvoked transparently when a user requests service for afile with diverging replicas.
Since the user’s request is suspended while the ASR is executing, the ASR’s execution time is
apparent to the user as a higher latency in the servicing of her request.

Two factors contribute towards the increase in latency for servicing requests — the time needed
to find and invokethe ASR and the time needed to execute the AsR. Whiletheformer contributor
isindependent of the application and can be measured by experimentation the latter contributor
is application dependent and can only be estimated by empirical measurements. Due to our
limited experiencewith ASRS, thissection only presents measurementsof the former contributor.
In fact, this contributor is a measure of the minimum latency seen by a user making a system
call that triggers an ASR.

The time needed to find an ASR depends on the location of the Resol veFi | e with respect
to the file being resolved. Sincethe ASR- st ar t er traverses the file's ancestors until it finds
the Resol veFi | e, alonger distance between these files lengthens the time needed to find
the ASr. Furthermore, a longer Resol veFi | e increases the time to start an ASR since the
starter must do more work to parse the file and find the matching rule. The time needed
to start an ASR includes thetimeto f or k processes for each command listed in the resolution
rule. Obviously, abigger command-list also increases the execution time of the ASR.

7.4.2.1 Methodology

A series of experiments were conducted to measure the above effects. 1n each experiment an
ASR was triggered by st at -ing afile with diverging replicas. The execution time of the ASR
was measured by Venus — it is the elapsed time between Venus requesting the AsR and the
st art er informing Venus that the ASR execution has completed. The end-to-end latency of
the st at system call was also recorded since thisis the latency apparent to the user. In both
cases, amicrosecond timer was used to get an accurate measurement of the elapsed time.

To study the effect of changing the depth of the Resol veFi | e, i.e. the distance between the
Resol veFi | e and the file being resolved, the above experiment was conducted with depth
levelsfrom 1 to 12. A depth-level of » impliesthe ASrR- st art er had to lookup » ancestral
directoriesto find the Resol veFi | e.

In order to minimize the effect of the other parameters that lengthen the AsSR invocation time,
the experiments were conducted with a Resol veFi | e containing only one resolution-rule

140 CHAPTER 7. EVALUATION

Resolution rule used for the experiments:

* -

[/ bin/echo -n

Depth of ASR Exec. End-to-End
Resol veFi |l e Time Latency
1 5715 (49 625.7 (5.5)
2 576.6 (45) 631.3 (46) 1200 —
3 620.8 (5.2 6755 (52 g
4 665.0 (32 720.6 (42 £ 1000 +
5 7085 (5.2 765.6 (56 H o00
6 7541 (13.9) 808.0 (14.0) = T
7 806.5 (109 | 8639 (119 2 60l
8 8471 (43 904.3 (4.4 g
9 8889 (4.0 945.6 (4.5 g 400 ¢
10 940.7 (16.7) 9979 (165 <
11 9702 (53) | 10281 (72 3 20+
12 1026.4 (68 | 1084.6 (65) 0
2 4 6 8 10

Depth of Resolve File

12

The table shows the execution time of the ASR and the elapsed time for the st at system call
while the graph shows only the former. The file being resolved was replicated at two servers. The
experiments were performed on a Decstation 5000/200 with 32 Megabytes of memory. The time
values are in milliseconds and show the mean value from nine trials of each experiment. Numbers
in parentheses are standard deviations.

Figure 7.6: Execution Time for a Null AsR

with one command. In order to factor out the application-dependent overhead, i.e. the time
needed to resolve the contents of the file's replicas, the Unix program echo was used as the
null AsR. Instead of using an empty command-list we chose to use anull ASrin order to include
the cost of f or king a process in the measurements. Note that at least one call to f ork is
necessary during the execution of any AsR. Therefore, our measurements provide an accurate
lower bound on the minimum latency for an ASR invocation.

7.5. EVALUATION OF MANUAL RESOLUTION 141

7422 Resaults

The results of our experiments, shown in Figure 7.6, confirm that the framework for executing
an AsR has asmall overhead. In most cases, it takes between one-half and one second for the
ASR to be invoked and its results returned to Venus. The system call overhead to process the
st at call isabout 55 milliseconds. Obvioudly, these measurements exclude the time needed
to perform the resolution.

The graph in Figure 7.6 shows the increase in overhead for the Asr-invocation framework as
the depth of the Resol veFi | e ischanged. A linear regression analysis on the data yielded
avery good fit. Using the depth of the directory as the independent variable yielded an 12
value of 1.0. The regression coefficient for the depth was 44.80, meaning the overhead for
looking up an ancestral directory for a Resol veFi | e increases the latency of the ASR by
44.80 milliseconds.

The minimum overhead for the framework for invoking an AsR is 571.5 milliseconds. In
this experiment the depth of the Resol veFi | e is 1, meaning the Resol veFi | e and the
file being resolved are in the same directory. More detailed measurements of this experiment
configuration show that thereis a 12.5 millisecond delay between the time Venus requests an
ASR and the st art er receives the request. The st arter forksan executor which
causes adelay of 50 milliseconds. Theexecut or takes 496 millisecondsto perform its work
— 180 milliseconds to parse the Resol veFi | e and 316 milliseconds to lookup the parent
directory for theResol veFi | e, lock thevolumeand f or k the command from the resolution
rule. Finally thereis an additional 12.5 millisecond delay inthe Resul t _OF _ASR RPC from
thest ar t er to Venus.

Although the minimum latency for executing an ASR may seem high, it is much lower than the
time needed to manually invokean Asr or performtheresolution. Furthermore, the convenience
of automating this task far outweighs the pain of manual resolution. Finally, as discussed in
Chapter 5, a significant fraction of this cost is due to the need to provide flexibility, security
and robustness for the AsR mechanism.

7.5 Evaluation of Manual Resolution

Previous measurements from AFs [25] showed that conflicting updates to files and directories
arerarein alUnix environment. This pattern is exhibited by users of the Codafile system a'so —
the high success rate of automated resolution supports this claim. However conflicts do occur
in Coda and the affected objects must be manually repaired. A repair facility that is easy to
use and automates most of the task is necessary to make the system usable. In the absence of
an effective repair facility, a user may stop using the system during a failure to avoid repairing
objects when the failure ends. In fact, this behavior was common in the initial stages of the

142 CHAPTER 7. EVALUATION

project when the system had no means of resolving directories and the repair facility did not
assist usersin repairing objects.

This section presents empirical results showing the effectiveness of Coda's repair facility. It
addresses three fundamental questions:

e How oftenisafile or directory repair needed and how often does it succeed?
e How effectiveisthe repair facility in assisting a directory repair?

e What strategies do users employ to repair files?

To answer these questions, repair statistics were collected for a period of one year. During this
period, the repair facility was used by at least sixteen users. Since the users were completely
unaware of the fact that their repair session was being recorded, the results in this section are
realistic.

7.5.1 Methodology

Thefileand directory repair toolswere instrumented to collect astatistics record for each repair
session. Each record contained the name of the object being repaired and the result returned
by each server for the Vi ceRepai r RPC. The object’s hame was used to classify the repair
according to the type of object being repaired while the error code was used to classify it as
a successful or failed repair. In addition to these two fields, the record for a file repair aso
recorded the user’s choice for performing the repair. Recall from Section 6.2.3 that a user has
four optionsto repair afile: remove it, use a new file, use one of thefile's replicas or explode
the file into a directory. The user’s choice along with the name of the repaired file provides
enough information to deduce the preferred repair strategy for each file type.

Recall that the directory repair tool assists the user in creating the repair-file. However, due to
security and correctness considerationsthetool cannot generatearepair-filein certain situations.
For example, if adirectory’s replicas have conflicting updates to their access-control lists, the
user must decide the corrective actions. Anecdotal evidence from our environment indicates
that most users didlike editing the repair-file and would prefer the repair tool to generate the
repair-file under all circumstances.

To measuretheeffectiveness of thedirectory repair tool and to understand the nature of directory
repairs, two additional pieces of information were recorded in the statistics record: first, the
frequency with which users repaired a directory without changing the repair-file generated
automatically by the tool; and second, the contents of the repair-file used to perform each
repair. The first statistic provides an exact count of the instances in which the tool’s assistance

7.5. EVALUATION OF MANUAL RESOLUTION 143

was adequate. If a user modified the repair-file, he/she was asked to grade the difficulty of
making the modifications.

The statistics record for each repair session was stored in a separate file that was named
uniquely using the identity of the user initiating the corresponding repair session. Thus,
statistics corresponding to al repairs initiated by a user are easily identifiable. To simplify the
collection of data, the statistics fileswere collected in ashared directory in a Codavolume. All
users had access rights to add filesto this directory but not to delete or modify any of thefiles.
A disadvantage of this approach is that some records may have been lost if the client initiating
the repair could not access the directory storing the statistics files. However, the loss of data
was minimized by replicating this directory across the same set of serversthat store most user’s
volumes.

7.5.2 Resaults

The summary of repair statistics collected from July 1993 to July 1994 are shown in Table 7.10.
This section discusses answers to each of the questions posed above.

Frequency and success of repairs As shown in Table 7.10 (c), repairs are infrequent and
succeed more than 80% of the time. On the average a user repairs one file and two directories
every month. Even though the Coda community consists of over 30 users, only 16 of these
users needed to repair afile or directory during the one year period. Objects that belong to the
remaining users were either always resolved automatically or never updated during a network
partition. As expected, the number of directory conflicts was much higher than the number
of file conflicts. In the one year period, 320 directories and 157 files were repaired. 83%
of directory repair requests and 87% of file repair requests completed successfully. A user
attempting a repair with expired or no authentication tokens was the leading cause of repair
failures. Semantic errorsin the repair-file caused some failures during directory-repairs. These
errors were introduced by users modifying the repair-file generated by the tool.

Filerepair strategies The names of repaired fileswere used to classify theminto five groups:
editor backup and checkpoint files, object files produced by compilers, files containing source
code, files produced by IATEX and Scribe, and . hi st ory files written by csh. Files that
could not be classified into any of these groups were placed in the unrecognizablefile category.
The number of filesin each category is shown in Table 7.10 (a). Note that almost 50% of the
files fall into the unrecognizable category. During the first six months of instrumentation, the
name of the file being repaired was not recorded. Therefore, all files repaired in that period of
time are classified into the unrecognizabl e file category.

144

CHAPTER 7. EVALUATION

Repair Strategy
Remove Use Use
All one of the | anew || Total
Kind of File Replicas | Replicas | File
Backup& Checkpoint 6 2 0 8
Object 20 14 0 34
Source 3 17 1 21
Word-processing 7 9 0 16
.history 1 0 0 1
Unrecognizable 17 40 20 77
[Total [54 | 8 | 21 | 157 |
(a) File Repairs
No. of
Cases
Repair file contains:
No operations 83
Renames 43
Access-control list ops. 31
Set ownership ops. 15 | Files | Directories |
Repair-file creation: Attempts 157 320
Automatic (by tool) 254 Successes | 136 265
Edited/created by user 66 Failures 21 55
Difficulty in editing: No. of Users | 14 16
Easy LeveO| 22
Level 1 15 (c) Summary of All Repairs
Level 2| 12
Level 3 9
Level 4 4
Hard Level 5 4
(b) Directory Repairs

This data was collected over a period of one year, from July 1993 to July 1994. Table (a) shows
the number of times each file repair strategy was used for the variousfile types. The totalsfor each
strategy and file type are also shown. Table (b) shows statistics for directory repairs. It lists the
frequency with which some operations occured in repair-files. It also shows the number of times
the repair-file generated by the tool was insufficient to perform the repair. The users’ rating of the
difficulty in creating/modifying the repair-file is also shown. Table (c) provides a summary of all
repairs performed.

Table 7.10: Empirical Data Collected for Repairs

7.5. EVALUATION OF MANUAL RESOLUTION 145

In our environment, object files suffered the highest number of conflicts followed by source
code files. Object files exhibit the highest degree of “write-sharing” because users often use
multiple clients as compile engines. Only one . hi st ory file had a conflicting update. This
is an expected result because the . hi st or y fileisstored in auser’s home directory and most
Coda users have their home directory in the Coda file system at only one client, their laptop
computer.

Users used three of the four options to repair files. The most popular file repair option, chosen
52% of the time, was using one of the file's replicas to replace al its copies. The options
to delete all replicas of a file and to use a new file were chosen 34% and 14% of the time,
respectively. Users never chose to explode a file into a replicated directory, probably because
they did not understand its semantics. A user will be more inclined to choose this option if
the file being repaired is truly shared with other users and the actions needed to repair the
conflicting updates are not clear.

There were few surprisesin the preferred repair strategy for each filetype. Deleting all replicas
was the preferred strategy for object files while using one of the replicas was the preferred
strategy for sourcefiles. Thiswas expected since object files can be recreated more easily than
source files. The repair policy for files in the word-processing category was evenly divided
between these two strategies. Thisdichotomy isdue to theinclusion of two kinds of filesin this
category — user text files that are not reproducible and files generated by the word-processing
system that can be regenerated easily. The preferred repair action for backup and checkpoint
files was to delete their replicas since they are useful only if the master copy of the file is
deleted.

Does a user prefer to use onefile repair strategy over the others? To answer this question we
examined each user’s choice for repair strategy. Figure 7.7 shows the frequency with which
each repair strategy was chosen by seven users who repaired at least ten files. Only one of the
users, User 7, exhibited a strong preference for using one of the replicas for the repair. User 1
and User 4 used this strategy 60% of the time while User 2 and User 5 deleted all replicas of
the file 70% of the time. We cannot conclude that users prefer a single repair strategy for two
reasons: first, the number of data samplesis small; second, none of the users who performed a
significant number of repairs, choseto use asingle strategy for all repairs.

Effectiveness of the directory repair tool Our measurements show that the tool was very
effective in automating directory repairs. Asshown in Table 7.10 (b), the automatically gener-
ated repair-file was successful in repairing 79% of the conflicts. Contrary to our expectations
based on anecdotal evidence, the measurements show that users did not find the task of editing
the repair-file to be very difficult. Onascalefrom0to 5, they rated the difficulty at alevel of 2
or less 74% of thetime. It is possible that this anomaly is caused by users being over cautious
while rating the difficulty.

146 CHAPTER 7. EVALUATION

100% — 27 12 14 12 22 38 11 Number of Repairs
A V) 7
80% -+
g v
g’ 60% 1 T\§ Use one of the replicas
5 7 7
i) Remove all replicas
8 40% 7 \| & N\
= T B N H use a New File
* SN
20% L RN —
= =
0% — = =
1 2 3 4 5 6 7
Users

The graph showsfile repair strategies chosen by 7 users. Each of these users performed at least 10
filerepairs. The number of repairs performed by each user was scaled to 100 to simplify comparing
the user’s preferences. Numbers at the top of the figure show the exact count of files repaired by
each user.

Figure 7.7: File Repair Strategies

Analysis of the repair-files shows that out of 66 repair-files modified by users, 31 contained
commands to modify an access-control list and 15 contained commands to change directory
ownership. Since these commands are not generated automatically by the tool’s Conpar e-
Di r Repl i cas command, the user was forced to edit the repair-file in these instances. In the
remaining twenty instances the user voluntarily edited the repair-file.

On 83 occasions the repair-file contained no operations for the servers, i.e. the directory being
repaired had identical replicas. This situation arises if the directory replica with conflicting
updates is not accessible during the repair or the directory being repaired participated in a
partitioned rename. Consider an object being renamed between two directories during a
partition. When the partition ends, resolution marks both directoriesin conflict. If the rename
was the only conflicting update, then repairing one directory automatically makes the replicas
of both directories identical. Therefore, the repair of the other directory will not require any
operation.

7.6. SUMMARY OF CHAPTER 147
7.6 Summary of Chapter

The effectiveness of the resolution techniques developed in this thesis can be estimated by
answering the following questions:

¢ How often do the automated facilities succeed in practice?
e What isthe latency of automated resolution?
e What are the overheads for providing these facilities?

e How effectiveisthe repair facility?

These questions are answered by using empirical and quantitative measurements from the Coda
system.

Empirical measurements show that automatic resolution works very well in practice. It com-
pletesitstask successfully 99% of thetime. Quantitative measurements show that the automatic
resolution process has excellent performance and is rarely noticeable in normal operation. The
time and space overheads for making the system capable of automatic resol ution are unnotice-
able. Therepair facilities, although used rarely in practice, are effective.

148 CHAPTER 7. EVALUATION

Chapter 8

Related Wor k

This chapter describes work related to Coda's resolution mechanisms. It is divided into four
sections. The first three sections describe work done in the context of other file systems for
automatic and manual resolution of directories and files. The last section describes resolution
techniques developed in the context of optimistically replicated databases.

8.1 Automatic Directory Resolution

Automatic resolution of partitioned updatesto directories has been explored by two file systems
besides Coda: Locus[53] and Ficus[20]. Chronologically, Locus predates Codaby many years.
On the other hand Ficus, adescendant of L ocus, was devel oped contemporaneously with Coda.
This section compares the Locus/Ficus approach for automatic directory resolution to Coda’'s
log-based approach.

8.1.1 Locus

The Locus system developed at UCLA was the first system to recognize the potentia for using
optimistic replication in Unix file systems. In fact Coda’s replica control policy is influenced
by Locus strategy. Locus file system objects were grouped and replicated at multiple hosts;
and updates were allowed in any partition as long as at least one replicawas accessible. Thus
the availability offered by Locus and Codais comparable.

A fundamental difference between Coda and Locus arises from their structural organization.
Unlike Codathat uses a client-server model, L ocus used a peer-to-peer model. In other words
Locus did not make any distinction between hosts that stored objects and hosts that were used

149

150 CHAPTER 8. RELATED WORK

to access these objects. Abandoning the use of a client-server architecture seriously limits the
system’s scalability [45]. Asaresult Codais much more scalable than Locus.

Another difference between Coda and Locus lies in the mechanism they use for concurrency
control. Locus used a pessimistic primary replica strategy that strictly serialized all updates
withinapartition. Codaon the other hand uses an optimistic strategy for thispurpose. If updates
are made concurrently, then only one of the updates is alowed to complete successfully.

The Locus system recognized the possibility of using Unix directory semanticsto automatically
resolve partitioned updates to directories [43]. It used a version-vector method to detect
diverging replicas of a directory and proposed reconciling them by inferring the partitioned
updates from the state of each replica. It recognized the difficulty in disambiguating partitioned
removes from creates but did not provide aviable solution. In fact, the biggest shortcoming of
this work is that none of the algorithms proposed for automatic resolution were implemented
successfully.

8.1.2 Ficus

The Ficus distributed file system, a descendant of Locus, is built on top of NFs [44]. It inherits
Locus optimistic replicacontrol strategy and its peer-to-peer structure. Asaresult, it preserves
Locus' strength and weakness — its high availability and limited scalability.

Asin Coda, Ficus objects are grouped into volumes that form the unit of replication. However
the two system use different strategies to keep the replicas consistent. In Coda updates are
propagated to the replicasin parallel by the client; and resolution is used occasionally to merge
updates only after a failure. Ficus on the other hand uses resolution frequently, even in the
absence of failures, to distribute an object’s updates to its storage sites. For performance
reasons, an update to a Ficus object is made to a single closest replica of the object. Then the
peer hosts that store other replicas of thisobject use resolutionto pull the update asynchronously
at their convenience. Therefore Ficus hosts must perform resolution periodically to prevent the
replicas from diverging. Thisisin contrast to the Coda approach where resolution is needed
only to handle the exception case, i.e. when updates are made during afailure, and thus can be
performed lazily.

There are two problems with the Ficus approach. First, it requiresfrequent resolution between
the hosts to ensure that no updates are missed by any host. Frequent polling between hosts
affects the system’s scalability. More serioudly, it does not prevent hosts from handing out
stale data even in the absence of failures. an update that arrives at a host soon after a round of
resolution remains unnoticed at other hosts until the next round of resolution; in the mean time
these hosts could service user requests using the stale version of the object. Therefore unlike
Coda, Ficus cannot guarantee that an update is immediately visible to all hosts in the same
partition. A second problem with the Ficus method is its susceptibility to recovery storms. A

8.2. AUTOMATIC FILE RESOLUTION 151

host recovering from a failure must contact al its peers and pull updates it has missed. This
approach introduces a high demand on the system and may result in cascading failures.

The directory resolution algorithmin Ficus usesinferential techniques rather than the log-based
approach used in Coda. 1n other words partitioned updatesin Ficus are computed by comparing
the state of the directory’s replicas. While Coda's resolution techniques use simple syntactic
methods like comparing alist of log entries, Ficus' resolution techniques are complex and are
closely tied to the semantics of the directory’s contents and its updates. Not only is the latter
method conceptually harder but its performance depends on the size of the directory being
resolved, not the amount of partitioned activity. This inefficiency can seriously affect Ficus
scalability especially because resolution is afrequent event in that system.

Like Coda, Ficus preserves information about deleted objects in order to disambiguate creates
from deletes. However the systems differ markedly in their approach to reclaiming space
pertaining to these objects. Ficus uses a complex two phase distributed garbage collection
algorithm whose scalability is open to question. Coda, in contrast, uses the much simpler
strategy of allowing each site to unilaterally reclaim resources via log wrap-around. This
provides a clearly-defined trade-off between usability and resource usage, a trade-off that is
essential in any practical system.

The Ficus literature has failed to report any quantitative and empirical measurements of the
directory resolution technigues it implements; nor does it make any mention of a user com-
munity. The lack of measurements of the directory resolution system makes it impossible to
compare it with Coda’s performance, scalability and usability.

8.2 Automatic File Resolution

Coda uses two orthogonal mechanisms for file resolution — version vectors and application-
specific resolvers. This section summarizes related work for each of these mechanisms.

8.2.1 Version Vectors

The use of version vectors to detect write-write conflicts between an object’s replicas was
first proposed by Locus [39]. Locus descendant system, Ficus, also uses the version vector
mechanism for the same purpose.

The use of version vectorsin Coda is inspired by their use in the Locus system. In fact, Coda
version vectors are conceptually similar to Locus version vectors. However, they differ in
structure. Unlike a Coda version vector that only stores version numbers, a Locus version
vector aso stores the identity of the host corresponding to each version number in the vector.
Although storing this additional information requires more space, it ssimplifies the process of

152 CHAPTER 8. RELATED WORK

dynamically adding or removing a host from the set of replication sites for an object. This
functionality would be useful in a production system where a storage site may be shutdown
permanently due to hardware errors or a new site may be added to improve availability or
throughput. Lack of this functionality makes Coda version vectors less flexible than Locus
version vectors.

8.2.2 Application-specific Resolvers

Coda was the first file system to provide a framework for invoking application-specific re-
solvers transparently. Since the first publication of Coda's approach to application-specific
resolution [26] a conceptually similar mechanism has been described for resolving diverging
replicas of filesin the Ficus system [42]. Coda’s framework for application-specific resolution
isalso conceptually similar to the watchdog mechanism proposed by Bershad and Pinkerton [4]
— both these mechanisms extend the semantics of the file system for specific files. This sec-
tion summarizes Ficus approach for invoking Asks and highlights the differences between
watchdogs and ASRs.

8.2.2.1 Ficus

Like Coda, Ficusinvokes resolvers transparently if and when the need arises. Although Ficus
uses a rule-based approach for selecting aresolver, it provides much less flexibility than Coda.
For example, Ficus assumes that a resolver will resolve exactly two file replicas and therefore
uses afixed format for the parameter list of the resolver. Ficus resolution rules can be specified
only intwo files—asystem wide rulefile and auser specific personal resolver file. Furthermore
it is not possible to specify that a group of programs are to be executed as one logical resolver,
nor can a group of files be resolved together.

There are also important differences in the execution models of resolversin Ficus and Coda.
Since Ficus uses a peer-to-peer rather than a client-server model, it ismoreliberal inits choice
of execution site—any site with areplica of afile can run aresolver for it. If oneresolver fails,
others are tried in succession.

The Ficus design pays less attention to issues of security and robustness. Ficus resolvers are
run on behalf of the owner of the file and not the user accessing it. Therefore, amalicious user
could cause serious damage by using a misbehaved resolver on a file owned by another user.
There are no specific mechanismsin Ficusto provide atomicity or isolation. Coda, in contrast,
takes these issues much more seriously and provides specific mechanisms to improve safety.

8.3. MANUAL RESOLUTION 153

8.2.2.2 Watchdogs

A watchdog [4] is an extension to the file system that allows users to design and implement
their own semantics for file system objects. Like an AsR, awatchdog isimplemented as a user
level process and itsfunctionality isinvoked transparently. However the functionality provided
by these two mechanisms is very different. While an ASR is used only to resolve diverging
replicas of afile, a watchdog is more general. It can be used to change the functionality of
existing system calls or provide new functionality for files and directories.

Since the watchdog mechanism is not specifically intended for resolving partitioned updates,
it does not incorporate many important mechanisms needed by AsRs. For example, it does
not need to provide a mechanism for exposing file replicas, or pay particular attention to the
issues of isolation and atomicity. Instead of using rules to select a watchdog, it relies on a
system call to link awatchdog to a file or directory. Therefore it is not as flexible as Coda's
rule-based approach. The execution of a watchdog is managed by a special process called the
chief watchdog which serves the same purpose asthe AsR- st ar t er in Coda. Unlike an ASR
that istransitory, i.e. anew process is started every time aresolution is needed, awatchdog can
remain active for alonger period of time and service multiple requests.

8.3 Manual Resolution

Very few distributed file systems have implemented general purpose tools to help the user in
resolving files or directories. The need for such tools was recognized by somefile systems like
Saguaro [40, 41] and Locus. But neither of these systems provided such tools to their users.

The Locus system was responsible for providing a taxonomy of conflict types for directories.
It classified all directory conflicts into three distinct classes. name/name, remove/update and
update/update conflicts [18]. Conflicts involving renames did not appear in this list because
Locus treated arename operation asal i nk followed by an unl i nk operation. Coda's repair
tool uses this taxonomy, appropriately extended for the Coda environment, to correctly infer
the conflicts for a directory with diverging replicas. Although Locus recognized that replicas
needed to be preserved as evidence and exposed to the user during the process of manual
resolution, it did not implement any facility that provided these features.

The literature describing Locus descendant system, Ficus, provideslittleinformation about its
manual resolution facility. However one can assume that Ficus must provide this facility since
it is being used by a small group of users. The sketchy information available in the literature
indicates four significant differences between the Coda and Ficus manual resolution facilities.
First, Ficus makes use of aspecial orphanage directory to store diverging replicas of an object.
Doing so results in some loss of contextual information about the cause of the conflict and is
in contrast to Coda's strategy of preserving an object in the directory it existed in when its

154 CHAPTER 8. RELATED WORK

replicas diverged. A second difference arises in the method used to notify users about conflicts.
Ficus uses electronic mail to notify the owner of an object with conflicting updatesimmediately
after the conflict is detected. Coda on the other hand uses a lazy notification strategy — a user
becomes cognizant of a conflict only when he triesto access an object with conflicting updates.
The third difference is that Ficus does not provide any facility that compares directory replicas
and suggests ways to repair the conflict. Finally, none of the Ficus literature indicates whether
the system addresses issues related to fault-tolerance of the manual resolution sessions.

8.3.1 Commercial Packages

In the past two years some file-synchronization programs have become available for the Apple
Macintosh and PC DOS environment. The goal of these programsis to keep the file system
of two or more computers synchronized. In some sense, this functionality is the same as
that provided by directory resolution in Coda. However, unlike directory resolution that is
invoked transparently, these programs require the user to invoke them manually. Moreover,
these programs do not pay any attention to issues such as scalability, security and performance.

In comparison to Coda's manual resolution facility, the biggest shortcoming of these programs
isthat they are not integrated with the file system. Therefore, they must rely solely on user level
attribute information to perform resolution. The problem is that thisinformation is insufficient
to detect certain kinds of conflicts and can sometimes be deceptive. For example, different
files could be mistaken to be identical if they have the same name, length and time-stamp; or
anewer version of afile could appear to be older just because some program revised the older
version’s time stamp without changing its data contents. The Coda repair tools do not suffer
from these problems because they have complete access to al file system information.

Non-commercia programslikeHoward'sRECONCILE facility [23], and commercial programs
like MBS Technologies' FileRunner, Traveling Software's LapLink and Symantec’'s Norton
Essentials are a few examples of file-synchronization programs. Users of these programs
can select specific files or entire sub-trees that need to be monitored. The communication of
information between the two computersistypically viaafloppy disk.

Some of these programs, for example, FileRunner and RECONCILE, have been influenced
by Coda's log-based resolution strategy. Since these programs are not integrated with the file
system they cannot |og updates asthey occur. However they resort to aschemethat useslogging
partially. When a user specifies the directories that need to be managed by the synchronizer,
they build ajournal reflecting the initial state of each directory. Thisjournal and the final state
of thedirectoriesis used during resol ution to compute the updates made at each directory. Then
the updates are resolved using their semantics.

8.4. OPTIMISTIC REPLICATION IN DATABASES 155

8.4 Optimistic Replication in Databases

The use of optimistic replication for high availability in database systems has been explored
by a number of researchersin the 1980s. In particular, three pieces of work by Davidson [9,
10], Blaustein et a [5, 6] and Garcia-Molina [14] have some relevance to Coda's resolution
mechanisms and are described below.

8.4.1 Davidson

Davidson providedthe ground breaking work on optimistic replication methodsfor databases|[8] .
Her work concerns the resolution of an optimistically replicated database that has executed
transactions concurrently in two or more partitions. The database maintains a log of transac-
tions committed in each partition and the resolution algorithm uses these logs to construct a
partial order of the transactions. The data structure used to compute the partial order is called
a precedence graph whose nodes represent transactions and whose edges represent reads-from
or conflicts-with relationships between transactions. Transactions conflict if and only if the
precedence graph has cycles. The conflict isresolved by undoing one of the transactionsin the
cycle and redoing it after all the other transactions. Davidson proved the correctness of this
algorithm by showing it satisfies one-copy serializability.

The most striking similarities between Davidson’s and Coda's approach are the use of logging
for resolution and the use of serializability theory for proving correctness of the resolution
system. The biggest difference between the two approaches is the way in which they resolve
conflicting transactions. While Davidson can undo the conflicting transactions and redo them
in the order determined by the precedence graph, Coda cannot undo the transactions since
the computation associated with the inferred transaction is not known. Therefore Coda must
resort to user assistance for resolving conflicts. The other major difference between the two
approachesliesintheir method for detecting conflicts. While Davidson uses aprecedencegraph,
Coda uses a combination of value and version certification techniques along with the temporal
ordering of intra-partition transactions to decide if the transaction histories are serializable.

There are also other minor differences between the two methods. For example, Davidson's
method resolves database replicas pair-wise at the coordinator site. Coda, on the other hand,
uses adistributed protocol to resolve al replicasin paralel. Coda's method uses more network
bandwidth than Davidson’s method but has a lower latency since the transaction logs are
processed in parallel. Another difference between the two methods is that Davidson does not
pay any attention to practical issues such as scalability, performance and security. This may be
because her work was purely conceptua in nature and there is no indication in the literature
that the concepts were ever implemented.

156 CHAPTER 8. RELATED WORK

8.4.2 Blausten

Blaustein et al [5] analyzed two fundamental resolution techniques: inferential and |og-based.
They recognized that inferential techniques are very closely tied to the semantics of the data
being resolved and can be difficult to implement in the presence of conflicts. Log-based
techniques, in their opinion, are not as ad hoc as inferential techniques, but are less frugal in
using space and network bandwidth. A theoretical analysis of the use of transaction logs to
merge updates from multiple hosts is provided by Blaustein and Kaufman [6].

Most of this theoretical work was done in the context of a distributed database model and does
not apply directly to Unix file systems. Thisis because the file system and database models are
in direct contrast to one another — while databases exhibit frequent updates and a high degree
of write-sharing, Unix file systems show completely opposite characteristics. As shown by
this dissertation, a log-based strategy works well in a practical implementation of a Unix file
system.

8.4.3 Data-Patch

GarciaMolina et a [14] proposed a specia tool called Data-patch for repairing conflicts
in replicated databases. From the literature available it appears that this design was not
implemented or used. Data-patch was designed to be used by a database administrator to
develop a program to automatically resolve diverging replicas of the database. Theinput to the
tool isadatabase schemaand the rules describing the schema; as output it generatesthe program
that performsthe resolution. At avery highlevel thisideais similar to the assistance provided
by Coda'sdirectory repair tool: it uses the semantic rules of the directory structure and the state
of the diverging replicas to produce a list of commands whose execution results in making the
replicas equal. The maor shortcoming of this work is it makes impractical assumptions. For
example, it assumes that partitioned transactions never delete objects and that partitions do not
occur during aresolution. These are not viable assumptionsin area system.

Chapter 9

Conclusion

Optimistic replication techniques can mask many failures and substantially improve dataavail-
ability in distributed file systems. However, the danger of conflicting updates to partitioned
replicas, combined with the fear that the machinery needed to cope with conflicts might be
excessively complex, has prevented designersfrom using optimistic replicationin real systems.

This thesis puts such fears to rest by designing and implementing the mechanisms needed to
cope with the consequences of optimistic replication in a real distributed file system. It uses
simple yet novel techniques to perform automatic resolution and shows that these techniques
can improve usability without a significant impact on the system’s scalability, security or
performance.

Coda is the first distributed file system with a significant user community to demonstrate the
practicality of optimistic replication. It has beenin daily use by 35 users for more than 3 years,
thereby providing the first opportunity to report on significant usage experience with such
systems. Measurements from the system show that it provides significantly higher availability
than its predecessor system, AFS, without compromising performance or security. The system
has maintained usability by automatically resolving partitioned updates on more than 99% of
the attempts.

9.1 Contributions of the Dissertation

The main contribution of the thesis is validating — through the design, implementation and
evaluation of asystem —thefact that optimistic replication can be used effectively in distributed
file systems. More specifically, the contributions are in four areas:

1. Design contributions:

157

158 CHAPTER 9. CONCLUSION

e Architectural design of a system that can cope with the shortcomings of optimistic
replication.

e Detailed design of resolution strategies:

— A directory resolution protocol that performsitstask usingthelog of partitioned
updates.

— Afileresolutionframework for invoking arbitrary application-specificresolvers
that combines transparency and flexibility with robustness and security.

e Formal specification of the Unix file system interface that permits reasoning about
correctness. Use of thisformalism, to specify the goals of the resolution algorithm
and prove its correctness.

2. Working implementationin area system under daily use.

e Demonstration of the feasibility and effectiveness of og-based directory resolution.
¢ Implementation of a prototype AsSR framework and example resolvers.

e Demonstration of fault-tolerance of both these resol ution methods.

¢ Implementationof arepair tool that isuser-friendly and simplifiesmanual resolution.

3. Empirical measurements to validate the following claims:

¢ Automated resolution techniques work well in practice.

e Genuine conflicts are rarein the Unix environment.

e Logging mutations at the server does not use excessive storage.
e Therepair tool is effective when needed.

4. Quantitative analysis based on controlled experimentation:

e Useof filesystem tracesto analyze the growth in resolution logsfor long partitions.
e Measurements showing that the overhead for resolution is minimal.
¢ Evidence proving the latency of resolution is not noticeable.

9.2 FutureWork

Each of the three parts of this thesis, namely automated resolution of directories, automated
resolution of files and manual resolution, can be enhanced to improve the system’s usability
beyond its current level. For example, the number of conflicts reported by the automated
resolution facility could be reduced by incorporating semantic knowledge that ismissing in the

9.2. FUTURE WORK 159

current implementation; and, the repair facility could be enhanced to provide greater assistance
to the user during the resolution process.

The resol ution techniques described in the thesis were devel oped with specific goals. However,
as the system matures and new technologies are developed some of these techniques could be
reused, with slight modifications, for a different purpose. For example, the resolution facility
that is currently only used to cope with write-write conflicts could be extended to cope with
read-write conflicts also.

This section describes the suggested enhancements in two parts: the first part discusses ex-
tensions to the implementation that will improve the system’s usability while the second part
discusses enhancements needed to use the resolution mechanisms in a slightly modified envi-
ronment.

9.21 Implementation Extensions

Automatic Directory Resolution: The implementation of directory resolution could be ex-
tended immediately in two ways. (1) to automatically resolve partitioned cross-directory
renames and (2) to automatically resolve concurrent partitioned updates to directory access-
control lists. The former extension needs the transitive closure mechanism described in Chap-
ter 4. The latter extension requires a fine-grained value certification scheme rather than the
coarse-grained version certification scheme currently implemented. In other words, the resolv-
ability of a set of partitioned access-control list updates should be determined using the values
of the individual elementsin the list’s replicas and not the version number for the entire list.
This extension would require a change to the structure of the log record for this update and a
modification to the certification algorithm.

Two long-term enhancements that are less critical than the extensions mentioned above are:
(1) use of an aggressive resol ution policy during conditionsof light load and (2) use of resolution
rules to implement directory specific resolution policies. The former enhancement would hide
the cost of resolution from the user. The latter extension would provide users the flexibility of
choosing a strategy a priori for coping with each conflicting update.

The current implementation enforces a single system-wide policy for overwriting records when
the resolution log is full. As mentioned in Section 4.4.2.3, the optimal log overwrite strategy
is different for each volume. It depends on the volume's directory structure and the sequence
of partitioned updates. Analyzing the effects of the various strategies using trace-driven
simulations would be an interesting experiment worth pursuing. It will provide answers to
two questions: How does the number of conflicts generated by each strategy compare with the
number of conflicts generated by the optimal strategy? Should the implementation be changed
to accommodate volume-specific log overwrite strategies?

160 CHAPTER 9. CONCLUSION

Automatic File Resolution: A handful of AsRs were implemented to test the infrastructure
used to support application-specific resolution. To verify the completeness of the rulelanguage
syntax and the execution model several more ASRs should be implemented. For example,
ASRs could be implemented immediately for files like nbox, . newsrc, . hi story and
. mosai c- gl obal - hi story. Inthelong run, resolvers for new applications should be
implemented along with the application itself so that the latter can ensure that all information
needed for resolution is made available to the resolver.

Manual Resolution: The directory repair tool can be enhanced in two ways — by improving
its graphical user interface and by providing new functionality. Displaying the tree structure of
the replicas, highlighting the differences between the replicas and allowing the user to produce
repair commands using a click and drag mechanism would significantly improve the tool’s
usability. New functionality that seems to be worth exploring includes. (@) showing the effects
of the repair commands at the client before propagating them to the server so that users are
given a chance to undo their actions; and (b) allowing users to specify a “correct” directory
replica—the tool would generate repair commands by comparing each replicawith the” correct”
replica, not by comparing the replicas with one another. This enhancement will allow the tool
to generate repair commands without further user assistance.

9.2.2 Impact of New Research

Coda is being extended in several ways by other members of the research group. Two of
these research efforts in particular, namely isolation-only transactions and weakly-connected
operation, could benefit from some of the resolution techniques described in the thesis. The
goals of these research efforts and their potential use of resolution techniques are discussed
below.

| solation-only transactions: As mentioned in Chapter 3, lack of transaction support in the
Unix programming interface poses a problem for partitioned operation. The basic problemis
that the system is unaware of the grouping of operations into computations and must assume
that either al operations in a partition belong to one computation or each operation belongs to
a separate computation. The former assumption hurts availability because the system, in an
attempt to disallow partitioned read/write conflicts, must disallow write operationsin all but one
partition. The latter assumption, which is made in this thesis, can sometimes hurt correctness
— the system may expose inconsistent state to operations belonging to the same computation.

Work is already underway in the Coda project to overcome this shortcoming. It extends the
Coda file system with a new transaction service called isolation-only transactions [30]. The
extended system guarantees serializability of computations and ensures that both read-writeand

9.2. FUTURE WORK 161

write-write conflicts are detected. However, it does not guarantee other transaction properties,
namely failure-atomicity and permanence. Extending the Coda system to explicitly support
transactions will effect resolution in two ways.

First, the implementation of resolution will need to be extended to resolve read-write conflicts
in addition to the write-write conflicts it resolves currently. The ASR mechanism could be used
to provide this support. A resolver would be associated with a transaction rather than afile or
directory and would be executed automatically when a conflict is detected. A variant of the
resolution rule language could be used to specify resolvers for each transaction type or for any
transaction accessing a group of objects. Automatic transaction re-execution will probably be
the most frequent method of resolution.

Second, resolution of write-write conflicts will benefit from the knowledge of transaction
boundaries. Since the computation associated with each transaction will be known, the reso-
lution process could undo and redo the conflicting transactions in a global serial order. Thus,
the system could successfully resolve a larger set of histories — histories that are 1SR but not
resolvable in the current system simply because they are not commutative would be resolv-
able. This advantage combined with the ability to perform transaction specific resolution could
further reduce the need for manual resolution.

Weakly-connected operation: This research effort [33] is looking at ways to exploit inter-
mittent and low bandwidth networksin Coda. Like a disconnected client, a weakly-connected
client avoids use of the network by emulating remote services locally as far as possible. How-
ever, unlike a disconnected client, it uses the low bandwidth network to service cache misses
and trickle updates to the server in small chunks.

An update made at a disconnected client may conflict with updates being made concurrently
a the server. However the conflict can be detected only when the client is reconnected to
the server, which is often a long time after the update is made. Most disconnected updates
that follow the conflicting update affect the same or related objects and are also conflicting.
Therefore, to cope with the conflict, the client saves all disconnected updates on itslocal disk,
flushes the modified objects from the cache and lets the user propagate the updates manually.
Can this situation be improved?

Connectivity with the server, even if it is intermittent, provides a weakly-connected client
with an opportunity to detect conflicting updates sooner than its disconnected counterpart. By
resolving the conflict soon thereafter, the client can prevent wasted effort — if the conflict is
resolved then updates that follow can be propagated correctly to the server.

Some of the resolution mechanisms described in this thesis can be extended to automatically
resolve conflicts generated by updates at clients. In particular, the ASR framework can be
extended to resolve conflicts between first and second-class replicas. The second-class replica
would be preserved by the client and included as a child of the fake directory used to expose the

162 CHAPTER 9. CONCLUSION

replicas. Furthermorethe AsrR would beinvoked transparently as soon asthe update propagation
fails. Obviously, AsrRsthat will be used on weakly-connected clients would have to be judicious
in their use of network resources.

9.3 Closing Remarks

Dataavailability isafundamental problemfaced by all distributedfilesystems. Asargued earlier
in the dissertation this problem will become worse as DFss get larger and new technologies
encouragethe use of mobileclients. Replication, the key to solving thisproblem, must strikethe
right balance between three potentially conflicting requirements: availability, consistency and
usability. Pessimistic replication providesfull consistency but isconsidered unusable because it
restricts availability excessively. Optimistic replication, on the other hand, providesthe desired
availability but is considered unusable because it compromises consistency excessively.

The usability of optimistic replication can be improved without sacrificing availability by
automating the resolution of inconsistencies. In the best case, al inconsistencies would be
resolved automatically and the system’s usability would be completely restored. In practice
however some inconsistencies cannot be resolved by the system and the burden of their resolu-
tion fallson the user. Optimistic replication will be practical only if inconsistencies that cannot
be resolved by the system occur rarely and the pain associated with manual resolution is much
less than the cost of reduced availability. Furthermore, the system’s availability, consistency or
usability must never be compromised in the absence of failures.

Thisthesishas shown that optimistic replication can be used effectively inadistributed Unix file
system and that the system’s availability can be greatly enhanced without undue compromise of
its consistency or usability. The automatic resolution techniques — a server-based mechanism
that uses logging, and a client-based mechanism that uses application support — are ssimple
yet effective in alleviating the shortcomings of optimistic replication. The efficacy of these
mechanisms will pave the way for serious use of optimistic replication in distributed file
systems.

Bibliography

[1] Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Tevanian, A., and Young, M.
Mach: A New Kernel Foundation for Unix Development. In Proceedings of the Summer
Usenix Conference (June 1986).

[2] Alsberg, P, and Day, J. A principle for resilient sharing of distributed resources. In
Proceedings 2nd International Conference on Software Engineering (October 1976).

[3] Bernstein, P, Hadzilacos, V., and Goodman, N. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, 1987.

[4] Bershad, B. N., and Pinkerton, C. B. Watchdogs - Extending the UNIX File System.
Computing Systems 1, 2 (Spring 1988).

[5] Blaustein, B., GarciaMolina, H., Ries, D., Chilenskas, R., and Kaufman, C. Maintaining
Replicated Databases Even in the Presence of Network Partitions. In Proceedings of the
|EEE EASCON Conference (September 1983).

[6] Blaustein, B., and Kaufman, C. Updating Replicated Data During Communications Fail-
ures. In Proceedings of the Eleventh International Conference on Very Large Databases
(August 1985).

[7] Cannan, S., and Otten, G. QL — The standard handbook: based on the new SQL standard.
McGraw-Hill, 1993.

[8] Davidson, S. An Optimistic Protocol for Partitioned Distributed Database Systems. PhD
thesis, Princeton University, October 1982.

[9] Davidson, S. Optimism and Consistency in Partitioned Distributed Database Systems.
ACM Transactions on Database Systems 9, 3 (September 1984).

[10] Davidson, S., GarciaMolina, H., and Skeen, D. Consistency in Partitioned Networks.
ACM Computing Surveys 17, 3 (September 1985).

163

164 BIBLIOGRAPHY

[11] Ebling, M. Evaluating and Improving the Effectiveness of Hoarding. Thesis proposal,
Carnegie Mellon University School of Computer Science, April 1993.

[12] Ebling, M. R., and Satyanarayanan, M. SynRGen: An Extensible File Reference Gener-
ator. In Proceedings of the 1994 ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems (Nashville, TN, May 1994).

[13] Eppinger, J., Mummert, L., and Spector, A., Eds. Camelot and Avalon: A Distributed
Transaction Facility. Morgan Kaufmann, 1991.

[14] Garcia-Molina, H., Allen, T., Blaustein, B., Chilenskas, R., and Ries, D. Data-Patch:
Integrating Inconsistent Copies of a Database after a Partition. In Proceedings of the
Third Symposium on Reliability in Distributed Software and Database Systems (October
1983).

[15] GarciaMolina, H., and Wiederhold, G. Read-Only TransactionsinaDistributed Database.
ACM Transactions on Database Systems 7, 2 (June 1982).

[16] Gifford, D. Weighted Voting for Replicated Data. In Proceedings of the Seventh ACM
Symposium on Operating Systems Principles (August 1979).

[17] Gray, J. Notes on Database Operating Systems. In Operating Systems: An Advanced
Course, Lecture Notes in Computer Science. Springer-Verlag, 1978.

[18] Guy, R. A Replicated Filesystem Design for a Distributed Unix System. Master’s thesis,
University of California, Los Angeles, 1987.

[19] Guy, R. Ficus: A Very Large Scale Reliable Distributed File System. PhD thesis,
University of California, Los Angeles, June 1991.

[20] Guy, R., Heidemann, J., Mak, W., Page, T., Popek, G., and Rothmeier, D. Implementation
of the Ficus Replicated File System. In Proceedings of the Summer Usenix Conference
(June 1990).

[21] Herlihy, M. A Quorum-Consensus Replication Method for Abstract Data Types. ACM
Transactions on Computer Systems 4, 1 (February 1986).

[22] Howard, J., Kazar, M., Menees, S, Nichols, D., Satyanarayanan, M., Sidebotham, R.,
and West, M. Scale and Performancein a Distributed File System. ACM Transactions on
Computer Systems 6, 1 (February 1988).

[23] Howard, J. H. Using reconciliation to share files between occasionally connected com-
puters. In Proceedings of the 4th IEEE Workshop on Workstation Operating S ystems
(Napa, CA, October 1993).

BIBLIOGRAPHY 165

[24] Irlam, G. A Static Analysis of Unix File Systems circa 1993.
ftp://cs.dartnout h. edu/ pub/fil e-sizes/ufs93b.tar.gz (October
1993).

[25] Kistler, J. Disconnected Operation in a Distributed File System. PhD thesis, Carnegie
Mellon University, Pittsburgh, May 1993.

[26] Kumar, P, and Satyanarayanan, M. Supporting Application-Specific Resolution in an
Optimistically Replicated File System. In Proceedings of the 4th IEEE Workshop on
Workstation Operating Systems (Napa, CA, October 1993).

[27] Kung, H., and Robinson, J. On Optimistic Methods for Concurrency Control. ACM
Transaction on Database Systems 2, 6 (1981).

[28] Lampson, B., and Sturgis, H. Crash Recovery inaDistributed Data Storage System. Tech.
rep., Computer Science Laboratory, Xerox Palo Alto Research Center, 1976.

[29] Levy, E., and Silberschatz, A. Distributed File Systems. Concepts and Examples. Com-
puting Surveys 22, 4 (December 1990).

[30] Lu, Q., , and Satyanarayanan, M. Isolation-only Transactions for Mobile Computing.
ACM Operating Systems Review (April 1994).

[31] Mashburn, H. RVM User Manual, 1.1 ed. CarnegieMellon University School of Computer
Science, June 1992.

[32] Minoura, A., and Wiederhold, A. Resilient extended true-copy token scheme for a
distributed database system. In IEEE Transactions on Software Engineering (May 1982).

[33] Mummert, L. Exploiting Weak Connectivity inaDistributed File System. Thesisproposal,
Carnegie Mellon University School of Computer Science, December 1992.

[34] Needham, R., and Schroeder, M. Using Encryption for Authenticationin Large Networks
of Computers. Communications of the ACM 21, 12 (December 1978).

[35] Noble, B. D., and Satyanarayanan, M. An Emperical Study of a Highly Available File
System. In Proceedings of the 1994 ACM SGMETRICS Conference on Measurement
and Modeling of Computer Systems (Nashville, TN, May 1994).

[36] Ousterhout, J. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

[37] Parker Jr., D., Popek, G., Rudisin, G., Stoughton, A., Walker, B., Walton, E., Chow, J.,
Edwards, D., Kiser, S,, and Kline, C. Detection of Mutual Inconsistency in Distributed
Systems. |EEE Transactions on Software Engineering SE-9, 3 (May 1983).

166

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

BIBLIOGRAPHY

Popek, G., and Walker, B. The LOCUS Distributed System Architecture. MIT Press,
1985.

Popek, G., Walker, B., Chow, J.,, Edwards, D., Kline, C., Rudisin, G., and Thiel, G.
LOCUS: A Network Transparent, High Reliability Distributed System. In Proceedings
of the Eighth ACM Symposium on Operating Systems Principles (December 1981).

Purdin, T. Enhancing File Availability in Distributed Systems (The Saguaro File System).
PhD thesis, University of Arizona, August 1987.

Purdin, T., Schlichting, R., and Andrews, G. A File Replication Facility for Berkeley
Unix. Software Practice and Experience 17, 12 (December 1987).

Reiher, P, Heidemann, J., Ratner, D., Skinner, G., and Popek, G. Resolving File Conflicts
in the Ficus File System. In USENIX Summer Conference Proceedings (Boston, MA,
June 1994).

Rudisin, G. J. Architectural Issuesin aReliable Distributed File System. Master’sthesis,
University of California, Los Angeles, 1980.

Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., and Lyon, B. Design and Implemen-
tation of the Sun Network Filesystem. In Summer Usenix Conference Proceedings (June
1985).

Satyanarayanan, M. On the Influence of Scale in a Distributed System. In Proceedings
of the Tenth International Conference on Software Engineering (April 1988).

Satyanarayanan, M. A Survey of Distributed File Systems. In Annual Review of Computer
Science. Annua Reviews, Inc, 1989. Also available as Tech. Rep. CMU-CS-89-116,
Carnegie Mellon University School of Computer Science, February, 1989.

Satyanarayanan, M. Scalable, Secure, and Highly Available Distributed File Access.
Computer 23,5 (May 1990).

Satyanarayanan, M., Howard, J., Nichols, D., Sidebotham, R., Spector, A., and West, M.
The ITC Distributed File System: Principles and Design. In Proceedings of the Tenth
ACM Symposium on Operating Systems Principles (December 1985).

Satyanarayanan, M., Kistler, J., Kumar, P, Okasaki, M., Siegel, E., and Steere, D.
Coda: A Highly Available File System for a Distributed Workstation Environment. |EEE
Transactions on Computers 39, 4 (April 1990).

Satyanarayanan, M., Mashburn, H. H., Kumar, P, Steere, D. C., and Kistler, J. J.
Lightweight Recoverable Virtual Memory. In Proceedings of the Fourteenth ACM Sym-
posium on Operating Systems Principles (Asheville, NC, December 1993).

BIBLIOGRAPHY 167

[51] Satyanarayanan, M., and Siegel, E. Parallel Communication in a Large Distributed
Environment. |EEE Transactions on Computers 39, 3 (March 1990).

[52] Thomas, R. A solution to the concurrency control problem for multiple copy datbases. In
|EEE Compcon (Spring 1978).

[53] Walker, B., Popek, G., English, R., Kline, C., and Thiel, G. The LOCUS Distributed
Operating System. In Proceedings of the Ninth ACM Symposium on Operating Systems
Principles (October 1983).

