
Improving Data Consistency for Mobile File
Access Using Isolation-Only Transactions

Qi Lu

May 1996
CMU-CS-96-131

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee:
Mahadev Satyanarayanan, Chair

Jeannette Wing
David Garlan

Eliot Moss, University of Massachusetts

Copyright c 1996 Qi Lu

This research was sponsored by the Air Force Materiel Command (AFMC) and the Advanced Research Projects
Agency (ARPA) under contract number F19628-93-C-0193. Additional support was provided by the IBM
Corporation, Digital Equipment Corporation, Bellcore, Intel Corporation, and AT&T.

The views and conclusions contained in this document are those of the author and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied, of AFMC, ARPA, the
U. S. Government, or the sponsoring corporations.

Keywords: Mobile computing, distributed file system, disconnected operation, optimistic
replication, transactions, conflict detection and resolution, application-specific resolution, IOT.

For Yin

Abstract

Disconnected operation based on optimistic replication has been demonstrated as an effective
technique enabling mobile computers to access shared data in distributed file systems. To
guard against inconsistencies resulted from partitioned data sharing, past research has focused
on detecting and resolving write/write conflicts. However, experience shows that undetected
read/write conflicts pose a subtle but serious threat to data integrity in mobile file access.
Solving this problem is critical for the future success of mobile computing.

This dissertation shows that isolation-only transaction (IOT), an upward compatible trans-
action mechanism for the Unix File System, is a viable solution to this problem. The central
idea of the IOT model is imposing serializability-based isolation requirements on partitioned
transaction executions. Transactions executed on a disconnected client stay in a tentative state
until the client regains connection to relevant servers. They are committed to the servers as
soon as they pass consistency validation. Invalidated transactions are automatically or manu-
ally resolved to ensure global consistency. Powerful resolution mechanisms such as automatic
transaction re-execution and application specific resolver invocation can transparently resolve
conflicts for many common Unix applications. In addition, a concise conflict representation
scheme enables application semantics to be smoothly integrated for only conflict resolution
and consistency validation. The practical usability of IOT is further enhanced by a flexible
interactive interface, full compatibility with existing Unix applications, and the ability to retain
overall file system scalability, security and transparency.

A working IOT implementation in the Coda file system has been developed and used in
experiments in software development and document processing applications. Quantitative
evaluation based on controlled experiments and trace-driven simulations establish that the IOT
model is scalable and incurs modest performance and resource overhead.

The main contributions of this thesis research are the following: the design of an isolation-
only transaction model specialized for improving mobile file consistency while preserving
upward compatibility with existing Unix applications; the development of a working IOT
implementation in the Coda file system; experimentation and evaluation demonstrating the
feasibility and practicality of the IOT model.

Acknowledgments

First and foremost, I would like to thank my advisor Satya, without whom this thesis would not
have been possible. He taught me design, implementation, and evaluation skills that are critical
in completing this dissertation. His patience, encouragement and support made my transition
from the previous research area of software engineering to distributed and mobile computing
systems much easier. His unparalleled expertise and insight in experimental systems research
have been a constant source of guidance throughout the thesis research process. I also would
like to thank other members of my thesis committee, Eliot Moss, Jeannette Wing and David
Garlan for their valuable help that significantly improves both the technical content and the
presentation of this dissertation.

My stay at the School of Computer Science of CMU would not have been as enjoyable and
rewarding without the wonderful people who made it a great place to do research in computer
science. I am deeply indebted to my first advisor, late Professor Nico Habermann, for his
invaluable help in my development as a graduate student and a researcher both technically
and personally. I would like to thank Sharon Burks for being so helpful when I needed the
most. Present and past Coda project members including Maria Ebling, Bob Baron, Jay Kistler,
Hiroshi Inamura, Hank Mashburn, Lily Mummert, Brian Noble, Morgan Price, Josh Raiff,
David Steer, and Tetsuro Muranaga offered me generous support. Jay helped formulating the
central theme of my thesis; Puneet was always available for help; Tetsuro used my software
in his mobile CSCW research to provide me valuable usage experience. LeAnn Neal Reilly
carefully proof read the entire dissertation. I also would like to thank my officemates, past and
present, for creating an intellectually stimulating environment.

My parents taught me the value of hard work and instilled in me the desire to be successful.
Without their love and sacrifice, I never could have come this far. Thanks also to my daughter,
Diana, for reminding me that there is so much more to life than computer science. Finally,
my wife, Yin, deserves greater thanks than I can possibly give. Over the past seven years, she
has been an immeasurable source of strength, love, comfort, and support. Yin, this thesis is
dedicated to you.

Contents

1 Introduction 1

1.1 Mobile File Access : 1

1.2 Disconnected Operation : 2

1.3 Partitioned Sharing and Data Inconsistency : : : : : : : : : : : : : : : : : : 3

1.4 The Thesis : 4

1.5 Organization of this Dissertation : 5

2 Partitions, Conflicts and Inconsistency 7

2.1 The Impact of Optimistic Replication on UFS Semantics : : : : : : : : : : : 7

2.2 Consistency Maintenance : 12

2.3 From Partitioned Sharing to Inconsistency : : : : : : : : : : : : : : : : : : : 13

3 Design Rationale 15

3.1 Design Objectives and Constraints : 15

3.1.1 Design Objectives : 15

3.1.2 Design Context : 17

3.2 High Level Design Decisions : 19

3.2.1 Focusing on Disconnected Operation : : : : : : : : : : : : : : : : : 19

3.2.2 Optimistic Approach : 20

3.2.3 Inconsistency Detection : 20

3.2.4 Consistency Restoration : 22

3.2.5 Starting Point: Inferred Transaction Model : : : : : : : : : : : : : : 23

3.3 Isolation-Only Transaction Model : 25

ix

x CONTENTS

3.3.1 What Is IOT? : 25

3.3.2 Execution Model : 26

3.3.3 Why Isolation Only? : 28

3.3.4 Consistency Model : 29

3.3.5 Handling Non-Transactional Operations : : : : : : : : : : : : : : : : 35

3.3.6 Model Optimization : 35

3.3.7 Closing Remarks : 38

4 Detailed Design: Consistency Enforcement 43

4.1 Concurrency Control for Connected Transactions : : : : : : : : : : : : : : : 44

4.1.1 Design Alternatives : 44

4.1.2 Realizing OCC in Coda : 45

4.2 Maintaining the Local State of A Disconnected Client : : : : : : : : : : : : : 50

4.2.1 Maintaining Local Consistency : 50

4.2.2 Recording Transaction History : 51

4.2.3 Managing Disconnected Mutations : : : : : : : : : : : : : : : : : : 52

4.2.4 Cancelling Disconnected Transactions : : : : : : : : : : : : : : : : : 55

4.3 Merging Local State with Global State : 58

4.3.1 Synchronizing Local and Global States : : : : : : : : : : : : : : : : 58

4.3.2 From Servers to Client: Cache Validation : : : : : : : : : : : : : : : 60

4.3.3 From Client to Servers: An Incremental Propagation Approach : : : : 60

4.3.4 Transaction Validation : 64

4.3.5 Transaction Commitment : 65

4.3.6 Transaction Resolution : 65

5 Detailed Design: Conflict Representation 67

5.1 Basic Issues of Conflict Representation : 67

5.1.1 Inconsistent Objects : 67

5.1.2 Two Venus Operation Modes : 68

5.1.3 Conflict Representation Requirements : : : : : : : : : : : : : : : : : 69

5.2 Conflict Representation in Service Mode : : : : : : : : : : : : : : : : : : : 69

CONTENTS xi

5.2.1 Conflict Notification : 69

5.2.2 Access Prevention : 70

5.2.3 Visibility Maintenance : 71

5.3 Conflict Representation in Resolution Mode : : : : : : : : : : : : : : : : : : 75

5.3.1 Exposing Local and Global State of an Inconsistent Object : : : : : : 76

5.3.2 The Realization of Dual Replica Representation : : : : : : : : : : : : 81

5.3.3 The Multiple View Capability : 85

5.3.4 Establishing Transaction Resolution Object View : : : : : : : : : : : 86

6 Detailed Design: Conflict Resolution 89

6.1 A Cooperation-Based Resolution Framework : : : : : : : : : : : : : : : : : 89

6.1.1 A Resolution Session Model : 89

6.1.2 Supporting Application-Independent Resolution Actions : : : : : : : 93

6.1.3 Extending Transaction State Transitions : : : : : : : : : : : : : : : : 95

6.2 Automatic Conflict Resolution : 97

6.2.1 Site of Resolver Execution : 97

6.2.2 Resolver Invocation : 98

6.2.3 Resolver Execution : 99

6.2.4 Safety Issues : 101

6.2.5 Programming Application-Specific Resolvers : : : : : : : : : : : : : 103

6.3 Manual Conflict Resolution : 105

6.3.1 Maintaining A Repair Session : 105

6.3.2 The Transaction Repair Tool : 106

7 Detailed Design: User Interface 109

7.1 Programming Interface : 109

7.1.1 Interface for Programming Isolation-Only Transactions : : : : : : : : 109

7.1.2 Interface for Programming Application-Specific Resolvers : : : : : : 113

7.1.3 Other Issues : 114

7.2 Interactive Interface : 114

7.2.1 Interactive Transaction Manipulation Using the IOT-Shell : : : : : : 115

xii CONTENTS

7.2.2 Internal Mechanisms for Interactive Transaction Execution : : : : : : 116

7.2.3 Controlling and Monitoring Facilities : : : : : : : : : : : : : : : : : 117

7.2.4 A Practical Example : 118

8 Implementation Issues 121

8.1 Overall Architecture : 121

8.2 Maintaining Internal Transaction Representation : : : : : : : : : : : : : : : 123

8.2.1 Main Data Structures : 123

8.2.2 Recording Transaction Readset/Writeset : : : : : : : : : : : : : : : : 125

8.3 Shadow Cache File Management : 127

8.3.1 Shadow Cache File Organization : : : : : : : : : : : : : : : : : : : 127

8.3.2 Prioritized Cache Space Management : : : : : : : : : : : : : : : : : 128

8.3.3 Reclaiming Shadow Space : 130

8.4 Implementation Optimizations : 130

8.4.1 Lazy Serialization Graph Maintenance : : : : : : : : : : : : : : : : 130

8.4.2 Coalescing the Serialization Graph : : : : : : : : : : : : : : : : : : 131

8.4.3 Sharing Environment Variables : 132

8.5 Persistence and Crash Recovery : 132

8.5.1 Persistent Data Structures : 133

8.5.2 Crash Recovery : 133

8.6 Transaction Validation : 134

8.6.1 Overloading with Cache Coherence Maintenance : : : : : : : : : : : 134

8.6.2 Object Version Maintenance : 135

8.6.3 Validation Atomicity : 135

9 Evaluation 137

9.1 Overview : 137

9.1.1 System Evolution and Status : 137

9.1.2 Basic Evaluation Approach : 139

9.2 Transaction Performance : 139

9.2.1 Performance Overhead for Normal Operations : : : : : : : : : : : : 140

CONTENTS xiii

9.2.2 Performance Overhead for Transactional Operations : : : : : : : : : 145

9.2.3 Performance of Automatic Resolution : : : : : : : : : : : : : : : : : 153

9.2.4 Other Performance Issues : 155

9.2.5 Summary : 156

9.3 Resource Cost Measurement : 157

9.3.1 Global System Resources : 157

9.3.2 Local System Resources : 161

9.3.3 Summary : 177

9.4 A Preliminary Usability Assessment : 177

9.4.1 Interactive Transaction Invocation : : : : : : : : : : : : : : : : : : : 178

9.4.2 Programming A Transaction : 179

9.4.3 Resolver Development : 179

9.5 Further Evaluation : 183

9.5.1 Data Collection : 183

9.5.2 User Survey : 184

10 Related Work 185

10.1 Transaction Models and Systems : 185

10.1.1 General Purpose Transaction Systems : : : : : : : : : : : : : : : : : 185

10.1.2 Transaction Support for File Systems : : : : : : : : : : : : : : : : : 186

10.1.3 Optimistic Concurrency Control : 186

10.1.4 Special Transaction Models : 187

10.2 Optimistically Replicated Systems : 187

10.2.1 The Coda File System : 187

10.2.2 The Ficus File System : 189

10.2.3 The Bayou System : 189

10.2.4 Davidson’s Optimistic Transaction Model : : : : : : : : : : : : : : : 190

10.3 Commercial Products : 190

10.3.1 Lotus Notes : 190

10.3.2 Oracle Server Replication : 191

xiv CONTENTS

11 Conclusion 193

11.1 Contributions : 194

11.2 Future Work : 195

11.2.1 Implementation Extensions : 196

11.2.2 Model Generalization : 196

11.2.3 Resolver Development : 198

11.3 Final Remarks : 198

List of Figures

3.1 Venus States and Their Transitions : 18

3.2 An Example of Non-Serializable Partitioned Transactions : : : : : : : : : : : 24

3.3 IOT States and Their Transitions : 27

3.4 Read-Only Transactions Violating One-Copy Serializability : : : : : : : : : : 39

3.5 Relationship Among Semantic Models : 41

4.1 Transaction Mutation Log Organization : 47

4.2 The Transaction Reintegration Process : 48

4.3 The New Transaction Reintegration Process : : : : : : : : : : : : : : : : : : 54

4.4 The IOT-Venus States and Their Transitions : : : : : : : : : : : : : : : : : : 59

4.5 An Incremental Transaction Propagation Framework : : : : : : : : : : : : : 61

4.6 An Algorithm for Incremental Transaction Propagation : : : : : : : : : : : : 63

5.1 An Example of Dangling Symbolic Links : : : : : : : : : : : : : : : : : : : 70

5.2 Visibility of Cached Objects : 74

5.3 Cached Object States and Their Transitions : : : : : : : : : : : : : : : : : : 75

5.4 The Basic Structure of Dual Replica Representation : : : : : : : : : : : : : : 80

5.5 An Example of Dual Replica Conflict Representation : : : : : : : : : : : : : 80

5.6 Internal Structure of Dual Replica Representation : : : : : : : : : : : : : : : 82

5.7 The Internal Structure of Local and Global Views : : : : : : : : : : : : : : : 85

6.1 A Cooperation-Based Resolution Session Model : : : : : : : : : : : : : : : 90

6.2 Extended IOT State Transitions : 96

6.3 The Process Structure of Automatic Resolver Execution : : : : : : : : : : : : 99

xv

xvi LIST OF FIGURES

6.4 A List of Transaction Repair Tool Commands : : : : : : : : : : : : : : : : : 106

7.1 Library Routines for Programming Transactions : : : : : : : : : : : : : : : : 110

7.2 A Template Transaction Program Using Target Application Source Code : : : 111

7.3 A Transaction Program not Using Target Application Source Code : : : : : : 112

7.4 Library Routines for Programming Resolvers : : : : : : : : : : : : : : : : : 113

7.5 Transaction Specification Commands and Examples : : : : : : : : : : : : : : 115

7.6 Interactive Transaction Execution in the IOT-Shell : : : : : : : : : : : : : : 117

7.7 A Practical Transaction Example : 118

8.1 The IOT System Architecture : 122

8.2 Main Data Structures in Internal Transaction Representation : : : : : : : : : 123

8.3 Extending Kernel/Venus Communication with Process Information : : : : : : 126

8.4 An Example of Internal Organization of Shadow Cache Files : : : : : : : : : 128

8.5 Prioritized Cache Space Allocation : 129

8.6 An Example of Coalescing a Serialization Graph : : : : : : : : : : : : : : : 131

9.1 Performance Comparison for Andrew Benchmark : : : : : : : : : : : : : : : 147

9.2 Comparison of Trace Replay Performance : : : : : : : : : : : : : : : : : : : 149

9.3 Comparison of Software Build Task Performances : : : : : : : : : : : : : : 151

9.4 Comparison of Document Build Task Performances : : : : : : : : : : : : : : 152

9.5 Latency of Localization and De-localization : : : : : : : : : : : : : : : : : : 154

9.6 Reintegration Traffic for Multiple Runs of Andrew Benchmark : : : : : : : : 160

9.7 High-Water Marks of Shadow Space Cost : : : : : : : : : : : : : : : : : : : 165

9.8 Shadow Space Cost Without Transaction Cancellation : : : : : : : : : : : : : 169

9.9 High-Water Marks of RVM Space Cost : 171

9.10 RVM Space Cost Without Transaction Cancellation : : : : : : : : : : : : : : 172

9.11 Subtree Height Distribution : 175

9.12 Examples for Transaction Specification : 178

9.13 An Example of a Resolver for Make : 180

9.14 An Example of A Resolver for RCS Checkout : : : : : : : : : : : : : : : : : 182

List of Tables

2.1 A Table of Abbreviations : 8

3.1 Inferred Transaction Types and UFS System Call Mapping : : : : : : : : : : 23

3.2 Transaction Specification for File Access Operations : : : : : : : : : : : : : 36

9.1 Client Platforms Supported by IOT : 138

9.2 Normal Operation Performance of Andrew Benchmark : : : : : : : : : : : : 141

9.3 Normal Operation Performance of Trace Replay with � = 1 : : : : : : : : : : 142

9.4 Normal Operation Performance of Trace Replay with � = 60 : : : : : : : : : 143

9.5 Normal Operation Performance of Building Coda Client and Server : : : : : 143

9.6 Normal Operation Performance of Typesetting a Dissertation and a Proposal : 144

9.7 Transaction Execution Performance of Andrew Benchmark : : : : : : : : : : 146

9.8 Performance of Transactional Trace Replay with � = 1 : : : : : : : : : : : : 148

9.9 Performance of Transactional Trace Replay with � = 60 : : : : : : : : : : : 148

9.10 Transaction Performance Overhead for Software Build Tasks : : : : : : : : : 150

9.11 Transaction Performance Overhead for Document Build Tasks : : : : : : : : 151

9.12 Impact of Disconnected Transactions on Reintegration Server Load : : : : : : 158

9.13 Information for the Work-Day and Full-Week Traces : : : : : : : : : : : : : 162

9.14 Simulated Transaction Applications : 163

9.15 Transaction and File Reference Statistics of Trace Simulation : : : : : : : : : 166

9.16 Transaction Application Statistics Of Trace Simulation : : : : : : : : : : : : 168

9.17 RVM Cost for Common Transactions : 170

9.18 File System Object Distribution : 174

xvii

xviii LIST OF TABLES

Chapter 1

Introduction

With the growing prevalence of portable computers, providing mobile computers with conve-
nient access to shared data in distributed file systems (DFSs) becomes an important problem.
Although disconnected operation has been shown to be a viable technique for supporting
mobile access in distributed Unix file systems (UFS) [27, 62], it induces the risk of data in-
consistency due to partitioned data sharing. This dissertation advocates a new abstraction
called Isolation-Only Transaction (IOT) as an effective means to improve consistency for mo-
bile file access [40, 41]. It demonstrates the viability of this approach through the design,
implementation and evaluation of IOT in the Coda file system.

This chapter begins with a brief background of DFSs and disconnected operation. It then
introduces the data inconsistency problems caused by partitioned sharing during disconnected
operation. It concludes with the thesis statement and an outline of its substantiation in the rest
of the document.

1.1 Mobile File Access

Distributed File Systems DFSs such as NFS [58], AFS [44, 24, 59], NetWare [50] and
LanManager are becoming an integral part of the basic computing infrastructure in organizations
with a large number of networked personal computers or workstations. Their increasing
popularity can be attributed to the following reasons. First, DFSs allow information to be
shared among a large number of physically dispersed users. Second, DFSs can provide location
transparency by hiding the physical distribution of the underlying system so that the users can
conveniently access shared data using their logical identities from anywhere within the system.
In addition, the administrative burden on users is lessened because the users can concentrate on
their own work while tasks such as backup and software maintenance are handled by trained
personnel.

1

2 CHAPTER 1. INTRODUCTION

Most of the DFSs in widespread use are organized according to the client/server architecture.
File data are managed by a nucleus of dedicated server machines operating at secure locations
by a central authority. A large number of client machines from different locations can access the
data through a standard interface such as the UFS API (Application Programming Interface).
A key technique for enabling good performance and scalability is client caching, where copies
of shared data are stored on the client machine so that they can be accessed without frequent
communication with the servers. At large scale, data availability becomes a serious concern
because frequent failures such as a network partition or a server crash denies users access to
needed data. The main technique for improving data availability is replication, where multiple
copies of the same data are maintained at different sites so that the data can accessed even
though a portion of the network or the servers are down.

The Impact of Mobile Computers Mobile computers are one of the fastest-growing seg-
ments of the computer industry. Many portable computers are powerful enough to operate as
a client of DFSs and benefit from the capability of transparently accessing shared data. Un-
fortunately, mobile access to shared data is constrained in important ways. First, mobile client
machines are often resource poor relative to their stationary counterparts. Second, portable
computers are less secure and more prone to loss and destruction. Most importantly, mobile
elements of DFSs must operate under a wider range of network conditions. Because mo-
bile connectivity is often absent, intermittent, slow or expensive, the ability to operate while
disconnected provides a crucial worst-case fall-back position that the users can rely on.

1.2 Disconnected Operation

The Coda file system pioneered the use of disconnection operation as a basic technique for
mobile file access [61]. The essence of disconnected operation is to enable a disconnected
client to act as a temporary server and continue to service file access requests using the cache
copies of the requested data. The effect of disconnection is hidden from the applications
running on the mobile client machine as long as the data they access are cached locally. In
principle, the cache copy of an object can be viewed as its second class replica and disconnected
operation as a special form of optimistic replication [26], where the client replica can be
accessed without restriction while partitioned from the corresponding servers. The design
rationale of disconnected operation is based on optimistic replication. It pursues maximum data
availability by relaxing the traditional partitioned replication control necessary for maintaining
one-copy equivalence [9]. Practical experience with disconnected operation in Coda has
demonstrated that it is a viable and effective technique for supporting mobile file access in a
Unix environment [62].

1.3. PARTITIONED SHARING AND DATA INCONSISTENCY 3

1.3 Partitioned Sharing and Data Inconsistency

The superior data availability brought about by disconnected operation is not without cost.
Arbitrary partitioned sharing allowed during disconnected operation can cause two kinds of
conflicts and possibly leave data in an inconsistent state. Past research has focused on write/write
conflicts where the same object is updated on both a disconnected client and the corresponding
servers. Fortunately, empirical evidence has shown that partitioned write sharing is very rare
in practice [26] and write/write conflicts can be efficiently detected and often transparently
resolved [53, 30, 31, 29, 56, 32, 68]. The more subtle threat comes from read/write conflicts
where the same object is read in one partition and updated in another. Partitioned read/write
sharing can cause data inconsistencies in various ways as demonstrated by the following
examples.

Example 1. Mary is a business executive and she works on a report for an upcoming
shareholders’ meeting using a disconnected laptop during a weekend trip. Before
disconnecting, she cached a spreadsheet with the most recent budget figures and she
writes her report based on the numbers in that spreadsheet. While she is away, new
budget data become available and the server copy of the spreadsheet is updated.
The read/write conflict on the spreadsheet could leave the report in an inconsistent
state if Mary fails to recognize the stale data in her report while other presentations
by her colleagues at the meeting all cite the up-to-date figures.

It is true that even if Mary’s laptop remains fully connected to the servers, the same
inconsistency could still occur due to lack of coordination among the users. However, file access
using disconnected operation substantially enlarges the window of vulnerability. Furthermore,
detecting stale data upon reconnection is no small chore for Mary because her report may use
data from many other files containing data such as sales figures and revenue projections. All
of them could have changed on the servers during her absence. The consistency of the report
would be much better protected if Mary could be notified upon reconnection about the server
updates on any of the data she used in writing the report.

Based on an actual instance of using disconnected operation in the Coda file system, the fol-
lowing scenario illustrates that partitioned read/write sharing can also incur data inconsistency
during software development activities.

4 CHAPTER 1. INTRODUCTION

Example 2. Joe is a programmer for a research software project and he decides to
release a set of new libraries containing bug fixes. He executes a dedicated software
administration script which installs the relevant archive files into a public area before
posting an electronic bboard message announcing the new release. Unfortunately,
Joe’s client lost connectivity to the servers during the process and only part of the
installed archive files make it to the servers while the rest stay in the client’s cache
waiting to be propagated upon reconnection. Because of the support of disconnected
operation, the effect of disconnection is hidden from applications. Therefore, the
script has no idea that part of the installation is only performed locally on the client
and not visible from the servers. It will continue to send a message to the bboard
to announce the installation. Let us suppose that the message is successfully posted
to the bboard via a different network communication route and another user sees
the post. The user then builds a new utility tool linking those installed libraries
without knowing that some of them are still the old version. There are read/write
conflicts here because some of the library files are updated in one partition and read
in another. Such read/write conflicts could cause serious problems for the newly
built utility tool because it is linked with an incompatible set of libraries.

Note that this example is different from the previous one in that the inconsistency could
not have happened had Joe’s client remained connected to the servers because that would have
guaranteed that by the time the bboard announcement was posted all the installed new libraries
were already visible on the servers. Moreover, the problem could get much worse if the utility
tool is used to mutate other objects, thereby causing cascaded inconsistencies. The latter are
often insidious and difficult to track down.

1.4 The Thesis

Motivation and Objective The above scenarios of read/write conflicts are not far-fetched.
They can really be experienced during disconnected operation. Partitioned read/write sharing
will become an increasingly important issue, particularly in large scale DFSs where information
sharing among collaborating users is common. Undetected read/write conflicts pose a serious
threat to data integrity and may impede the usability of disconnected operation.

The main objective of this research is to develop a practically usable mechanism that
can guard against inconsistencies resulting from partitioned read/write sharing. Our central
focus is improving consistency support for disconnected operation while maintaining upward
compatibility with existing Unix applications.

Thesis Statement Our solution is an explicit transaction extension to UFS which provides
not only the necessary context information for analyzing partitioned read/write dependencies

1.5. ORGANIZATION OF THIS DISSERTATION 5

but also ample opportunities for automatic conflict resolution. Our thesis statement is:

As an explicit extension to UFS, the isolation-only transaction mechanism automatically

detects read/write conflicts via optimistic enforcement of serializability-based isolation

requirements. Equipped with flexible conflict resolution facilities, IOTs can be effectively

used to improve data consistency for mobile file access in distributed Unix file systems.

Thesis Validation This thesis has been validated through the actual development of an IOT
extension to the Coda file system. A working implementation has been produced, followed
by extensive experiments in the application domains of document processing and software
development. A thorough quantitative evaluation and an initial usability assessment offer
strong evidence in support of the thesis statement.

1.5 Organization of this Dissertation

The rest of this document is organized as follows. Chapter 2 presents a close examination of
the fundamental cause of data inconsistencies resulting from partitioned sharing. Chapter 3
highlights the key design objectives and constraints, followed by a detailed description of the
IOT model.

Chapters 4 to 8 cover the detailed design and implementation issues of the development of
an IOT extension to Coda. Chapter 4 describes how the IOT consistency model is enforced
through an incremental transaction propagation scheme. Chapters 5 and 6 concentrate on the
key issues of conflict representation and conflict resolution. A library programming interface
as well as an interactive shell interface for using the IOT service are presented in Chapter 7.
The remaining important implementation issues are discussed in Chapter 8.

Chapter 9 evaluates the design and implementation; the focus of the evaluation is the amount
of system resources consumed in supporting the IOT service on a mobile client. The evaluation
is based on controlled experiments as well as trace-driven simulation and analysis. Chapter 10
discusses related work and Chapter 11 concludes with a summary of the main contributions
and a discussion of future work.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Partitions, Conflicts and Inconsistency

The purpose of this chapter is to discuss the fundamental cause of data inconsistencies incurred
by partitioned read/write conflicts. The two practical examples presented in the first chapter
are just different manifestations of the same problem, the discrepancy between the standard
UFS semantics and the weakened semantic guarantees induced by optimistic replication. The
gap between what is expected by the applications and what is actually provided by the system
in the presence of partitioned sharing opens a window of vulnerability. A clear understanding
of the conceptual depth and scope of the problem is essential to developing a practical solution
because it establishes a foundation upon which important design decisions can be analyzed and
reasoned about.

To present an in-depth analysis of the causal relation between optimistic replication and
data inconsistency, this chapter first examines how standard UFS semantics is weakened by
optimistic replication. It then revisits the basic notions of data consistency and consistency
maintenance. Finally, it identifies the conditions under which partitioned sharing will result in
data inconsistency.

2.1 The Impact of Optimistic Replication on UFS Semantics

In this section, we first review the standard UFS semantics. We then describe how optimistic
replication is normally performed in distributed Unix file systems. Finally, we explain how
standard UFS semantics is weakened in the presence of partitioned sharing. Because there are
many abbreviations frequently used in this chapter and throughout the dissertation, a list of
important abbreviations together with a brief description and the corresponding page number
for further reference are displayed in Table 2.1.

7

8 CHAPTER 2. PARTITIONS, CONFLICTS AND INCONSISTENCY

Abbreviation Description Page
ACID Atomicity, Consistency, Isolation and Durability 28
API Application Programming Interface 1
ASR Application-Specific Resolver(Resolution) 32
CCS Cache Coherence Status 60
CML Client Mutation Log 46
DFS Distributed File System 1
DRR Dual Replication Representation 79
GC Global Certification 31
G1SR Global One-Copy Serializability 30
IFT Inferred Transaction 23
IOT Isolation-Only Transaction 25
OCC Optimistic Concurrency Control 26
RVM Recoverable Virtual Memory 133
SG Serialization Graph 51
TML Transaction Mutation Log 46
UFS Unix File System 1
WFG Wait-For Graph 49
1SR One-Copy Serializability 23
1UE One-Copy Unix Equivalence 11
2PC Two-Phase Commitment 47
2PL Two-Phase Locking 44

Table 2.1: A Table of Abbreviations

The Standard UFS Semantics The UFS API provides applications with a hierarchically
organized file storage service via a set of system calls such as read, write, create and
unlink. The UFS semantic model for reading and writing file system objects is based on the
traditional shared-memory model. It guarantees that any read operation on an object will see
the result of the most recent update on that object, and the result of any write operation must
be immediately visible to all subsequent read operations.

By definition, the UFS semantics depends heavily on the notion of ordering among file
access operations. Such an order is quite obvious among operations performed on a single
machine, but often not so clear in a distributed environment where concurrent file access
operations can be issued from different hosts simultaneously. A widely accepted formal
definition of ordering among events in a distributed system is the Lamport time [34], which
builds up the happened before relation by modeling a distributed system with two intuitive

2.1. THE IMPACT OF OPTIMISTIC REPLICATION ON UFS SEMANTICS 9

notions of process and message communication. A process P (e.g., a Unix process) consists of
a sequence of events. If P executes a file access operation op1 before another operation op2,
then op1 is said to have happened before op2. If event a is the sending of a messages msg
and event b is the receiving of msg, then a happened before b. The relation is transitive, i.e.,
if a happened before b and b happened before c then a happened before c. The following
example illustrates this definition.

Example 3. Suppose that two users Joe and Mary use their own workstations to
work cooperatively on a group of objects stored in a distributed file system. Joe
fixes a bug in a source file work.c and sends Mary an email message after he
finishes editing it. Mary then compiles a new version of work.o from the updated
work.c for further testing. Even though performed on two different hosts, the
editing of work.c happened before the compiling of work.o because the email
communication between the two users establishes the distributed order.

UFS shared-memory semantics originated from the early days when Unix file systems were
primarily operated on time-sharing machines. It has the advantage of being simple, intuitive
and convenient for programming applications. In modern Unix systems, however, file systems
are often distributed over a number of hosts for better concurrency and resource sharing.
Distribution makes the UFS semantics more difficult to maintain, particularly when caching
and replication are involved to improve performance and availability. To retain semantic
compatibility, cache coherence protocols and replica control strategies are often the focal point
of distributed file system designs.

Optimistic Replication in UFS Replication is a technique that has proven to be effective for
improving data availability. When used in distributed Unix file systems, each logical object
is maintained by multiple physical copies called replicas at different sites. When some of the
sites are not accessible, an object may still be retrievable from other replicas, depending on the
replica control policy. The traditional pessimistic replica control strategies such as read-one-
write-all and its variations strictly maintain the one-copy equivalence to applications by limiting
partitioned replica accesses. Optimistic replication goes much further by allowing arbitrary
partitioned replica accesses, thus providing much higher data availability in the presence of
partition failures.

In optimistically replicated distributed file systems, a commonly used replica control strat-
egy is the read-any-write-all-available policy that allows applications to perform arbitrary
access operations on an object as long as one of its replicas is accessible. A read operation
always returns the most up-to-date version among all accessible replicas. Similarly, a write
operation always reaches all the accessible replicas. When partitions are healed, mutations
performed at different partitions of the system will be propagated to those replicas that have
not received the new update. When the same object is updated in more than one partition,

10 CHAPTER 2. PARTITIONS, CONFLICTS AND INCONSISTENCY

the conflicting partitioned updates may not be automatically resolvable.1 In that case, the file
system has to mark the object as inaccessible because the one-copy image for that object can no
longer be maintained. The resolution of the different replicas often requires user intervention.

Weak UFS Semantics The superior availability of optimistic replication comes at the cost of
weakened currency guarantees promised by the standard UFS semantics [61]. In the presence
of partition failures, a read operation on an object only retrieves the most recent among the
accessible replicas. There could very well be a more up-to-date replica in another partition.
Similarly, a write operation can only propagate its result to the accessible replicas. A subsequent
read operation on the same object in a different partition will not be able to see the new value.
Furthermore, any partitioned update/update conflict would force the file system to break the
one-copy image to applications and request user assistance to reconcile the conflict.

For brevity of discussion, we use the terms weak read and weak write to refer to a partitioned
read and partitioned write operation. We also use weak UFS semantics to stand for the UFS
semantics with optimistic replication where update/update conflicts are automatically detected.
A detailed description of the actual weak UFS semantics implemented in the Coda file system
can be found in [61].

Relaxation of UFS Semantics Many distributed UFSs relax the standard UFS semantics for
various performance benefits. For example, AFS adopts a session semantics [35] for cross-
client file sharing where updates to a file foo are not visible on the servers until foo is closed
and other clients maintaining an open foo will not see the updates until foo is re-opened. As
another example, NFS employs a 30-second delay in its cache write-back policy to improve
performance. Updates are not immediately visible on the servers until 30 seconds later. The
semantic relaxations in AFS and NFS are bounded relaxation because their semantic differences
with standard UFS are limited and applications can still obtain the standard UFS semantics by
using calls within the UFS API. For example, an AFS client can alway retrieve the most recent
data on the servers using the open call. A client in AFS or NFS can use the close call to
flush updates back to the servers immediately.

The essence of optimistic replication is using controlled semantic relaxation to achieve
higher data availability. Most of the UFS semantics is not affected except for the weakened
currency guarantees and the possibilities of divergent replicas of the same object. Unlike AFS
and NFS, the semantic relaxation of optimistic replication (or the weak UFS semantics) is
unbounded relaxation because it is impossible for the applications to avoid reading a stale file

1Theoretically, the file system can use one of the partitioned updates to overwrite the other if there is a well-
defined order among the partitioned updates. In practice, however, it is too costly to keep track of such ordering
information for all partitioned mutation operations because this would require maintaining a complete history of
all the file access operations and message communication performed on every host of the system.

2.1. THE IMPACT OF OPTIMISTIC REPLICATION ON UFS SEMANTICS 11

by just using calls within the UFS API. The currency degradation of file access operations
depends on the dynamic system connectivity. Thus, the window of vulnerability for semantic
deviation can persist as long as disconnection continues.

One-Copy UFS Equivalence Under weak UFS, applications executed in the presence of
partition failures can produce different results than they would under standard UFS semantics.
A concept that best characterizes such behavioral difference is one-copy UFS equivalence
(1UE). A distributed file system is 1UE if for every set of computations the final file system
state generated by any partitioned execution is identical to executing the same computations on
a single Unix host. Note that 1UE itself is not a semantic model. It is a concept that describes
a special characteristics of the semantic model of a distributed file system. For example, Sprite
[48] is one of the few distributed file systems that are 1UE because of its faithful distributed
implementation of the standard UFS semantics.

Weak UFS is not 1UE and it can be demonstrated by the following two simple examples.
Let us consider Example 3 once again. Suppose that during Joe and Mary’s cooperation there
is a network failure that causes their workstations to fall into two different partitions of an
optimistically replicated file system. Note that even though Joe and Mary’s machines are not
able to communicate within the file system to share files, it is still possible for Joe to send email
to Mary via a different network communication route. Obviously, Mary’s compilation result
work.o does not include Joe’s bug fix because the replica of work.c that she accesses has
not received Joe’s update yet. If both users are not aware of the disconnection, the resulting
state of work.o is certainly not what they have expected because repeating the same scenario
on a non-replicated file system would guarantee that the new work.o contains the bug fix.
Alternatively, suppose that there is a lack of coordination between Joe and Mary, and they both
edit work.c on the replicas within their corresponding partitions. What they end up with is two
diverged versions of work.c that require them to manually reconcile the difference, something
that never happens in a non-replicated file system.

These two examples are particular instances of two basic classes of non-1UE behaviors
called stale read and diverging writes. A stale read consists of a pair of read and write
operations on the same object obj, denoted Read(obj) and Write(obj). Although
Write(obj) happened before Read(obj) and there are no other write operations on obj
in between, Read(obj) retrieves the content of obj that existed before Write(obj)
updated it. The case of diverging writes consists of a pair of partitioned write operations that
update two different replicas of the same object with no well-defined order between them. Any
computation that creates non-1UE results must contain at least one instance of stale read or
diverging writes. Otherwise, any read operation in that computation would have read the same
value under standard UFS semantics and they would have created 1UE results instead.

12 CHAPTER 2. PARTITIONS, CONFLICTS AND INCONSISTENCY

2.2 Consistency Maintenance

The Application-Specific Nature of Consistency In the context of a Unix file system, the
notion of consistency is attached to a group of objects, denoted as OBJS = f o1, o2,, on g.
They are considered to be consistent or in a consistent state when their data contents satisfy
a set of conditions that are necessary for them to serve their intended purposes and for the
applications accessing them to function properly. The consistency requirements for OBJS are
often expressed as a set of predicates CONS(OBJS) = f P1(o1,, on),, P2(o1,, on)g.
It is the applications that decide whether a group of objects are consistent or not. The same
group of objects can be in a consistent or inconsistent state depending on which applications
are using them and under what situations.

Suppose that the files work.c and work.o of Example 3 reside in a system installation area
that is publicly visible to other users. The two objects are considered mutually consistent when
work.o is the compilation result of work.c and every time work.c is updated a new version
of work.o must be immediately re-compiled. Their consistency requirement is CONS(work
.c, work.o)public = f work.o is compiled from the latest version of work.c using ccg.
Consider a different scenario where work.c is in the public installation area and work.o is in
the private workspace of Joe and compiled with a different compiler for experimentation. Joe
may prefer work.o to remain unchanged even when work.c gets updated by a new release.
Therefore, the new consistency requirement is CONS(work.c, work.o)joe = f work.o is
compiled from version V of work.c using cc ^ version(work.c) � Vg.

Note that we make a clear distinction between the two concepts of conflict and inconsistency
in this dissertation. The notion of conflict is syntactic, meaning that the same object is written in
one partition and read or written in another. The notion of inconsistency is semantic, meaning
the data contents of a group of objects do not satisfy the conditions required by the applications
that use those objects. Conflicts can be detected by the file system, whereas inconsistency can
only be detected by the corresponding applications.

Application Responsibility Unix file systems treat file objects as uninterpreted byte se-
quences. They do not have the semantic knowledge to interpret data stored in the files. As
long as a file system strictly implements the standard UFS semantics, it bears no responsibility
for any inconsistency which occurs in the file system. It is the applications that are responsible
for not only maintaining data consistency but also detecting inconsistency and restoring con-
sistency. After all, it is the applications that have the final say on whether a group of objects
are consistent or not.

In Unix file systems, inconsistencies among objects often exist. For example, the public
release of a software system often consists of a collection of source code, object code and
executable files. A common consistency requirement is that the object and executable files must

2.3. FROM PARTITIONED SHARING TO INCONSISTENCY 13

be built from the corresponding source files. Such a consistency requirement is often briefly
violated during the process of system upgrade when only some of the object and executable files
are re-built from the new source files. In addition, human errors such as forgetting to compile
a library file could also cause inconsistency in the release. The first kind of inconsistency only
exists for a short duration while the second kind can persist for a long period of time. But
sooner or later the inconsistencies will be discovered by the users and applications when they
lead to unexpected results, and consistency will be restored afterwards.

File System Responsibility When the implementation of a file system is not strictly faithful
to the standard UFS semantics, maintaining data consistency becomes a shared responsibility
between the file system and applications. When a relaxed semantic model such as the weak
UFS semantics is employed, there is a window of vulnerability for a certain application,
denoted APP, to produce a different computation result than it expects. Suppose that the
final system state after executing APP from the initial state Sinit is Sstd�UFS(APP, Sinit)
and Sweak�UFS(APP, Sinit) under the standard UFS semantics and weak UFS semantics
respectively. Also suppose that the set of objects involved is OBJSAPP and their consistency
requirement is CONS(OBJSAPP). If Sstd�UFS(APP, Sinit) satisfies CONS(OBJSAPP)
while Sweak�UFS(APP, Sinit) does not, then the inconsistency is entirely the file system’s
responsibility. In other words, the file system is responsible for any inconsistency due to its
inability to keep the semantic promises in the presence of partitioned conflicts. It is important
to note that application errors and user mistakes still account for many inconsistencies. When
Sstd�UFS(APP, Sinit) fails to satisfy CONS(OBJSAPP), it is APP and its users, not the file
system, that are responsible for the inconsistency. In other words, the file system should not be
held accountable for inconsistencies caused entirely by application errors and user mistakes.

2.3 From Partitioned Sharing to Inconsistency

Conflicts Cause Non-1UE Effects Weak UFS semantics itself does not lead to inconsistency.
The necessary condition for an application to yield a different computation result under weak
UFS than under standard UFS is that there must be conflicting partitioned accesses to different
replicas of the same object. We define the term read/write conflict to mean a pair of read and
write operations that access the same object in two different partitions. Similarly, a write/write
conflict means that the same object is updated in two different partitions. Conflicts are the
necessary condition for non-1UE effects because any instance of a stale read or diverging
writes must involve a read/write or write/write conflict.

However, conflicts are not a sufficient condition for non-1UE effects. A read/write conflict
can often produce the same result as under the standard UFS semantics. For example, suppose
that Joe first prints out a copy of work.c from his desktop workstation and later edits it on

14 CHAPTER 2. PARTITIONS, CONFLICTS AND INCONSISTENCY

his laptop, and there is a partition failure causing the two operations to be performed on two
partitioned replicas of work.c. But the net result would be the same even if there were no
partition failures and the standard UFS semantics are guaranteed. Notice that a write/write
conflict always produces a non-1UE effect because one-copy equivalence can no longer be
maintained.

Non-1UE Effects Cause Inconsistency Non-1UE effects can cause objects to fall into an
inconsistent state even though the involved applications and users all operate correctly. A pair
of diverging writes immediately renders an object unusable and a stale read operation can lead
to inconsistent behaviors in many different ways. As described in Example 3, reading a stale
work.c can leave the compilation result of work.o in an inconsistent state because it does
not reflect the latest bug fix as its user expects. Mary might have used it to build new system
executables and happily notified other users that the bug has been fixed, only to find out later
that that is not the case. A stale read can also inappropriately expose an inconsistent set of
objects to the users, as exemplified by the following actual Coda experience.

Example 4. A user runs a script to deposit the new release of a set of files into
a public installation area and to announce the new release on an electronic bulletin
board. Due to a partition failure, only some of the new files get to the public area.
Other users who try to use the newly released files after seeing the announcement
will end up getting a mutually inconsistent set of the corresponding files because
only some of them are new.

Just as not all conflicts lead to non-1UE effects, not all non-1UE behaviors result in
inconsistency. As mentioned in previous discussions, sometimes the users may prefer reading
stale files to keep their own private workspace intact so that their private system development
activities will not be affected by frequent updates in the public area. In addition, users can
often tolerate reading stale files when the relevant new updates do not have any impact on
their activities. For example, a user would not mind using an old version of emacs when its
executable file is updated for a new release that enhances features he/she does not care about.
Finally, a user may even willingly accept a stale read if the alternative is no data access at all.

Summary There are two important steps in the causal link from partitioned sharing to incon-
sistency: conflicts cause non-1UE effects, non-1UE behaviors cause inconsistency. Both are
necessary conditions and not sufficient conditions. When weak UFS semantics is employed, the
file system and applications have shared responsibility for consistency maintenance. However,
the file system should only be responsible for those inconsistencies that result from non-1UE
behaviors. This is because other inconsistencies are caused by mistakes made by users and
applications, for which they are responsible.

Chapter 3

Design Rationale

This chapter outlines our fundamental design rationale and puts forth the IOT computation
model. The first section highlights key design objectives and identifies main design constraints
imposed by the dominant features of the underlying Coda file system and its target usage
environment. The second section discusses a number of high level design decisions that shape
the overall IOT structure. Finally, a detailed operational description of the IOT model is
presented in the third section.

3.1 Design Objectives and Constraints

Data inconsistency resulting from partitioned sharing is a challenging problem that is of major
practical significance. To develop a new file system mechanism capable of addressing such a
complicated problem, we commence the description of our research by clarifying the main ob-
jectives we seek to achieve and determining the basic system context under which this endeavor
is carried out. We choose to discuss design objectives and constraints before presenting the
IOT model because this discussion is necessary to clarify key rationale and justify important
design features of the IOT model.

3.1.1 Design Objectives

Our ultimate goal is to develop an IOT model and a working implementation that can be actually
used by Unix users and applications to effectively address the data inconsistency problems in
mobile file access. Practicality is the overriding goal, and it translates into the following specific
design objectives.

15

16 CHAPTER 3. DESIGN RATIONALE

Improved Consistency Support Providing improved consistency support for mobile file
access is what originally motivated this thesis research. The IOT mechanism must provide
help to Unix users and application programmers to obtain better consistency protection in
the presence of partitioned file accesses, particularly on mobile computers using disconnected
operation. Specifically, we want the IOT model to be able to recognize instances of data
inconsistency that would otherwise be undetected in the current state of practice. Moreover,
it must aid Unix users and programmers in managing the often-difficult task of restoring data
consistency.

Upward Unix Compatibility A true test of practicality of any new system facility such as
IOT is whether it can accommodate the large body of existing Unix applications. Maintaining
upward Unix compatibility is a major priority. We must ensure that the behavior of Unix
applications will remain unchanged as long as IOT is not involved. In addition, existing Unix
applications with little or no change should be able to take advantage of the IOT service.

Limited Resource Consumption One of the unique concerns in supporting mobile file
access is limiting resource cost on a portable computer because it often has less capacity than a
stationary one. The IOT mechanism must be very sensitive to its resource consumption because
excessive consumption may lead to denial of other valuable services to users and applications.

Ease of Use We pursue two complementary goals of conceptual simplicity and access flex-
ibility. The IOT functionality must be presented to Unix users and application programmers
with a simple abstraction that is easily understood and fully compatible with the traditional
Unix application paradigm. The actual mechanisms through which the IOT service is accessed
must be flexible and easy to use.

Reasonable Overall Performance Good performance is an intrinsic part of system usability.
The IOT mechanism will inevitably incur a certain amount of performance overhead. But, it
is imperative that we seek good overall system performance because excessive performance
degradation could seriously undermine the usability of the IOT mechanism.

Summary The pursuit of practicality for a new transaction mechanism under the compli-
cated setting of an optimistically replicated distributed file system is an arduous journey. As
subsequent design and implementation trade-off analysis will demonstrate, the specific objec-
tives of improved consistency, Unix compatibility, low resource cost, ease of use and good
performance often create competing demands on various system components at both design
and implementation levels. Our approach is to balance these concerns and make the necessary
compromises that best serve the ultimate purpose of practical usability.

3.1. DESIGN OBJECTIVES AND CONSTRAINTS 17

3.1.2 Design Context

Since the IOT mechanism is an extension to an existing distributed file system, its structural and
functional properties are fundamentally dependent upon the underlying system infrastructure.
In this section, we discuss the dominant Coda features that have substantial impact on IOT
design and implementation. Our purpose is to identify a minimum set of specific file system
characteristics under which the IOT model and its underlying principles can be applied to
provide data consistency support.

Coda In a Nutshell As a descendant of the Andrew File System (AFS), the Coda file system
provides a location-transparent view of a hierarchical name space to a large number of clients.
Files are organized by the unit of volumes, each forming a partial subtree of the name space and
typically containing the files of one user or project. The distinct features that set Coda apart
from other distributed Unix file systems are the two complementary mechanisms it employs to
achieve high availability: disconnected client operation and server replication, both relying on
optimistic replica control. Disconnected operation is the basis for providing transparent mobile
file access on portable computers in Coda.

Client/Server Architecture Coda employs whole-file client disk caching to achieve scala-
bility and good performance. It uses the callback mechanism to maintain cache coherence. The
Coda servers, collectively called Vice, are a group of dedicated Unix workstations placed in
secure locations and running trusted software. At a Coda client, is a user level cache manager
called Venus that transparently intercepts file access requests on Coda objects and services them
using data fetched from Vice. The architectural reliance on Vice as the nucleus of the system
eases the administrative burden, allowing the system to gracefully scale up to thousands of
nodes. At the same time, it simplifies the system security model by only trusting the servers
and not the clients.

Disconnected Operation Disconnected operation provides a client with continued file access
in the presence of network failures. When the relevant servers are not accessible due to voluntary
or involuntary disconnections, the role of the Venus cache manager is dramatically expanded so
that it can temporarily become a self-reliant server servicing file access requests using its cache
contents. Disconnected updates are performed only locally at the client cache and are logged
and later reintegrated to the corresponding servers upon reconnection. Coda views caching as
a special form of replication. The cache copy of an object is regarded as a second class replica
while its server copy is a first class replica [26]. Conceptually, the disconnected operation
mechanism is a form of optimistic second class replication.

18 CHAPTER 3. DESIGN RATIONALE

Reintegrating

Hoarding

Emulating

disconnection

disconnection

reconnection

reintegration
complete

Figure 3.1: Venus States and Their Transitions

Venus operates in three different modes to cope with unpredictably changing system con-
nectivities, as shown in Figure 3.1. When fully connected, Venus is in the hoarding state and
functions as a normal cache manager performing client disk caching and maintaining cache
coherence. When disconnected, it enters the emulating state and acts as a stand-alone server
servicing file access requests using cache copies on its local disk. For applications running
on a disconnected client, disconnection is transparent as long as the objects they access are
locally cached. When the disconnected client regains lost connections, Venus transits into
the reintegrating state to detect partitioned update/update conflict and propagate disconnected
mutations to the corresponding servers. When the client cache state is fully synchronized with
the server state, Venus goes back to the hoarding state.

Server Replication As a complementary mechanism to disconnected operation, server repli-
cation is also employed by Coda to further enhance data availability. The same logical data
objects are replicated on multiple servers, allowing a client to service cache misses as long as
one of the server replicas is accessible. Replication control among first class replicas uses the
optimistic read-any-write-all-available strategy, allowing arbitrary partitioned sharing among
different partitions of the system. Partitioned update/update conflicts are automatically detected
using the version vector mechanism [53], and effective mechanisms are provided to transpar-
ently resolve conflicts [30, 31, 29, 56, 32, 68]. Although optimistic server replication helps to

3.2. HIGH LEVEL DESIGN DECISIONS 19

improve data availability, it does not have a direct role in supporting mobile file access.

Target Usage Environment Coda was designed to provide a general-purpose filing service
for a network of workstations in an academic and research environment. Each workstation is
operated by its primary user and the main target application domains are document processing,
software development, and office automation. The likelihood of write-sharing among different
users across clients is very low. As indicated by a recent study [49], the dominant usage form
of disconnected operation is that users voluntarily disconnect their portable computers and
continue their work at home or on trips.

Summary We have identified the above set of Coda features as the IOT design context
because they have profound impact on how the IOT mechanism should operate. Although
the actual implementation of IOT on Coda is subject to more restrictions from detailed Coda
internal operations, the IOT model design is generic with respect to those main constraints.
In other words, any distributed file system that supports disconnected operation, uses a highly
scalable client/server architecture, provides good performance with client disk caching and
assumes a similar usage environment should be able to accommodate an IOT extension for
improved consistency support.

3.2 High Level Design Decisions

This section discusses a number of high level design decisions that essentially shape the overall
IOT structure, paving the way for next section’s presentation of the IOT computation model.

3.2.1 Focusing on Disconnected Operation

We limit the scope of this research by focusing on disconnected operation and excluding server
replication from consideration. Our IOT model assumes that there is no server replication, and
its design is optimized to provide consistency support only for disconnected operation. The
main reasons that prompted this decision are the following. First, disconnected operation is the
enabling technique for providing mobile file access in distributed file systems and improving its
consistency support has a more significant practical impact. Second, server replication greatly
complicates the task of consistency maintenance for partitioned file access operations. Third,
a number of data inconsistency problems caused by optimistic server replication have already
been addressed by a recent Ph.D. dissertation [29].

20 CHAPTER 3. DESIGN RATIONALE

3.2.2 Optimistic Approach

There are two basic alternatives to safeguarding data consistency for disconnected operation.
The pessimistic approach is to prevent potential inconsistency from happening by restricting
partitioned file access operations using techniques such as quorum consensus and token pass-
ing [3, 18, 43, 23]. However, pessimism is fundamentally incompatible with the optimistic
design principle embodied in disconnected operation. The IOT model inherits Coda’s opti-
mistic design philosophy by putting no limit on partitioned file accesses and by validating
disconnected computations according to certain consistency criteria upon reconnection.

Similar to the traditional optimistic computation models, our approach assumes the low
likelihood of having inconsistent disconnected computation results and takes advantage of this
assumption to provide high data availability to applications executed on an isolated client. All
disconnected computation results are considered tentative until the optimistic premise can be
verified. The difference between our approach and the traditional optimistic models lies in the
visibility of the tentative results. During disconnected operation, they are exposed not only to
subsequent computations on the same client but also to external observers such as a human user,
while the traditional models conceal them until the optimistic assumption can be confirmed.
Therefore, it is imperative that we provide mechanisms that can be effectively employed not
only to verify the optimistic premise of disconnected operation but also to compensate for the
external side effects that are based on inconsistent, tentative computation results.

3.2.3 Inconsistency Detection

Because its main purpose is detecting data inconsistencies caused by partitioned file accesses,
the IOT model effectively serves as the consistency criterion for deciding what kind of parti-
tioned file accesses are admissible for disconnected operation.

Alternatives Based on the causal link from conflicts to non-1UE effects to inconsistencies
discussed in the previous chapter, there is a spectrum of strategies for modeling the consistency
criterion of disconnected operation. The main design trade-off is between the two competing
goals of accuracy and efficiency. The accuracy of a consistency model measures how likely a
computation rejected by the model causes actual data inconsistency. The efficiency of a model
refers to the amount of computation needed for verifying the consistency of disconnected
computations.

One end of the spectrum is to model the consistency criterion of disconnected operation
using the application-specific definition of consistency itself, as has been recently explored
in the Bayou System [68]. This approach has the advantage of perfect accuracy. However,

3.2. HIGH LEVEL DESIGN DECISIONS 21

it requires application semantic knowledge for all partitioned file access operations which is
impractical for a general-purpose file system.

The other end of the spectrum is to approximate inconsistencies with partitioned conflicts.
This model can be efficiently validated by recording and comparing object version stamps.
However, its practical usability suffers from two main drawbacks. First, this approximation
is gross because many instances of read/write conflicts are acceptable to Unix users and
applications. Second, the notion of conflicts are defined for an individual object. Validating
consistency at the granularity of an object instead of a unit of computation makes it difficult for
the users to comprehend the nature and scope of the relevant inconsistency.

In between the two extremes, is another strategy which approximates inconsistencies with
non-1UE effects, a much closer approximation than conflicts. However, detecting non-1UE
effects requires the file system to maintain ordering information among all partitioned file
access operations. Thus, it is impractical because it needs every host to record a complete
history of file access operations and message communications.

Consistency Model Selection There are three main concerns in selecting a consistency model
for validating disconnected computations. First, the model must accommodate common con-
sistent behaviors of disconnected computations for typical applications in our target application
domains under normal circumstances. In other words, any violation of the model must be very
likely to result in inconsistent behaviors. Second, the automatic validation of the model must be
computationally efficient. Third, the model should be able to screen out non-1UE behaviors as
much as possible. This is very important in supporting our goal of Unix compatibility because
the ability to detect non-1UE effects means that those Unix applications depending on strict
UFS semantics can make use of the IOT facility to detect inconsistency without altering their
semantic behaviors.

We decided to employ a serializability-based consistency model for validating disconnected
operation. It requires certain serialization properties to be satisfied among partitioned file access
operations. Although serializability theory has historically been used in database models to
ensure the isolation property among concurrent transactions, it also captures the consistency
requirement for a large variety of Unix applications such as make. Flexibility of the model is
attained because there are a variety of serialization requirements to choose from. As will be
shown in subsequent discussions, a strong serialization requirement called certification can be
employed to detect the most common non-1UE behaviors. Finally, the feasibility of the model
is assured because there are known efficient methods of validating serialization requirements.

Application Participation Any practical consistency model performs validation based on
the syntax instead of the semantics of the relevant partitioned file access operations. Syn-
tactic consistency validation is always capable of producing false negative results, i.e., some

22 CHAPTER 3. DESIGN RATIONALE

syntactically inadmissible disconnected computations may very well be semantically correct.
A large gap between what is syntactically inadmissible and what is semantically inconsistent
could seriously undermine the model’s practical usability. The strategy we adopt to mitigate
this problem is to provide support for controlled application participation in consistency val-
idation. The key idea is to selectively apply application semantic knowledge to re-validate
the consistency of certain disconnected computations after their syntactic validation has failed.
This strategy combines the strength of high efficiency of a syntactically aggressive model and
high accuracy from using semantic information.

3.2.4 Consistency Restoration

Effectively restoring data consistency after inconsistencies have been detected is an integral part
of safeguarding the integrity of disconnected operation. For compatibility reasons, we inherit
the terms conflict and conflict resolution from past research literature and use them in this
dissertation with broader meanings. A conflict not only stands for a read/write or write/write
conflict on an individual object but also refers to an invalidated transaction. Similarly, conflict
resolution means not only the reconciliation among different replicas of an object but also the
general process of restoring consistency for an invalidated transaction. Our resolution strategy
embodies the following three characteristics.

Forward Progress The traditional way of restoring data consistency is to rollback the system
state to a recorded previous state that is known to be consistent. For disconnected operation,
however, throwing away the results of disconnected computations every time inconsistency
is detected will seriously impede its usage. Our design pursues the forward-progress strategy
so that the consistency restoration process’s main mission is to preserve the work done while
disconnected via adjustment and re-computation.

Transparency We also provide support for automatic execution of resolution actions that can
restore data consistency and make the resolution process as invisible to the users as possible.
The ability to transparently resolve conflicts is vital to IOT’s practical usability.

Application-Specific Paradigm By the very nature of consistency, application semantics
have an inherent role in conflict resolution, particularly in situations where compensating
actions are necessary. Past success in using application-specific resolvers to resolve write/write
conflicts [56, 32, 68] indicate that we need to allow pre-programmedapplication-specific actions
to be automatically invoked in a systematic and controlled way to more effectively restore data
consistency.

3.2. HIGH LEVEL DESIGN DECISIONS 23

3.2.5 Starting Point: Inferred Transaction Model

James Kistler introduced an elegant consistency model called the inferred transaction (IFT)
model for validating disconnected computations in Coda [26]. The key idea of the IFT model is
to let the file system implicitly infer transactions rather than having them explicitly specified by
applications or users. Most Unix file system calls constitute their own independent transaction
and the IFT type and its corresponding system call are displayed in Table 3.1. The consis-
tency criterion for validating disconnected inferred transactions is the widely used one-copy
serializability (1SR). With a number of carefully designed optimizations intended to enlarge
the set of admissible disconnected computations, the resulting IFT model permits the same set
of disconnected computations as weak UFS.

readstatus[object, user]
access j ioctl j stat

readdata[object, user]
(open read� close) j readlink

chown[object, user]
chown

chmod[object, user]
chmod

utimes[object, user]
utimes

setrights[object, user]
ioctl

store[file, user]
((creat j open) (read j write)� close) j truncate

link[directory, name, file, user]
link

unlink[directory, name, file, user]
rename j unlink

rename[directory1, name1, directory2, name2, object, user]
rename

mkobject (directory, name, object(file j directory j symlink), user)
creat j mkdir j open j symlink

rmobject (directory, name, object(file j directory j symlink), user)
rename j rmdir j unlink

The notation used in the second line of each description is that of regular expressions; i.e., juxtapo-
sition represents succession, “�” represents repetition, and “j” represents selection.

Table 3.1: Inferred Transaction Types and UFS System Call Mapping

24 CHAPTER 3. DESIGN RATIONALE

Although IFT is a much cleaner consistency model than weak UFS, it has two major
limitations. First, the boundary of an inferred transaction is too small to fit the natural boundary
of applications where the 1SR requirement should be applied. The 1SR guarantee among
individual file access operations performed by a group of applications does not assure 1SR
for these applications as a whole. Second, the IFT model admits all instances of stale read
as legal partitioned computations. For Unix applications relying on strict UFS semantics for
correctness, the IFT model is not strong (or restrictive) enough to assure their consistency in
the presence of disconnections. The following two examples illustrate both limitations.

Example 5. Consider the two non-1SR transactions T1 and T2 shown in Figure
3.2. When the four involved operations are treated as individual transactions, they
can be serialized in the order of fread A, read B, write A, write Bg.
If both T1 and T2 require one-copy serializability to work correctly, the IFT model
is not general enough to address their consistency needs.

Partition 1 Partition 2

T1: read A T2: read B
write B write A

This execution is not 1SR because T1 sees the value of A before T2 wrote it and T2 sees the
value of B before T1 wrote it.

Figure 3.2: An Example of Non-Serializable Partitioned Transactions

Example 6. In the Coda project, it is quite common for a user to edit a source file,
say cfs.c, on a client Cedit and then compile it on another client Ccompile. Suppose
that there is a network failure causing Ccompile to fall into disconnected operation
mode. Thus the compilation result of cfs.o does not include the update as the user
expects. Because the two disconnected transactions fread cfs.cg and fstore
cfs.og performed on Ccompile can be serialized before the connected transaction
fstore cfs.cg performed onCedit, the IFT model would happily reintegrate the
inconsistent cfs.o to the servers.

It is the very attempt to improve the IFT model that originally motivated this thesis. We
started out this research trying to extend the scope of the IFT model so that the transaction

3.3. ISOLATION-ONLY TRANSACTION MODEL 25

boundary can fit the natural boundary of applications, and to strengthen the IFT semantics so
that it can address the consistency needs of more Unix applications. The IOT model is the
result of this effort.

3.3 Isolation-Only Transaction Model

The essence of the IOT model is to optionally execute applications as individual isolation-
only transactions and impose serializability-based requirements for transaction1 executions
under various system connectivity. By demanding partitioned transaction executions to satisfy
global serializability requirements, we establish a consistency model for automatically detecting
partitioned read/write conflicts when partitions are healed. In addition, the IOT model provides
flexible mechanisms so that when conflicts are detected, they can be effectively resolved
automatically or manually.

Because of our overriding goal is practical usability, we focus our description of the
IOT model on the operational aspects of the model. In addition, we try to explain relevant
mechanisms from users’ perspective as much as possible.

3.3.1 What Is IOT?

An Optional File System Facility IOT is an optional file system facility in the Unix File
System that extends the UFS API with two new calls begin iot and end iot. Users and
applications can use the two calls to explicitly bracket the execution of applications. Since IOT
usage is optional, the semantic behavior of applications that do not use IOT are guaranteed to
remain unchanged.

Transaction Entity A transaction is the execution of an application whose file access oper-
ations are guaranteed a set of properties specially designed for safeguarding data consistency
in the presence of disconnection. The notion of a transaction in this document is used to refer
to two different kinds of system entities depending on the context. Statically, a transaction is
just an application program whose execution makes use of the two IOT calls. Dynamically,
a transaction is a sequence of file access operations bracketed by begin iot and end iot.
The dynamic entity of a transaction is the sequence of file access operations issued by the
execution of its static entity.

1In the rest of this dissertation, we will use the term transaction to refer to an isolation-only transaction when
there is no ambiguity in the context.

26 CHAPTER 3. DESIGN RATIONALE

Process Hierarchy A transactionT is started when the file system receives a newbegin iot
call and the process that issued the call, denoted PT , is called the master process of T. Any
file access operations issued by PT or its descendent processes are considered members of the
transaction. T is terminated when an end iot call is received or the master process PT exits,
whichever comes first. This hierarchical process structure is intended to emulate the process
structure of Unix application executions and ease the burden of programming transactional
applications. For example, if we want to execute the make application as a transaction, simply
putting the begin iot and end iot calls at the beginning and end will cause all the file
access operations performed by make to be included in the scope of one single transaction.

Flat Structure The IOT mechanism does not support nested transactions for the following two
main reasons. First, including the nesting capability in the IOT model will greatly complicate
its design and implementation on practical distributed file systems. Second, the benefits of
nested transactions such as increased concurrency and finer granularity of recovery control are
not of main concern in this research. Because of the flat structure, a begin iot call within the
scope of an ongoing transaction serves no practical purpose and is treated as a no-op; equally,
an end iot call outside the scope of any transaction is also ignored.

In order to avoid premature transaction termination due to inadvertent transaction nesting,
the transaction system also needs to maintain a counter for each ongoing transaction to record
the current depth of internal begin iot calls issued within the scope of the transaction. The
counter is incremented for each internal begin iot call, and decremented for each internal
end iot call. An ongoing transaction is terminated as soon as its counter becomes negative.

3.3.2 Execution Model

The design of the IOT execution model was inspired by Kung and Robinson’s Optimistic
Concurrency Control (OCC) model [33]. The key idea is to use the client cache as a private
workspace for transaction execution while the servers maintain the public space that reflects
the results of all the committed transactions. All file access operations issued by a transaction
execution are performed locally. The results of transactional mutations are held within the
client cache until the transaction can be validated and committed to the public space on the
servers. No partial result of transaction execution is visible on the servers and from any other
clients. The biggest advantage of this OCC-style execution model is that the scope of potential
inconsistency is limited to the boundary of a client’s local cache.

As shown in Figure 3.3, the execution of a transaction can go through a number of different
states. When a transaction T is first initiated by a begin iot call on a client CT , it starts
out in the running state and stays there as long as the execution is still going on. When T is
terminated by the corresponding end iot call or when its master process exits, it must transit

3.3. ISOLATION-ONLY TRANSACTION MODEL 27

running pending

committed

invocation

without
partitioned
file access

resolving

validated invalidated

resolved
resolution
succeeded

with partitioned
file access

connected
transaction

disconnected transaction

Figure 3.3: IOT States and Their Transitions

into a different state depending on whether it is connected or disconnected. T is a disconnected
transaction if its execution has ever accessed one object for which CT did not have server
connection at the time of access.2 In this case, T will transit into the pending state so that
its validity can be verified when lost connections are regained. Otherwise, T is a connected
transaction and will immediately write its result to the servers and go into the committed state.

The result of a pending transaction is confined within the client cache but still visible to
subsequent processes on the same client. There can be multiple pending transactions executed
on the same client, creating possible dependencies among themselves. If a transaction T reads
from another pending transaction T’, i.e., the execution of T reads the content of an object
that is written by T’, then the computation result of T logically depends on that of T’. In this
situation, T must stay in the pending state as long as T’ does, even though client CT may
maintain server connections for all the objects that T accessed. Therefore, the definition of
a disconnected transaction needs to be extended to include the case of reading from pending
transactions. Accordingly, the definition of a connected transaction needs to exclude those that
read from pending transactions.

2The IOT model assumes a volume structure in the file system name space and the client/server connectivity is
maintained at the volume level. The same client can be connected for one volume while disconnected for another.

28 CHAPTER 3. DESIGN RATIONALE

A pending transaction T is validated when the following two conditions are satisfied. First,
client CT currently maintains server connections for all the objects accessed by T. Second,
all the transactions that T read from are already committed or resolved. The validation of T
checks whether the local result of T is consistent with the current global state maintained on
the servers according to the consistency criteria required by the IOT model to be discussed
shortly. If such validation succeeds, T’s result is immediately written to the servers and T
goes into the committed state. Otherwise, T is invalidated (or T is an invalidated transaction)
and it transits into the resolving state where its local result will be automatically or manually
resolved against the current server state. When the resolution is completed and the new result is
written to the servers, T enters the resolved state. Conceptually, there is no difference between
the resolved and committed state; both mean that the computation (or re-computation) result
of a transaction has been committed. From practical usability point of view, it is important
to provide users with the information about whether a transaction is directly committed or
has been successfully resolved. Therefore, we use two different states in order to reflect the
different paths a terminated transaction went through.

3.3.3 Why Isolation Only?

The name “IOT” stems from the fact that we retain only the isolation guarantee of the traditional
transaction’s ACID (Atomicity, Consistency, Isolation and Durability) properties [14, 72, 20].
The design of the IOT model in many ways can be regarded as an exercise in minimalism. The
IOT model embodies only those capabilities deemed vital to providing consistency support for
disconnected operation. The consistency property in ACID requires any transaction to be a
correct program that transforms one consistent system state into another, which is generally
assumed in most distributed systems. Although failure atomicity and durability are valuable
in distributed computing systems, they are not fully supported in the IOT model. Instead,
restricted versions of both guarantees are provided. The reasons for this are explained below.

Regional Atomicity The IOT model does not guarantee that either all or none of a transaction
is executed during system crashes for two main reasons. First, the system resource cost needed
for supporting failure atomicity can be very expensive. In order to roll back the partial result of
a transaction after a crash, the transaction system must record sufficient information to recover
the system to a recorded consistent state. Such space cost could stretch the capacity limit
on resource-poor portable computers because transactions running Unix applications such as
make can last a long time and access a large number of big objects. Second, the all-or-nothing
property is not compatible with many existing Unix applications that have developed their
own approaches to crash recovery. For example, emacs employs auto-save files to guard
against severe data loss caused by crashes. Moreover, there are situations where atomicity is
simply undesirable. For example, suppose a user runs make as a transaction to compile many

3.3. ISOLATION-ONLY TRANSACTION MODEL 29

object files and build a large system. The machine crashes just before the task is about to
complete. The user would much prefer to keep the compilation results and resume the task
after the machine comes back, rather than having the system automatically throw away the
partial results and re-start the whole process all over again.

As pointed out by previous research, the atomicity boundary and the concurrency control
boundary need not be the same for many common applications [42]. The IOT model takes a
regional approach in utilizing failure atomicity for fault tolerance. Specifically, a number of
small segments of transaction execution such as validating a pending transaction and committing
its local result to the servers are performed as atomic units.

Conditional Durability The traditional durability property requires that once a transaction
completes successfully, its result must be able to survive all system failures. This also implies
that once the result of a transaction is made visible to external observers, it must remain a
permanent part of the system state until modified by later transactions. In the IOT model,
the result of a pending transaction is visible to not only subsequent transactions on the same
client but also external observers such as human users. It is also subject to change upon future
validation and resolution, during which system crashes can happen. Therefore, the durability
of a transaction result can only be guaranteed when the transaction is successfully committed
or resolved.

3.3.4 Consistency Model

In contrast to the weakened guarantees of atomicity and durability, the IOT model strengthens
the isolation guarantee to ensure that any interleaved and/or partitioned executions of a set of
transactions are equivalent to a serial execution of the same set of transactions. We use the term
consistency model here to stand for the actual mechanisms for achieving isolation of transaction
execution. This is because data consistency can be ensured by the isolation guarantee as long
as each individual transaction transforms one consistent system state into another.

3.3.4.1 Connected Transactions

Connected transactions are executed under a connected system environment. All file access
operations are provided with the standard UFS semantic guarantees. Thus, a natural selection
of the IOT consistency guarantee for connected transactions would be the traditional one-
copy serializability (1SR). This means that when a connected transaction is committed, the
IOT mechanism guarantees that it is one-copy serializable with all previously committed

30 CHAPTER 3. DESIGN RATIONALE

transactions3.

3.3.4.2 Disconnected Transactions

Selecting the consistency requirement for disconnected transactions is much more complicated
than for connected transactions. First, disconnected transactions represent tentative computa-
tion results that are local to a disconnected client. The IOT consistency model must ensure that
the visible client state presents a locally consistent view of those disconnected transactions.
Second, the validity of disconnected transactions must be verified before they can be com-
mitted to the servers. Thus, the IOT consistency model serves as the criterion for validating
disconnected transactions and in effect decides what kind of disconnected computations are
admissible.

Local Serializability (LSR) The IOT consistency model requires that any pending transaction
on a disconnected client must be locally serializable with other pending or ongoing transactions
executed on the same client. LSR ensures that local interleaved transaction executions are
always equivalent to a serial execution, which is necessary for the pending transactions to
present a locally consistent view about their results.

Global One-Copy Serializability (G1SR) The IOT consistency model adopts two
serializability-based criteria to define admissible disconnected computations. The first one is
called global one-copy serializability (G1SR): if a disconnected transaction T’s result is copied
to the servers as is, T must be 1SR with all previously committed transactions. Essentially, the
G1SR consistency criterion ensures that if the results of disconnected transactions are simply
propagated to the servers, the effect would be equivalent to some serial execution of all involved
transactions in a non-replicated environment.

G1SR was first introduced as an optimistic transaction model by Davidson [7, 8, 9]. As
a natural adaptation of the traditional 1SR model to an optimistic replication environment,
G1SR is useful for a wide variety of applications where isolation of execution suffices to ensure
correctness. It is also suitable in situations where the durations of disconnections are short.
This is because under such conditions, distributed computations often appear to be concurrent
computations, for which 1SR can best address the consistency needs.

However, G1SR alone is not adequate for our purpose of supporting mobile file access
because it admits many instances of non-1UE behaviors. Some Unix applications rely on the
currency guarantees of the standard UFS semantics for their correctness. The failure to catch

3When used in the discussion of different serializability guarantees, committed transactions also include
resolved transactions because they are conceptually equivalent in terms of their impact on the global server state.

3.3. ISOLATION-ONLY TRANSACTION MODEL 31

non-1UE effects would allow some incorrect disconnected computations to go undetected.
G1SR’s inability to detect non-1UE behaviors makes it particularly inadequate for addressing
the consistency needs of long-lasting voluntary disconnected operation sessions, the dominant
usage form of Coda laptop clients as shown in the example below.

Example 7. A Coda programmer, Joe, caches relevant files on his laptop for a
weekend trip. While disconnected, he does some hacking and executes make as a
transaction TJoe to build a new version of cfs, a Coda utility program. But one
of the linked libraries libutil.a is updated by the system administrator on the
servers using a connected transaction TAdmin during Joe’s absence. Suppose that
there are no other relevant file accesses. When Joe comes back from the trip and
re-connects his laptop to the servers, TJoe will be admitted under G1SR because
it can be serialized before TAdmin. However, Joe would like his new cfs to be
compatible with the latest libraries or at least be notified about the changes to the
files that his work depends on.

Global Certification (GC) As a remedy to the limitation of G1SR, the IOT consistency
model adopts a stronger consistency criterion for validating disconnected transactions called
global certification (GC). GC requires that if a disconnected transaction T’s result is copied to
the servers as is, Tmust be not only serializable with but also serializable after all the previously
committed transactions. GC can address the above problem by invalidating transaction TJoe
because it can not be serialized after TAdmin. The IOT model provides both the G1SR and
GC consistency criteria for disconnected transactions and allows transaction programmers and
users to specify the choice according to their consistency needs.

Intuitively, the GC criterion assures that the data accessed by a disconnected transaction are
unchanged on the servers during the disconnection. It is a very strong consistency requirement
and any disconnected transaction satisfying GC represents a disconnected computation whose
result would be the same had the client not been disconnected at all. In fact, GC is so restrictive
that it can detect any instances of stale read where the read operation is performed on a
disconnected client. GC is much more suitable than G1SR for voluntary disconnected operation
because the users are fully aware of the disconnection and more concerned about whether
their disconnected computations are still compatible with the up-to-date server state rather
than whether the disconnected computations can be serialized with committed transactions.
Furthermore, it is conceptually simple and easier for Unix users and application programmers
to grasp.

3.3.4.3 Conflict Resolution Options

The fundamental difference between 1SR for connected transactions and G1SR/GC for discon-
nected transactions is that the former is strictly enforced at transaction execution time while

32 CHAPTER 3. DESIGN RATIONALE

the latter can only be validated for pending transactions when communication with the relevant
servers is restored. Hence, as an integral part of consistency maintenance for disconnected
transactions, the IOT consistency model must specify what the system will do if validation
fails. Our design provides the following four conflict resolution options to assist transaction
users and programmers to restore consistency.

Automatic Re-execution When a disconnected transaction fails validation, one way to restore
data consistency is to re-execute the transaction automatically by accessing up-to-date data from
the servers. Consider Example 7 once again. If Joe wants to make sure that the cfs executable
built on the disconnected laptop is compatible with the latest system release, he can choose
GC as the consistency criterion and automatic re-execution as the resolution option for TJoe.
When TJoe is invalidated at re-connection time, the IOT system will automatically rerun make
to build an up-to-date version of cfs by linking in the new libutil.a.

The main advantage of this option is that it can be performed automatically without putting
additional demand on transaction programmers and users. It is particularly useful for a class
of Unix applications that primarily act as translators, reading input data from a set of files
and generating output into a different set of files, such as make, cc, and latex. The
ability to restore consistency automatically and application independently provides much-
desired transparency in the resolution process, making automatic re-execution the workhorse
of conflict resolution in our target application domains.

Automatic Abort The second conflict resolution option is to automatically abort an inval-
idated transaction by throwing away its local computation result. It is similar to the rollback
mechanism of the traditional transaction recovery. Like the first option, it is also automatic
and application independent. But it is only applicable in a few situations where getting rid of
the local results is more appropriate than making forward progress. For example, suppose that
a transaction runs every midnight traversing a file system subtree, computing statistics such
as height and average branch factor of the subtree, and appending a new record to a log file
accumulating the statistics. If such a transaction is invalidated, it means that the statistics it
computed were based on a stale version of the subtree cached on the client. Automatic abort
is an appropriate resolution choice for this transaction because it prevents an incorrect record
from being appended to the log file.

Application-Specific Resolver (ASR) Our third option is to automatically invoke a user-
supplied application-specific resolver (ASR) [29, 32, 68]. At the start of execution, a transaction
can specify a user program that will be automatically invoked for conflict resolution if this
transaction is later invalidated. ASR is a unique feature of the IOT model and is the key

3.3. ISOLATION-ONLY TRANSACTION MODEL 33

mechanism that allows integration of application semantic knowledge into the basic transaction
operations.

First, the ASR mechanism enables automatic compensation of disconnected transactions
containing external side effects. Consider a schedule maintenance program used by a business
executive to automatically check her schedule files and send out fax messages to arrange
business activities. Suppose that she takes her portable computer on a trip. While disconnected,
she runs the program as a transaction to enter a few new appointments and sends out fax
messages to notify relevant people about an upcoming meeting. However, her secretary adds
several conflicting activities into the server copies of the schedule files during her absence.
When the executive reconnects her portable computer to the servers, the transaction system can
automatically execute a resolver program that checks for conflicting appointments and sends
out new fax messages if necessary.

Second, the ASR mechanism allows application semantics to be utilized to resolve conflicts
more effectively. Let us revisit Example 7 one more time. Suppose Joe ran a large make
transaction to build a new kernel on the laptop. However, one of the linked libraries was
updated during the disconnection. Using the automatic re-execution option can certainly
resolve the conflict, but it would throw away all the local compilation results and rerun the
long transaction all over again. Instead, we can program a resolver that takes advantage of the
semantic knowledge of make to avoid unnecessary recompilations. In this case, the resolver
can simply keep most of the local compilation results and re-link them with the new library.

Third, the ASR option enables application-specific consistency validation. By default,
consistency validation is performed solely on the basis of syntactic information of file access
operations. But this is a conservative approach. An invalidated transaction does not necessarily
mean that the data involved are actually inconsistent. The ASR mechanism provides the resolver
an opportunity to refine the check for data inconsistency using application semantics. Consider
the following example where machine reservations for two computer clusters A and B are
stored in files reserveA and reserveB. A simple consistency requirement for both files is
that the same user can not reserve machines at both clusters. To reserve a slot for user Joe in
cluster A, a transaction TJoe is executed to add a new record in reserveA after making sure
that reserveB does not contain a conflicting record. Suppose that TJoe is a disconnected
transaction due to a partition failure. Meanwhile, file reserveB is updated on the servers to
add a reservation record for user Mary. Even though transaction TJoe will be invalidated, its
local result is consistent with the new server state. The unnecessary resolution for TJoe can be
avoided by using a resolver that is capable of recognizing the consistency of reserveA and
reserveB based on application semantics and retaining the transaction’s local result.

In summary, the application-specific conflict resolution paradigm is a centerpiece of the
IOT model that integrates different aspects of the model into a coherent design. First, our need
for practical usability and Unix compatibility demands transaction validation to be computa-
tionally efficient and capable of screening out non-1UE behaviors. Such requirements entail the

34 CHAPTER 3. DESIGN RATIONALE

selection of a restrictive consistency criterion such as GC. However, ASR supplements GC by
integrating application semantics in consistency validation. As a result, consistency validation
is well supported by two complementary mechanisms: efficient GC validation for the common
cases and application-specific validation for the subtle cases. Second, disconnected operation
departs from the traditional optimistic computation models by exposing tentative results to
external viewers. ASR addresses the vulnerability of potentially unrecoverable side effects by
serving as a generic dispatcher for automatic compensating actions.

Manual Repair As a last resort, a transaction can choose to be manually resolved when
invalidated. We use the term repair to refer to the manual conflict resolution process. It also
serves as the fallback option when other options fail. If an abnormal condition or an erratic
resolver results in failed automatic resolution of an invalidated transaction, the users will be
requested to manually repair the transaction. The IOT mechanism provides a repair tool to
assist the users to inspect the local and global states of the relevant objects and to create the
resolution result.

Transaction Consistency Specification Before execution starts, a transaction must specify
which criterion (G1SR or GC) to use for consistency validation when disconnected and which
resolution option to use for conflict resolution when invalidated. If the resolution option is
ASR, the user must also provide information about the resolver. We call such information
about the selection of consistency criterion and resolution option the transaction consistency
specification. It can be supplied to the transaction system through the arguments of both
begin iot and end iot calls.

3.3.4.4 Implementation Restriction

We decided to implement only the GC consistency validation in this research because the im-
plementation complexity of G1SR far outweighs its practical value for the following reasons.
First, in the implementation framework proposed by Davidson [9], validating G1SR for discon-
nected transactions requires the construction of a global graph data structure, which is likely
to hurt system availability and scalability. Furthermore, it requires the servers to maintain a
complete history of committed transactions from the beginning of a disconnection. Given the
fact that a portable client can be disconnected for a long period of time, the server space cost
for recording transaction histories can be prohibitive.

Second, although G1SR is a much more general consistency framework than GC and less
susceptible to false-negative validation, the combination of GC and application-specific revali-
dation capability can adequately offset the loss of G1SR’s generality. Our experience suggests
that GC is better suited for the consistency needs of using disconnected operation for mobile file

3.3. ISOLATION-ONLY TRANSACTION MODEL 35

accesses. Moreover, validating GC for disconnected transactions can be implemented much
more efficiently with minimum server resource cost, which is very important for preserving
overall system scalability.

Finally, although an implementation of G1SR is outside the scope of this dissertation, the
current IOT design and implementation are fully compatible with future support for it.

3.3.5 Handling Non-Transactional Operations

Because IOT is an optional file system facility intended to be used for selected applications,
there will be plenty of non-transactional file access operations, i.e., operations that are not
within the scope of any IOTs. The IOT model needs to provide a semantic specification
for non-transactional file access operations that satisfies the following two criteria. First, the
original IFT semantics must be preserved for those non-transactional operations that do not
interfere with any IOTs (i.e., do not share objects with any IOTs). Second, the semantics of
those non-transactional operations that interfere with other IOTs must fit smoothly with the
IOT consistency model.

We adopt a uniform semantic specification that regards each individual non-transactional
file access operation as a special IOT containing only one operation and using manual repair
as its conflict resolution option. Obviously, the behavior of any non-transactional operations
under this semantic model is guaranteed to be the same as that under the IFT model, as long as
they do not interfere with IOTs. This is very important to our goal of maintaining upward Unix
compatibility. The behavior of other non-transactional operations is much the same, except
that they have to obey the concurrency control requirements when interacting with IOTs. For
example, a non-transactional operation trying to update an object obj must wait until the
ongoing IOT that has already been accessing obj finishes.

3.3.6 Model Optimization

In an effort to improve availability (i.e., to enlarge the set of admissible partitioned file access
operations), Kistler proposed a number of innovative optimizations for the IFT model [26]. The
IOT model inherits many of those optimizations for compatibility reasons and extends them to
a larger transaction granularity.

36 CHAPTER 3. DESIGN RATIONALE

Basic Operation Readset Writeset Increment-Set Decrement-Set

readstatus[o, u] o.fid,
o.owner,
o.modifytime,
o.mode,
o.linkcount,
o.length,
o.rights[u]

readdata[o, u] o.fid,
o.rights[u],
o.length,
o.data[*]

chown [o, u] o.fid,
o.rights[u],
o.owner

o.owner

chmod[o, u] o.fid,
o.rights[u],
o.mode

o.mode

utimes[o, u] o.fid,
o.rights[u],
o.modifytime

o.modifytime

setrights[o, u] o.fid,
o.rights[u]

o.rights[u]

store[f, u] f.fid,
f.rights[u],
f.modifytime,
f.length,
f.data[*]

f.modifytime,
f.length,
f.data[*]

link[d, n, f, u] d.fid,
d.rights[u],
d.data[n],
f.fid

d.data[n] d.length,
f.linkcount

unlink[d, n, f, u] d.fid,
d.rights[u],
d.data[n],
f.fid

d.data[n] d.length,
f.linkcount

rename[d1, n1, d2, n2, o, u] d1.fid,
d1.rights[u],
d1.data[n1],
d2.fid,
d2.rights[u],
d2.data[n2],
o.fid,
o.data[‘‘..’’]

d1.data[n1],
d2.data[n2],
o.data[‘‘..’’]

d2.linkcount,
d2.length

d1.linkcount,
d1.length

mkobject[d, n, o, u] d.fid,
d.rights[u],
d.data[n], o.*

d.data[n], o.* d.linkcount,
d.length

rmobject[d, n, o, u] d.fid,
d.rights[u],
d.data[n], o.*

d.data[n], o.* d.linkcount,
d.length

Note that in the rename transaction o.data[‘‘..’’] is relevant only when the renamed
object is a directory. This table is taken from Kistler’s dissertation[26].

Table 3.2: Transaction Specification for File Access Operations

3.3. ISOLATION-ONLY TRANSACTION MODEL 37

Employing Sub-Object Granularity Intuitively, Unix programmers and users regard file
access operations to operate generally on the granularity of an individual object, i.e., an entire
file, directory or symbolic link. But such a coarse granularity may cause many unnecessary
conflicts. For example, partitioned chmod and chown on the same object would appear to be
in update/update conflict, but the conflict is false because the two operations touch different
parts of the object.

One way to avoid such false conflicts is to adopt a finer granularity of transaction specifica-
tion so that different sub-parts of an object are treated as independent logical entities. With each
object, we associate the following set of attributes: fid (the internal identifier of the object),
owner, mtime4, mode, linkcount, length and rights5. In addition, each object will
also have a data field. For a regular file and symbolic link, data is just a length long byte
sequence. For a directory, the data field is regarded as a set of <name, fid> pairs where any
name can occur only once.

Because the intuitive view held by Unix users and programmers is that the <name, fid>
bindings are basically independent of each other, we model the directory content as a fixed-size
array indexed by all the possible legal names (there are 256256 of them). If a name is bound
to a fid in a directory, the array element data[name] contains that fid. For any other
unbound name, data[name] contains a special value nil. This directory model would
permit a partitioned pair of intuitively independent operations such as “mkdir joe/foo”
and “mkdir joe/bar”.

Eliminating Non-Critical Side Effects The standard UFS semantics require certain time
attributes such as access time and modification time to be maintained as a side effect of some
file system calls. Maintaining the strict read/write semantics for such time attributes would
severely limit the amount of legal partitioned activity admissible by the model. Because of the
low information content and limited importance of those attributes, we eliminate attributes such
as access time from transaction specification. The mtime attribute is retained but it can only be
updated by the utimes system call. Such minor semantic redefinition significantly improves
the usability of the model and the Coda experience indicates that the semantic changes have
very little impact in practice [26].

Exploiting Type-Specific Semantics The linkcount attribute represents the number of
directory bindings that refer to an object. The length attribute for a directory stands for the
cumulative length of all the names that are currently bound in the directory content. Both of
them are updated as side effects of operations such as link and mkdir. We cannot afford to

4The modification time stamp of the object.
5The access control list for directory object.

38 CHAPTER 3. DESIGN RATIONALE

maintain strict read/write semantics for these two attributes because it would forbid the above
pair of operations since they both need to update the two attributes. The solution to this problem
is to exploit the counter semantics of these attributes. Because the results of operations such
as link and mkdir are propagated by replaying the same operations in another partition, the
value of the counters, i.e., linkcount and length, are incremented and/or decremented
accordingly instead of being copied. Therefore, by expanding the transaction specification with
explicit increment-set and decrement-set and employing counter semantics instead
of read/write semantics on the two sets, serializability can be maintained while still allowing
the above pair of operations.

The resulting transaction specification for all the basic file access operations after the above
three optimizations is listed in Table 3.2. For an individual file access operation op, we use
the notation R(op), W(op), I(op) and D(op) to denote its readset, writeset, increment-set
and decrement-set. Similarly, for an isolation-only transaction T, the notations R(T), W(T),
I(T), D(T) refer to the same sets for T. If the set of file access operations performed by T is
OPS(T) = fop1, op2,, opng, then the readset of T is just the union of the readsets of all
the involved operations, i.e., R(T) = R(op1) [R(op2) [.... [R(opn). The definitions
for W(T), I(T) and D(T) are similar.

Adopting Weak Consistency For Read-only Transactions The IOT consistency model
makes a special case for read-only transactions, or queries. Read-only transactions containing
multiple objects can affect the overall serializability for involved transactions in a subtle way, as
explained in Figure 3.4. Previous research indicates that in many cases, it is preferable to allow
queries to proceed rather than to restrict them merely to satisfy strict 1SR in all situations [17].
The IOT model allows read-only transactions to be weakly consistent, meaning that they each
see only a consistent state, i.e., the result of a 1SR execution of update transactions, but they
may not be 1SR with respect to each other.

In the context of a distributed file system, adopting weak consistency for queries is quite
an acceptable design tradeoff. It is a small and controlled departure from the strict correctness
criterion. One-copy serializability is still enforced for all update transactions. On the other
hand, the availability gain is quite significant because queries are a large fraction of inferred
transactions in a typical file system environment [26].

3.3.7 Closing Remarks

Now that most of the features of the IOT computation model have been presented, we offer
further observations on several key aspects of the model. First, we identify the key character-
istics of file system state when IOTs are used. Second, we examine the capability of the IOT
model in solving the data inconsistency problems caused by partitioned read/write conflicts.

3.3. ISOLATION-ONLY TRANSACTION MODEL 39

Partition 1 Partition 2

T1: read A T3: read B
write A write B

T2: read A T4: read A
read B read B

This execution is not 1SR because T2 requires an ordering where T1 precedes T3, and T4
requires one where T3 precedes T1.

Figure 3.4: Read-Only Transactions Violating One-Copy Serializability

Third, we analyze the relationship among different semantic models used in designing the IOT
consistency model.

Asymmetric System State In a distributed file system with disconnected operation but with-
out server replication, the entire system is divided into two kinds of partitions with distinct
consistency properties. The first kind of partition consists of a group of inter-connected servers
and clients and is called a first class partition. The servers in a first class partition maintain
the home repository for a portion of the file system name space. The other kind of partition
consists of only one disconnected client and is called a second class partition. System failures
such as disconnection and node crash will break up a first class partition into smaller first
class partitions and/or second class partitions. Recovery from those failures will merge smaller
partitions into larger ones.

The IOT model regards the portion of the system state maintained at any first class partition
to be of high quality and always in a consistent state. Any second class partition containing dis-
connected computation results are considered of lesser quality. All disconnected computations
are regarded as tentative, being only locally consistent within themselves. Their validity with
respect to the state maintained on the corresponding servers is suspect. This asymmetric con-
sistency view of system state is largely independent of the IOT consistency model. Instead, it is
the combined result of the nature of disconnected operation and the OCC-based IOT execution
model, both of which make a strong distinction between the roles of a client and a server.

We use the term global state to refer to the server state of the portion of the name space
maintained at a first class partition, and local state to refer to the portion of the name space
that is visible from a second class partition. Both the global and local states satisfy their own

40 CHAPTER 3. DESIGN RATIONALE

serializability-based consistency requirements. At any given moment, a global state is the result
of one-copy serializable execution of a set of transactions. A local state is the combination
of a previously 1SR consistent state (i.e., the global state that a disconnected client inherited
at the start of disconnection) and the result of a serializable execution of local disconnected
transactions.

IOT Model Capability The IOT consistency model itself constitutes a general purpose
computation model offering a flexible set of serializability-based isolation guarantees, whether
it is enforced pessimistically under a connected environment or optimistically for disconnected
operation. It is adequate to ensure the consistency of a large variety of Unix applications under
common circumstances. We analyze the capability of the IOT consistency model with GC as
the consistency validation criterion from two different angles.

First, we compare the IOT consistency model against the general purpose 1SR consistency
model. The capability of IOT and 1SR can be assessed by comparing the set of transaction
execution histories admissible by either model, denoted asHIOT andH1SR respectively. Obvi-
ously, based on pure syntactic recognition power, HIOT is only a subset ofH1SR because some
one-copy serializable histories are not recognizable by the IOT consistency model for two main
reasons. First, the GC consistency criterion will reject many partitioned transaction histories
that are 1SR. Second, the OCC-based execution model also renders some legal histories inH1SR

impossible to realize because partial transaction execution results are not visible to transactions
executing on other clients. However, the ASR resolution option allows application semantics to
enlarge the set of legal histories for the IOT model, making it possible for the IOT consistency
model to admit even more histories than H1SR.

Second, we evaluate the capability of the IOT consistency model from the viewpoint of
maintaining compatibility with the standard UFS semantics, i.e., the ability to detect inconsis-
tencies for applications relying on standard UFS semantics instead of general serializability to
operate correctly. Thanks to the restrictiveness of the GC criterion, the model is capable of
detecting all instances of stale read when the read operation is performed on a disconnected
client. Generally speaking, the IOT model is capable of detecting half of all the possible
non-1UE behaviors caused by disconnected operation where the stale read is performed on a
disconnected client. It is not capable of detecting inconsistencies resulting from stale reads that
are performed on connected clients because the asymmetric consistency maintenance model
always allows connected computations to commit immediately. Overall, the IOT consistency
model meets our goal of safeguarding the integrity of mobile file access using disconnected
operation.

Relationship Among Semantic Models At center of the IOT consistency model design is the
selection of an alternative semantic model that can be used to bridge the semantic gap between

3.3. ISOLATION-ONLY TRANSACTION MODEL 41

standard UFS and weak UFS. Such a model serves as the criteria for validating disconnected
computation results by requiring certain properties to be satisfied by partitioned file access
operations. The explicit transaction extension of IOT provides the underlying file system with
information about file access groups bracketed by transaction boundaries. This provides the
opportunity to impose a variety of serializability-based requirements on partitioned transaction
executions. Both the GC and G1SR semantic models used by IOT are capable of addressing
the consistency needs of mobile file access under various system and usage environments.
Enforcing the GC or G1SR requirements when partitions are healed enables the system to
detect situations where standard UFS semantics is violated and data becomes inconsistent.

G1SRGC

AFS NFS CodaIOT-Coda

Standard
UFS

Weak
UFS

Sprite
Example
Systems

Semantic
Models

bounded
relaxation

unbounded
relaxation

Relaxation of
UFS Semantics

The concept of bounded and unbounded relaxation of standard UFS is previously discussed on page
10.

Figure 3.5: Relationship Among Semantic Models

Figure 3.5 depicts a spectrum of semantic relaxations of standard UFS. Above the gray
arrowed line are various semantic models representing different degrees of relaxation. The
further to the right, the bigger the semantic gap. Note that it is quite possible to relax standard
UFS even further than weak UFS (e.g., optimistic replication without detection of update/update
conflicts). To formally discuss the relationship among these semantic models, we define a
stronger than relation between two semantic models S1 and S2. S1 is stronger than S2 (or S2

is weaker than S1) if any admissible computation in S1 is also admissible in S2. Obviously,
both GC and G1SR are stronger than weak UFS because they put additional constraints on
partitioned file access operations. GC is stronger than G1SR because any transaction that
satisfies GC also satisfies G1SR. However, both GC and G1SR are weaker than standard UFS
because any violation of GC or G1SR involves at least one stale read (or diverging write),
which also violates standard UFS. In addition, GC and G1SR are only an approximation of
standard UFS because there are situations such as stale reads performed on a connected client

42 CHAPTER 3. DESIGN RATIONALE

that are admissible by GC and G1SR but are not admissible by standard UFS.

Below the gray arrowed line in Figure 3.5 are examples of actual distributed file systems
that implement the corresponding semantic models above the line. For example, standard UFS
and weak UFS are realized by Sprite and Coda respectively; GC and G1SR are supported
by IOT-Coda (Coda with IOT extension); both AFS and NFS represent different instances of
bounded relaxation of standard UFS. Note that the semantic gap between standard UFS and GC
(or G1SR) is unbounded because applications are not capable of obtaining the standard UFS
semantics by using the IOT-extended UFS API.

Chapter 4

Detailed Design:Consistency Enforcement

This is the first of the five consecutive chapters devoted to the detailed design and implemen-
tation of an IOT extension to the Coda file system. The central theme of chapters 4, 5 and 6
is how to realize the IOT model in Coda, which consists of two main parts. The first part is
enforcing transaction isolation within a partition, i.e., 1SR for connected transactions within
a first class partition and LSR for disconnected transactions within a second class partition.
The second part is ensuring global transaction isolation when propagating transactions from a
reconnected client to the corresponding servers.

The first section of this chapter discusses the concurrency control issues in guaranteeing
1SR for connected transactions. In addition to discussing enforcing LSR for disconnected
transactions, the second section also describes how to maintain a local transaction history on
a disconnected client in preparation for the future consistency validation and transaction com-
mitment/resolution. Finally, the third section presents an incremental transaction propagation
scheme that propagates (i.e., validates, commits or resolves) transactions one at a time on a
reconnected client.

In the rest of this document, all the discussed design and implementation issues are newly
introduced in the Coda file system to support the IOT extension. Some of the mechanisms
necessary for supporting IOT take advantage of existing facilities in the original Coda file
system. They will be explicitly pointed out to make a distinction between what has originally
been done in Coda and what is the new extension to support IOT.

43

44 CHAPTER 4. DETAILED DESIGN: CONSISTENCY ENFORCEMENT

4.1 Concurrency Control for Connected Transactions

This section concentrates on realizing the first part of the IOT consistency model, guaranteeing
1SR for connected transactions. In a connected environment, the weak UFS semantics imple-
mented in the Coda file system delivers the same semantic guarantees as the standard UFS.
Therefore, enforcing 1SR for connected transactions as required by the IOT consistency model
becomes an issue of concurrency control. We first analyze the design alternatives and then
present the detailed design of our choice, the OCC model.

4.1.1 Design Alternatives

A wide range of concurrency control techniques have been developed for enforcing 1SR
among concurrent transactions. However, not all of them are legitimate design candidates
because the OCC-based IOT execution model described in Chapter 3 precludes the possibility
of transactions executed on different clients reading each other’s partial results.

Lock Based Approach The most commonly used concurrency control method is using locks
to coordinate accesses on shared objects among concurrent transactions. As the representative of
this approach, two phase locking (2PL) and its variations can be found in plenty of commercial
database systems. Although it is possible to employ distributed locking to ensure 1SR for
connected transaction execution in Coda, there are many disadvantages. Among other things,
managing distributed locks in a large scale system with unpredictable disconnections is very
difficult and costly. In addition, standard locking protocols such as 2PL are not suitable for
IOT implementation because they are known to be susceptible to poor performance for long
running transactions [4, 2] and Unix applications such as make often access a large number of
objects and last a long time.

Time Stamp Based Method Another major class of concurrency control algorithms asso-
ciates each transaction with a unique time stamp, and attaches time stamp information to
every object accessed by ongoing transactions. Serializability is achieved by enforcing time
stamp order for all conflicting file access operations issued by concurrent transactions [5]. Its
main disadvantage is that the time stamp information attached to objects must be immediately
updated on the servers for every file access operation to globally synchronize concurrent trans-
actions. This will greatly increase the client/server communication traffic and negate much of
the performance benefit of client caching. In addition, maintaining time stamp information 1 on
each object also incurs significant server space cost.

1The content of such information depends on the specific concurrency control algorithm and typically includes
the time stamps of the latest transactions that have read and written the object.

4.1. CONCURRENCY CONTROL FOR CONNECTED TRANSACTIONS 45

Optimistic Concurrency Control Our choice of the concurrency control method for con-
nected transaction execution is the OCC model [33]. It is a natural fit because the IOT
execution model is based on OCC. In OCC, transaction execution is performed within a private
workspace. At the end of the execution, a transaction is validated against the public space to
see if its private execution result can be serialized with previously committed transactions. If
so, the transaction’s private result is committed to the public space. Otherwise, it is thrown
away and the transaction is automatically re-executed.

There are several advantages for using OCC as the IOT concurrency control algorithm in
a connected environment. First, previous studies indicate that OCC offers strong performance
in systems such as Coda where the likelihood of data contention is very low [71, 6, 75].
Second, it can be implemented highly efficiently in Coda by simply recording and comparing
the object version information already maintained [61], thus incurring almost no extra resource
cost. Third, it fits well with Coda’s highly scalable architecture because the essence of OCC
in Coda is trading client transaction re-execution for the global communication needed for
synchronizing concurrent accesses on shared objects. In a large scale distributed file system,
client computation time is a much less critical resource than global communication bandwidth.

4.1.2 Realizing OCC in Coda

Although conceptually simple, OCC has not been used in practical systems for concurrency
control so far. The actual realization of OCC in Coda needs to address a number of important
issues.

4.1.2.1 OCC Validation

The IOT execution model uses the client disk cache as the private workspace for transaction
execution. The public space reflecting all the committed transactions is maintained on the cor-
responding servers. All file access operations issued by a connected transaction are performed
locally. The main task of OCC validation is to check whether any of the data items that are ac-
cessed by the transaction have been updated on the servers during the execution. Because OCC
validation is logically identical to the GC validation for disconnected transactions, it shares the
same basic mechanisms used by the GC validation, which will be discussed in Section 4.3.4.

4.1.2.2 Committing Transaction Result

As required by OCC, the execution result of a connected transaction must be held within the
client cache until it is successfully validated and then committed to the corresponding servers.
The specific mechanisms used in performing transaction commitment are based on the client

46 CHAPTER 4. DETAILED DESIGN: CONSISTENCY ENFORCEMENT

mutation logging and reintegration mechanisms of the existing Coda file system. The next
two paragraphs describe these mechanisms. We then explain how they are extended to support
committing the result of a connected transaction to the servers.

Client Mutation Log (CML) During disconnected operation, Venus maintains a separate
client mutation log (CML) in persistent storage for each volume for which it has cached
objects. A CML record is constructed and appended to the appropriate log whenever a mutation
operation is performed locally. Each CML record contains sufficient information about a locally
performed mutation operation so that it can later be replayed on the corresponding server. The
only exception is the store operation whose CML record does not include the actual data
content of the operation. Instead, it is supplied by the cache copy of the corresponding file.

Client Mutation Reintegration Logged client mutations are propagated to the corresponding
servers on a volume by volume basis through Coda’s reintegration mechanism. In the first phase,
Venus packs the CML records of a volume into a buffer and transmits it to the corresponding
server. During the second phase, the server locks the relevant volume, checks that none of
the received mutation operations are in conflict with involved server replicas, and replays all
the mutation operations in order. For a store operation on object obj, the server needs to
back-fetch the cache copy of obj from the client because the data content is not included in
the CML record. In the final phase, the server sends back the reintegration outcome and Venus
accordingly updates the cache status of all involved objects. Note that the entire reintegration
process is atomic, either all or none of the mutations in the CML are reintegrated.

Transaction Mutation Log (TML) We now describe how to extend the existing volume
based CML to log mutations for connected transaction execution. Conceptually, all the mutation
operations performed by a connected transaction T are recorded in its transaction mutation log
denoted TML(T). The physical organization of TML(T) utilizes the underlying CML data
structures. To deal with the possibility of concurrent transactions mutating objects in the same
volume, a new field is added to the basic CML record format to store the identifier of the
transaction that issued the mutation operation. Every time a mutation operation is locally
performed by transaction T, a new record containing tid(T)2 is created and appended to the
corresponding CML. As shown in Figure 4.1, the records of TML(T) may be scattered around
different CMLs because T can update objects in multiple volumes.

Transaction Reintegration Logged mutations in TML(T) of a connected transaction T are
committed to the servers by utilizing a generalized reintegration mechanism called the basic

2We use the notation tid(T) to refer the transaction-id of T.

4.1. CONCURRENCY CONTROL FOR CONNECTED TRANSACTIONS 47

reintegration process. Instead of taking the entire CML, the basic reintegration process takes
as an input argument an already-packed mutation log composed of records from a subsequence
of a CML and performs the second and third phases of the original reintegration mechanism.
The transaction reintegration process commits the result of T by extracting its records from the
relevant CMLs and applying the basic reintegration process for every volume T has updated.
This is illustrated by the pseudo code in Figure 4.2.

Volume-1

Volume-2

Volume-3

CML-1

CML-2

CML-3

Transaction-1 Log Record Transaction-2 Log Record

Figure 4.1: Transaction Mutation Log Organization

During the transaction reintegration process, failure atomicity is only guaranteed at the
granularity of single-volume reintegration. To ensure full atomicity for transaction commitment
as required by the IOT model, a distributed protocol such as two phase commitment (2PC) is
needed [19, 5, 20]. The current IOT implementation has not included full failure atomicity
for transaction commitment mainly because it is not necessary in practice most of the time.
Volumes contain logically related objects and it is unlikely that an individual transaction will
update objects in multiple volumes. In our limited experience of executing common software
development and document processing tasks as transactions, we have yet to find one that
mutates objects in more than one volume. Because 2PC is a mature technique in transaction
processing, it will be straightforward to extend the current transaction commitment mechanism
to include full 2PC support in a refined IOT implementation in the future.

48 CHAPTER 4. DETAILED DESIGN: CONSISTENCY ENFORCEMENT

Transaction-Reintegration(T) f
foreach (volume V updated by transaction T) f

extract TML(T) records from the CML of V;
pack the records into mlog;
apply the basic reintegration process on mlog;
if (reintegration failed) break;

g

g

Figure 4.2: The Transaction Reintegration Process

4.1.2.3 Automatic Abortion and Re-execution

When a transaction T fails validation, OCC requires its local result to be aborted and the
transaction to be automatically re-executed. Aborting the local transaction result can be
accomplished by throwing away all the TML(T) records and invalidating the cache copies
of all the mutated objects so that they can be re-fetched from the servers during transaction
re-execution. Since automatic transaction re-execution is also employed by the IOT model as
one of the basic conflict resolution options, we defer detailed discussions until Chapter 6.

One problem caused by the automatic OCC re-execution is the visibility of repeated trans-
action side effects. Many Unix applications include external side effects such as displaying
messages on terminals and they will re-appear during the OCC re-execution and confuse users.
As Pausch has shown [54], including external effects in the transactional model is a very diffi-
cult problem with no easy solutions. The current IOT implementation alerts the user by printing
out a warning message “... is being re-executed because of data contention” immediately before
the OCC re-execution takes place.

4.1.2.4 Local Concurrency Control

The OCC validation only takes care of concurrency control among transactions executed
on different clients. We need a second level concurrency control mechanism because the
client cache is not a true private workspace for transaction execution. Concurrent connected
transactions executed on the same client can access shared objects in the same client cache.
They must be synchronized so that the same physical client cache can serve as a logical private
workspace for each of them.

4.1. CONCURRENCY CONTROL FOR CONNECTED TRANSACTIONS 49

We decided to employ the strict two phase locking protocol for local concurrency con-
trol. The main reason for selecting strict 2PL is its simplicity and a proven record of being
able to deliver reasonable performance when data sharing among concurrent transactions is
infrequent [2]. Because Coda clients are typically operated by a single user, the likelihood
of executing concurrent transactions involving heavy read/write sharing is low. Under such
an environment, implementation simplicity makes 2PL the most suitable choice as the local
concurrency control algorithm.

4.1.2.5 Deadlock and Livelock

Deadlock Detection In local concurrency control, it is possible for a group of transactions
executing on the same client to deadlock because of the 2PL protocol. The traditional techniques
for deadlock prevention are not applicable because we have no control over the order of
file access operations issued by a transaction. We therefore employ the standard deadlock
detection technique of maintaining a wait-for graph, denoted WFG. Every running transaction
T corresponds to a node in WFG denoted wT . When a transaction T needs to wait for another
transaction T’ due to 2PL, an edge from wT 0 to wT is inserted into WFG. Deadlock detection
is performed by a periodic daemon checking for cycles in WFG. If WFG becomes cyclic, it
means that the corresponding transactions on the cycles are deadlocked. When that happens,
the transaction system will print out messages notifying the users that this group of transactions
are deadlocked and some of them must be killed in order to make progress. Note that the user
must explicitly kill transactions. The transaction system does not do this automatically.

Livelock Prevention On the other hand, cross-client OCC concurrency control can suffer
from the livelock problem. When there is heavy data contention, it is possible for a transaction
to follow an endless cycle of “execution ! invalidation ! abortion ! re-execution”. In
other words, a transaction can suffer from starvation and never be able to commit its result
because there are endless conflicting transactions executing on other client machines. Because
the likelihood of livelock is extremely low in our target environment, our approach is to detect
this situation and notify the users. We do this by attaching a re-execution counter to each
ongoing transaction. When the counter exceeds a certain threshold, we force termination of the
transaction and inform the users that there is too much data contention and that this transaction
should be tried at a later time.

4.1.2.6 Summary

A significant portion of the IOT consistency model, the guarantee of 1SR for connected
transactions, is realized using a combination of inter-client OCC and intra-client 2PL. The key

50 CHAPTER 4. DETAILED DESIGN: CONSISTENCY ENFORCEMENT

insight is the recognition that OCC fits well with Coda’s client/server architecture and target
usage environment to deliver high performance and scalability, and that the client disk cache
can serve as the transaction processing workspace as required by OCC. The implementation
of OCC in Coda relies on extending Coda’s existing client mutation logging and reintegration
mechanisms for performing local transaction execution and committing transaction results to
the servers.

4.2 Maintaining the Local State of A Disconnected Client

The transaction system running on a disconnected client has two major responsibilities. First,
it needs to fulfil the IOT consistency model’s local consistency requirement of enforcing LSR
for disconnected transactions executed on the same client. Second, it must maintain a local
history of disconnected transactions and manage disconnected mutations in preparation for
future transaction propagation (i.e., validation followed by commitment/resolution). The latter
is critical to realizing the central focus of the IOT consistency model, guaranteeing global
transaction isolation when propagating disconnected transactions from a reconnected client to
the servers. This section focuses on four key issues:

� maintaining local consistency (1SR for disconnected transactions)

� recording disconnected transaction history information

� managing disconnected mutations to support transaction propagation

� cancelling redundant disconnected transactions to reduce resource cost

4.2.1 Maintaining Local Consistency

The IOT consistency model ensures the consistency of the local state of a disconnected client
by requiring disconnected transactions to satisfy local serializability. At any moment during a
disconnected operation session, the result of all the disconnected transactions must be equivalent
to a serial execution of the same set of transactions. Thus, the issue of local consistency
maintenance becomes a matter of concurrency control among disconnected transactions. Since
a local concurrency control mechanism using 2PL is already employed for connected transaction
execution, we reuse the same mechanism for disconnected transaction execution based on the
same design rationale. Similarly, deadlock among concurrent disconnected transactions is
detected by maintaining the WFG and periodically checking for cycles.

4.2. MAINTAINING THE LOCAL STATE OF A DISCONNECTED CLIENT 51

4.2.2 Recording Transaction History

A critical step in transaction propagation is consistency validation, which requires the transac-
tion system running on a disconnected client to record history information about disconnected
transaction executions. We use the following two persistent data structures.

Transaction Table A client-wide table is used to keep track of all live transactions, i.e.,
transactions that are not yet committed or resolved. Conceptually, each table entry stores the
internal representation of a transaction, recording the transaction readset and writeset among
other things. Each element of the readset or writeset corresponds to a Coda object that is read
or written by the transaction respectively. It contains the necessary information needed by
transaction validation such as the internal identifier of the object (fid) and a description about
the sub-parts of the object that are actually accessed by the transaction. Because the IOT model
uses weak consistency for read-only transactions, the table entries for read-only transactions
are immediately discarded after their execution is completed.

Note that we do not record the transaction increment-set and decrement-set because their
main purpose in transaction specification is to propagate updates on the counter attributes and
they do not affect the outcome of transaction validation based on readset and writeset. In addi-
tion, transactions are committed to the servers via the reintegration mechanism which replays
disconnected mutations on the servers and includes the effect of incrementing/decrementing
counter attributes.

Serialization Graph An important part of local transaction history is the inter-dependency
among live transactions. It is recorded by a data structure called the serialization graph, denoted
SG, where each node corresponds to a transaction (either IOT or IFT). For transactions T and
T’, we use nT and nT 0 to denote their corresponding nodes in SG. There is an edge from node
nT to nT 0 , denoted nT!nT 0 , if and only if transactions T and T’ performed a pair of conflicting
operations and T did its operation before T’. This means that transaction T must be serialized
before transaction T’. Because of the 2PL local concurrency control, SG is guaranteed to be
acyclic and defines a partial order among all disconnected transactions. A total order can be
obtained by a topological sort on the nodes of SG.

To avoid the performance overhead of checking every file access operation, we adopt the
following strategy for SG maintenance. A new node is created and inserted into SG each time
a transaction starts execution. Some SG edges are constructed as a by-product of the 2PL
concurrency control. For example, when a transaction T needs to wait for another transaction
T’, we can safely add an edge nT 0!nT to SG. Other edges for the node nT are created at the
conclusion of T’s execution. All we have to do is to check all the pending transactions. If a
pending transaction T’ performed an operation that conflicts with T, then an edge nT 0!nT is

52 CHAPTER 4. DETAILED DESIGN: CONSISTENCY ENFORCEMENT

inserted into SG. The node nT is removed from SG and discarded as soon as transaction T is
committed or resolved.

4.2.3 Managing Disconnected Mutations

During transaction propagation, a successful consistency validation means the result of a
disconnected transaction can be committed to the servers as is. This requires the transaction
system running a disconnected client to carefully manage disconnected mutations so that the
transaction result can be written to the servers using the transaction reintegration infrastructure
discussed earlier. Two key data structures needed for this task are the transaction mutation log
and the shadow cache file.

4.2.3.1 Transaction Mutation Log

As in connected transaction execution, all the mutations performed by a disconnected transac-
tion T are recorded in its transaction mutation log TML(T). In addition, transaction mutation
logs are organized using the same underlying CML data structures and maintained in a similar
manner. Every time a disconnected mutation operation is performed locally, a log record for that
operation is created and appended to the CML of the corresponding volume. The transaction-id
field of the new record stores the identifier of the transaction (whether it is an IOT or an IFT)
that issued the mutation operation. However, there is a major difference between mutation
logging for connected transactions and disconnected transactions. For a connected transaction,
all its logged mutations are prevented from being overwritten by other transactions because
of the local 2PL. But, the same cannot be said for disconnected transactions. This difference
requires the use of shadow cache files for reasons explained below.

4.2.3.2 Shadow Cache File

The Need to Supplement TML The main reason for supplementing the TML is the trans-
action system’s need to represent the complete mutation results of individual disconnected
transactions so that they can be independently committed to the servers. For a store op-
eration performed on a file object obj by transaction T, its data content is not recorded in
TML(T) but instead provided by the cache copy of obj denoted cache(obj). Thus, it is
the combination of TML(T) and cache(obj) for every obj stored by T that represents T’s
complete mutation effect. TML(T) is adequate when T is a connected transaction because the
local 2PL prevents obj from being overwritten until T is committed. However, if T is a dis-
connected transaction, it is possible for obj to be overwritten by a later transaction T’. In such
a situation, cache(obj) no longer holds the value written by T. Therefore, the transaction

4.2. MAINTAINING THE LOCAL STATE OF A DISCONNECTED CLIENT 53

system must use an additional mechanism to record the value that T wrote on obj so that the
complete mutation effect of T is still retained.

Compensate TML With Shadow Cache File Our strategy is to maintain shadow copies for
the overwritten cache files. If a file objectobj is updated by a pending transactionT and is about
to be overwritten by another transaction T’, the transaction system will automatically create
a shadow copy for cache(obj). We use the notation shd(T,obj) to refer to the shadow
cache file that contains the data content of obj that was written by transaction T. Because T can
have more than one overwritten file, we use shdset(T) to denote the complete set of shadow
cache files for transaction T. The data content of any store operation on a file object obj
performed by T is guaranteed to be preserved by either a shadow cache file in shdset(T) or
the current cache(obj).

With the aid of shdset(T), the previously introduced transaction reintegration process
can be applied to commit the local result of transaction T with slight modifications on the
Venus side as described by the pseudo code in the Figure 4.3. The temporary switch of
cache file bindings is necessary for the servers to back-fetch the correct data content during
reintegration for those locally overwritten store operations performed by T. An internal
Venus volume locking mechanism is employed to prevent the temporary binding between obj
and shd(T,obj) from being inappropriately exposed to the users and applications.

Other Uses of Shadow Cache Files The use of shadow cache files goes beyond supporting
independent reintegration of individual transactions. During conflict resolution for an inval-
idated transaction T, the IOT system must preserve sufficient information about T’s original
execution so that the resolver can investigate what has been performed by T locally. As will be
explained in detail in Chapter 5, the IOT conflict representation provides a snapshot original
view for all the objects accessed by T. For any file object obj accessed by T, this view presents
the data content of obj when it was last read or written by T. Even if obj is only read by
T, we still need to make a shadow copy of cache(obj) before it is updated to preserve the
data content that T originally read. In general, for any file object obj accessed by at least one
pending transaction, a shadow copy of cache(obj) needs to be created whenever it is about
to be updated.

Shadow Cache File Maintenance Because the same shadow cache file can be shared by
multiple disconnected transactions, the management of shadow cache files requires the trans-
action system to maintain a pool of shadow entries, an internal representation of shadow cache
files. Each shadow entry contains two components: a pointer to the inode of the disk container
file that physically holds the shadow content and a counter that records the number of live
transactions that have accessed the shadow content.

54 CHAPTER 4. DETAILED DESIGN: CONSISTENCY ENFORCEMENT

Every time a cached file object obj is opened for update (write, append or truncate) while
disconnected, the transaction system must check to see if any pending transaction has accessed
the current contents of obj. If there areK pending transactions that have accessed the current
cache(obj), a new shadow entry for obj denoted se(obj) is created and its counter is
initialized to K . The transaction system will allocate disk space, create a new container file F,
copy cache(obj) into F, and set the file pointer of se(obj) to point to F. Finally, each of
the K pending transactions must extend its shdset to include the newly created se(obj).
Whenever a pending transaction T is committed or resolved, the transaction system will iterate
through every shadow entry in shdset(T) and decrement its counter. When the counter of a
shadow entry reaches zero, the shadow entry is discarded after the corresponding disk container
file is removed to reclaim the disk space.

New-Transaction-Reintegration(T) f
foreach (volume V updated by transaction T) f

extract TML(T) records from the CML of V;
pack the records into mlog;
lock volume V;
foreach (overwritten "store obj" in mlog) f

preserve cache(obj);
bind obj to shd(T,obj)2shdset(T);

g;
apply the basic reintegration process on mlog;
foreach (overwritten "store obj" in mlog) f

re-bind obj to preserved cache(obj);
g;
unlock volume V;
if (reintegration failed) break;

g
g

Figure 4.3: The New Transaction Reintegration Process

A challenging problem in shadow cache file maintenance is client disk space management.
Maintaining shadow copies for large files that are repeatedly overwritten during disconnected
operation could cost a substantial amount of local disk space. Our disk space allocation policy

4.2. MAINTAINING THE LOCAL STATE OF A DISCONNECTED CLIENT 55

adopts two basic strategies. First, shadow cache files are maintained on the best-effort basis,
i.e., shadow copies are created only when sufficient disk space is available for supporting
normal disconnected activities. When the transaction system runs out of shadow space, the
reintegration or resolution process for the affected transactions will be performed differently.
The specific details are presented in the relevant discussions later in this chapter and the next
two chapters. Second, we allow the users to dynamically adjust the limit on the amount of disk
space that can be allocated for shadowing cache files. Fortunately, the typical shadow space
usage for normal disconnected operation is small even when the disconnection lasts for a long
time, as will be shown by the evaluation results in Chapter 9. The impact of the best-effort
shadow space allocation policy on other aspects of the transaction system will be analyzed when
appropriate in rest of the document. The implementation details of shadow space management
are presented in Chapter 8.

4.2.4 Cancelling Disconnected Transactions

Maintaining disconnected transactions costs client local resources in two main areas: persistent
memory space for recording transaction history and disk space for storing shadow cache files. To
support long-lasting disconnected operation sessions involving a large number of disconnected
transactions, it is necessary for the transaction system to reduce such client resource costs. Our
strategy is to cancel those redundant transactions that no longer have any impact on the file
system state. Note that transaction cancellation is only an optimization in realizing the IOT
model in Coda, which does not change the overall IOT consistency model.

An important phenomenon in disconnected operation is that many file access operations
cancel the effect of previous ones. For example, in the typical “edit ! compile ! debug”
cycles during software development, a store operation often overwrites a previous one and
a remove operation is likely to offset an earlier create operation. This is exploited by
the non-IOT Venus (i.e, the Coda Venus without the IOT extension) to cancel unnecessary
records from the CML during disconnected operation, and it results in significant resource
savings [26]. The IOT implementation extends the same principle to a larger granularity to
cancel those pending transactions that no longer have any effect on local client state. Such
transaction cancellation has two important benefits. First, it frees up client resources such
as persistent storage space used by the transaction internal representation and the disk space
occupied by shadow cache files. Second, it reduces the amount of server/client communication
traffic as well as server computation time needed for transaction validation and commitment.
Evaluation results presented in Chapter 9 will show that these benefits are substantial.

Basic Mutation Cancellation Behaviors To understand how a pending transaction can be
cancelled, let us first consider two kinds of basic mutation cancellation behaviors. The first

56 CHAPTER 4. DETAILED DESIGN: CONSISTENCY ENFORCEMENT

kind of mutation cancellation is called overwriting which means that the effect of a mutation
operation is eliminated or made obsolete by a later mutation operation. For example, the
effect of “store foo” can be overwritten by a later “store foo” or “remove foo”.
The second kind of mutation cancellation is called offsetting which means that the effect of a
pair of mutation operations offset each other so that their combined result produces no effect
at all, i.e., a no-op. For example, a “create foo” can be offset by a later “remove
foo” and a “rename foo bar” can offset a previous “rename bar foo”. The basic
principle behind mutation cancellation is that when the effect of a disconnected mutation
operation op1 is eliminated by a later operation op2, there is no point of preserving op1 in the
mutation log and propagating its effect via reintegration. This is because after op1 is replayed
on the corresponding server during the reintegration, the subsequent replay of op2 by the same
reintegration process will immediately nullify op1’s effect.

Transaction Cancellation Criteria Intuitively, cancelling a pending transaction must pre-
serve certain correctness conditions and we adopt the following three criteria to decide whether
a pending transaction can be cancelled or not.

� The first criterion requires that a pending transaction T must be obsolete before it can
be cancelled. T is an obsolete transaction if none of its effects are visible on the
client local state due to subsequent transactions. For example, a make transaction
compiling a file work.c, i.e., Tmake =fR(work.c), W(work.o)g, can be made
obsolete by another make transaction performing the same compilation. As another
example, a pair of transactions Tcreate = fcreate foo, create barg and Tremove

= fremove foo, remove barg are both made obsolete by each other. In essence,
this criterion ensures that the cancellation of T does not affect the final outcome when all
the disconnected transactions are committed to the servers.

� The second criterion requires any cancellable transaction to be covered. It means that
the removal of a transaction T from the local transaction history will not affect the vali-
dation outcome of other disconnected transactions. Although an obsolete transaction T
does not leave behind any visible effects, it is still capable of influencing the validation
outcome of other pending transactions. Consider the following example. A transaction
T1 = fR(work.c), R(work.h), W(work.o)g compiled an object file work.o
that is later used by another transaction T2 = fR(work.o), W(work)g to build
an executable file work. A third transaction T3 = fR(work.c), R(work.h),
W(work.o)g re-compiled work.o after some updates are made to work.c and ren-
dered T1 obsolete. However, cancelling transaction T1 will remove the indirect depen-
dency between transaction T2 and files work.c and work.h from the local transaction
history, thus possibly affecting the validation outcome of T2. If work.h is updated on
the servers, transaction T2 will pass the GC validation and commit to the servers even

4.2. MAINTAINING THE LOCAL STATE OF A DISCONNECTED CLIENT 57

though its result indirectly depends on the old version of work.h. Preserving T1 in the
local transaction history is necessary to allow the transaction validation process to follow
the dependencies and appropriately invalidate T1, and thereafter T2.

� Even if a transaction T is both obsolete and covered, it does not necessarily mean that
we can cancel it. Suppose that T contains just one operation mkdir home/foo and
it is made obsolete by another transaction T’ containing rmdir home/foo. Both
T and T’ must be cancelled together because cancelling T alone will cause failure in
propagating T’. Formally, when one ofT’s mutation operations offsets another belonging
to transaction T’, we say that the two transactions have an offsetting relation between
them and the two must be cancelled together. This is because cancelling either of them
while leaving the other behind would result in a non-equivalent global state after the
remaining transactions are validated and committed to the servers. Therefore, the third
cancellation criterion forT requires that all the transactions that have an offsetting relation
with T can be also cancelled together with T.

Note that it is quite possible that some of the cancelled transactions may have been inval-
idated if they had remained in the transaction history. For example, consider the following
two disconnected, offsetting transactions T1 = fmkdir home/foog and T2 = frmdir
home/foog. Suppose that a new object home/foo has been created on the servers during
the disconnection. If T1 and T2 are not cancelled, they will be invalidated because of the
update/update conflict on home/foo. Thus, transaction cancellation increases the chances for
the complete history of disconnected transactions to pass validation and commit their results
to the servers. Formally, if the local transaction history for a disconnected operation session is
Hd and the set of cancelled transactions is

P
, then it is possible that (Hd�

P
) can be validated

while Hd can not.

Checking the Cancellation Criteria The automatic checking of the first cancellation crite-
rion can be implemented using Coda’s original mechanism for cancelling inferred transactions.
For each non-transactional, disconnected mutation operation, Venus iterates through the entire
CML of the corresponding volume in reverse chronological order to search for and remove
any log record that is overwritten or offset by the new mutation. In the case of offsetting,
the new mutation operation itself will also be removed from the CML [26]. Similarly, for
every disconnected mutation operation opT performed by a transaction T, Venus searches the
corresponding CML and marks all the log records that are either overwritten or offset by opT ,
including opT itself. If all the records in TML(T) are marked, it means that the result of T is
no longer visible on the client local state and Venus then marks T as obsolete.

Validating the second cancellation criterion for a pending transaction T can be performed
by checking all the live transactions that read from T. We use read-from(T) to denote the

58 CHAPTER 4. DETAILED DESIGN: CONSISTENCY ENFORCEMENT

set fT’ j The execution of T’ reads an object whose value is written by T.g. T can be marked
as a covered transaction if every transaction T’2read-from(T) satisfies the condition that
R(T’) is a super-set of R(T). Because the readset of a transaction is always a super-set of its
writeset, this is sufficient to guarantee that the removal of T from the local transaction history
will not affect the GC validation outcome of any other pending transactions.

The third criterion is more difficult to validate because it requires a group of transactions
to satisfy a certain relationship. A key observation is that the offsetting relation induces an
equivalence relation among all the disconnected transactions. Pending transactions belonging
to the same partition of the equivalence relation must be cancelled together when all of them
are marked as obsolete and covered. Thus, this problem can be solved by representing the
offsetting relation with a simple graph and identifying fully connected components. Although
detecting cancellable isolation-only transactions is a more complicated process than that of
inferred transactions, the benefits of transaction cancellation far outweighs the detection cost.

Intra-Transaction Optimization Typical transactions such as make usually perform a
lengthy computation accessing a large number of objects. Such long transactions often cre-
ate temporary objects and later remove them. The same cancellation mechanism used for
inferred transactions by Venus is applied within the scope of a single transaction to remove the
unnecessary records from the TML.

4.3 Merging Local State with Global State

This section discusses how to realize the central part of the IOT consistency model, ensuring
global transaction isolation during transaction propagation. Our discussion concentrates on the
actions performed by the transaction system when a disconnected client is able to re-establish
communication with relevant servers. We first outline a general framework of synchronizing the
local client state with the global server state, establishing a broader perspective for the discussion
of the transaction propagation process. We then describe how the results of disconnected
transactions are incrementally propagated to the servers, i.e., validated and committed or
resolved one at a time. Finally, details about transaction validation and transaction commitment
are presented. Due to its complexity, the discussion of transaction resolution is deferred to the
next two chapters.

4.3.1 Synchronizing Local and Global States

During disconnected operation, both the local state of a disconnected client and the global
state of the servers evolve along their own courses, departing from the shared initial state at

4.3. MERGING LOCAL STATE WITH GLOBAL STATE 59

disconnection time. Upon re-connection, the disconnected computation results on the client
need to be validated and propagated to the corresponding servers. In addition, cached objects
need to reflect new server updates. Such synchronization between the local and the global
states demands a change in the basic Venus operation states.

Hoarding

Emulating

disconnection

disconnection

Synchronizing

reconnection

local and global state
fully synchronized

Figure 4.4: The IOT-Venus States and Their Transitions

In the original Venus, propagating disconnected mutations is carried out during the rein-
tegrating state as illustrated in Figure 3.1. It is a transient state because reintegration can
be performed in a short period of time and Venus immediately transits to the hoarding state
even if the reintegration fails [26]. In the IOT-Venus (the Venus with the IOT extension), the
process of propagating disconnected computation results can last arbitrarily long. Transactions
may be invalidated and conflict resolutions can take an unlimited amount of time because the
transaction system has no control over how long manual repair will last. In short, there can
often be a sustained period during which the local state of a physically connected client remains
asynchronous(i.e., unsynchronized) with the global state.

As a result, Venus may not be able to transit from the emulating state into the hoarding state
by passing through a short transitional state. As shown in Figure 4.4, the original reintegrating
state is replaced by a synchronizing state. A client is in the synchronizing state if it possesses
physical connections to the relevant servers but contains transactions that are still in the pending

60 CHAPTER 4. DETAILED DESIGN: CONSISTENCY ENFORCEMENT

state. In this state, new computations can be performed but will be checked to see if they depend
on any currently pending transactions. If so, they will become new pending transactions and
wait to be propagated to the servers. Otherwise, the new results will be committed to the servers
immediately. The fundamental difference between the original Venus’s reintegrating state and
the new synchronizing state needed for supporting IOT is that the former is a short-lived
transient state while the latter can be sustained for a long period of time.

4.3.2 From Servers to Client: Cache Validation

Cache validation is the process by which a re-connected client synchronizes itself with server
state. During disconnected operation, Venus marks the cache coherence status(CCS) of all
cached objects to be suspect. Upon re-connection, the cache validation mechanism will compare
the local and global versions of every cached object with suspect CCS. If the two versions are
identical, the object’s CCS will be reset as valid again. Otherwise, it is marked as invalid so
that a subsequent access to the object will cause Venus to re-fetch the new global version from
the corresponding server. The actual cache validation process is carried out as a side effect of
demand fetching or via a periodic daemon, whichever comes first. Logically, cached objects can
be regarded as immediately re-synchronized with the global state upon re-connection, except
for those accessed by transactions that are yet to be committed or resolved. Note that the CCS
of objects accessed by live transactions is temporarily marked as valid to prevent their server
copy from being fetched until the relevant transactions are committed or resolved. Note that
the cache validation process described in this paragraph is already supported in the existing
Coda Venus. No changes in cache validation are needed for supporting IOT.

4.3.3 From Client to Servers: An Incremental Propagation Approach

The other direction of client/server state synchronization is merging disconnected computation
results with the servers. We decided to employ an incremental approach where disconnected
transactions are validated, committed or resolved one at a time. Note that the incremental
transaction propagation mechanisms to be discussed shortly do not exist in the original Coda
system. They are specifically introduced in Coda for the purpose of supporting IOT.

Rationale The key reason behind the incremental propagation approach is the overriding
concern of practical usability. For many Unix users and application programmers, the concept
of a transaction service providing serializability-based isolation guarantees is new. Requiring
them to deal with the potential conflicts by either programming resolvers or manually repairing
invalidated transactions is even more demanding. Reducing conceptual complexity, minimiz-
ing the scope of conflicts, and cutting down the exposure of transaction operation details is

4.3. MERGING LOCAL STATE WITH GLOBAL STATE 61

of paramount importance. The incremental approach emphasizes simplicity by localizing the
scope of potential inconsistency and exposing conflicts to the resolver one invalidated transac-
tion at a time. This allows the resolver to concentrate on what the transaction has done locally
and what has been changed on the global state during disconnection, without worrying about
possible interference from other transactions. Although propagating disconnected transactions
in groups could lead to reduced performance cost, on balance the incremental strategy better
serves our key design objectives.

servers client

Ti Tn

validate Ti
prepare Ri
transmit Ri

receive Ri
replay Ri
commit Ri

receiver sender

propagation channel
R1 Ri-1

Figure 4.5: An Incremental Transaction Propagation Framework

Intuitive Description A better way to describe the incremental propagation process is to
imagine that there is a logical channel through which local computation results are transmitted
from the client to the servers, as show in Figure 4.5. There is a sender at the entrance of the
channel to ensure that only consistent results are allowed to go through the channel. At the
server end, a receiver fetches the propagated results from the channel and atomically installs
them. Suppose that the local transaction history contains n transactions: T1, T2,, Tn. The
sender repeatedly grabs the transaction at the head of the list, say Ti, validates its consistency
and prepares Ri, the representation of the final outcome of Ti that is actually transmitted through
the channel. If the validation succeeds, Ri is just the mutation log of Ti. Otherwise, the sender
will force a resolution for Ti and Ri is the sequence of logged mutations representing the
resolution outcome. When the receiver obtains Ri, it replays the mutation operations in the log

62 CHAPTER 4. DETAILED DESIGN: CONSISTENCY ENFORCEMENT

on the corresponding servers. After all the replay results are atomically committed, it notifies
the sender to propagate the next transaction Ti+1.

Propagation Algorithm Venus dedicates a special thread called the propagator to carry out
the mission of incremental transaction propagation. The propagator is awakened every time
the client regains a lost connection to a server. The pseudo code in Figure 4.6 describes the
algorithm of incrementally validating, committing or resolving disconnected transactions.

Two steps in the above algorithm need further explanation. First, the step that invokes
the automatic resolver is not limited to application-specific resolvers. It includes automatic
transaction re-execution and automatic abort as special cases when the resolver is the transaction
itself or a no-op respectively. Second, the successful resolution of T[i] often requires
adjusting the state of those transactions that read from it. For example, suppose that transaction
T[j] (j>i) reads the value that T[i] wrote on an object obj, and the resolution of T[i]
produces a new server replica of obj that is different from what it wrote during the original
execution. Clearly transaction T[j] needs to be invalidated because it has accessed an object
value that no longer exists in the file system. Specifically, the propagator thread needs to iterate
through each object obj that T[i] updated and for which T[i]’s resolution created a new
server replica. Any pending transaction that read the value T[i] wrote on obj is immediately
invalidated.

Transaction Group One important issue that is not included in the algorithm is that the
incremental approach cannot be strictly followed when some of the transactions are not equipped
with their complete set of shadow cache files due to client disk space shortage. Suppose that
a pending transaction T updated a file object obj during its execution. However, obj is
overwritten by another transaction T’ and shdset(T) does not include a shadow cache
file for obj. We call T an incomplete transaction and T’ the overwriter of T. Under such
circumstances, propagating T alone is semantically incorrect because objwill reflect the result
of T’ instead of T.

Our solution to this problem is to group an incomplete transaction T with its overwriter(s)
into a result propagation unit denoted RPU(T). Because the overwriting relation among
disconnected transactions is transitive, a transaction T’ is a member of RPU(T) if it satisfies
one of the following conditions:

1. T’ is T itself.

2. T’ overwrote T on a file object obj and shdset(T) does not include a shadow cache
file for obj.

3. There exits another transaction T"2RPU(T) such that T’ overwrote T" on a file object
obj’ and shdset(T") does not include a shadow cache file for obj’.

4.3. MERGING LOCAL STATE WITH GLOBAL STATE 63

Start:
NeedRepeat = false;
perform topological sort on the serialization graph SG;
put all live transactions in sorted order T[1..n];
foreach (i in 1..n) f

if (T[i] has no predecessor in SG and is fully connected) f
validate T[i];
if (validation succeeds) f

commit T[i];
if (commitment succeeds) f

transit T[i] into committed state;
remove T[i]’s corresponding node from SG;
NeedRepeat = true;

g else f

transit T[i] into resolving state;
g

g else f
transit T[i] into resolving state;

g
if (T[i] is in resolving state and

can be automatically resolved) f

invoke automatic resolver;
if (automatic resolution succeeds) f

transit T[i] into resolved state;
adjust state for transactions that read from T[i];
remove T[i]’s corresponding node from SG;
NeedRepeat = true;

g else f
T[i] stays in resolving state;
request manual repair;

g

g
g

g

if (NeedRepeat) goto Start;

Figure 4.6: An Algorithm for Incremental Transaction Propagation

64 CHAPTER 4. DETAILED DESIGN: CONSISTENCY ENFORCEMENT

The following minor adjustment needs to be incorporated into the algorithm described in
Figure 4.6. When the current transaction T[i] is an incomplete transaction, the transaction
set RPU(T[i]) is computed and is treated as one single logical transaction. If all the member
transactions of RPU(T[i]) pass validation, their combined results will be transmitted together
to the corresponding servers for commitment. Otherwise, we will conservatively invalidate
all of them and request manual repair for them because it is too complicated to automatically
resolve a group of transactions. Note that this is likely to be rare in practice because it
requires three conditions to be satisfied together: (a) overwriting transactions, (b) transaction
invalidation, and (c) client running out of shadow space.

4.3.4 Transaction Validation

The most frequent activity during the incremental propagation process is validating discon-
nected transactions. Because the G1SR consistency criterion is not supported in the current
implementation, we focus on consistency validation using the GC criterion, which will be re-
ferred to as transaction certification for compatibility with past research literature. Intuitively,
the certification of a transaction T is to check whether any object accessed by T has been
updated on the corresponding server since it was first accessed by T.

Version Certification There are two basic alternatives for transaction certification. Value
certification records the data values of objects accessed by a pending transaction and compares
them against the corresponding server values. It is impractical for IOT implementation on Coda
because recording transaction accessed data values will cost too much client disk space. We
adopt the version certification strategy by recording the local version identifiers of transaction
accessed objects and comparing them against the corresponding server version identifiers.

The process of version certification for a pending transaction T consists of the following
actions. For each element in R(T) and W(T)3, we first use its recorded fid to locate the
corresponding cached object obj and its local version vector4 denoted lvv(obj). We then
send fid and lvv(obj) to the corresponding server and let it compare lvv(obj) against
the current global version vector of obj denoted gvv(obj). If the two version vectors do not
match, transaction T fails certification and is invalidated. Otherwise, the version comparison
process is repeated until both R(T) and W(T) are exhausted. To improve performance, the
fid’s and their corresponding local version vectors are batched and sent to the servers in
groups.

3The notations R(T) and W(T) stand for the readset and writeset of transaction T respectively.
4Coda maintains a version vector for each individual object required by server replication. Since this thesis

research does consider server replication, a version vector in this dissertation is treated in the same way as a
version stamp.

4.3. MERGING LOCAL STATE WITH GLOBAL STATE 65

Value Certification for Attributes The main drawback of version certification is the possi-
bility of false invalidation because version vectors in Coda are maintained at an object level. As
discussed in Chapter 3, sub-object level transaction specification is needed to more accurately
represent the transactional file access behaviors and avoid unnecessary conflicts. However,
maintaining version vectors for each sub-part of an object demands substantially higher server
space cost and performance overhead.

Our strategy to reduce the likelihood of false invalidation is to apply value certification on
attributes. Each element of the transaction readset and writeset must record not only which
attributes of an object are actually accessed by a transaction but also the value of those accessed
attributes. Suppose that a pending transaction T updated the mode bits of an object obj
during the disconnected operation while obj’s data content is updated on the corresponding
server. During the certification of T, even though the version comparison on obj will show
the difference between its local and global version vectors, the success of value certification on
the mode bits of obj can help to avoid the unnecessary invalidation of T.

Value Certification for Directory Contents Similarly, directory access operations also need
value certification to avoid unnecessary conflicts. For every directory access operation per-
formed by a disconnected transaction T, R(T) and W(T) will record the actual names that
are accessed by T. For example, suppose that T performs an operation “mkdir home/foo”,
W(T)will contain an element for directory homewhich records that the name “foo” is inserted
under home. The value certification of T on directoryhome succeeds as long as the name “foo”
is still unbound under the corresponding server replica of home. This kind of directory value
certification can correctly avoid the unnecessary conflict on a pair of independent partitioned
operations such as “mkdir home/foo” and “mkdir home/bar”.

4.3.5 Transaction Commitment

The second most frequent activity during the incremental propagation process is committing
a validated transaction. As in connected transaction execution, we rely on Coda’s underlying
mutation logging and reintegration mechanisms to commit the local result of a transaction to the
servers, using the same transaction mutation log structures and the new transaction reintegration
process described in Figure 4.3.

4.3.6 Transaction Resolution

The least frequent but most challenging activity during the incremental propagation process is
resolving an invalidated transaction. We devote the next two chapters to describing support for
this aspect of our design.

66 CHAPTER 4. DETAILED DESIGN: CONSISTENCY ENFORCEMENT

Chapter 5

Detailed Design: Conflict Representation

When a pending transaction is invalidated, the IOT consistency model requires it to be resolved
using one of the four resolution options. However, a number of important issues need to be
addressed before resolution takes place. How can the local and global state of relevant objects
be conveniently accessed by the resolver? Which portions of the local and global state should
be visible? How are the users notified that an invalidated transaction needs to be manually
resolved if it chose that option? The underlying theme of these questions is how to properly
represent the information about invalidated transactions so that they can be effectively resolved
by automatic resolvers or human users. Because conflict representation is crucial to the success
of conflict resolution, this chapter is devoted to the detailed design issues of representing
information about conflicts.

The central focus of this chapter is to present a systematic study on important issues
and design trade-offs in providing a concise conflict representation mechanism for the IOT
extension to the Coda file system. The first section identifies the fundamental problems and
key requirements in conflict representation. The second section mainly describes how to notify
users and applications about detected conflicts. The third section discusses how to expose
conflict information to the resolvers. In addition, detailed mechanisms of a novel conflict
representation scheme are presented.

5.1 Basic Issues of Conflict Representation

5.1.1 Inconsistent Objects

As discussed in Chapter 3, the notion of conflict in this dissertation is associated with invalidated
transactions. Intuitively, if a transaction T is invalidated, it means that some of the objects it

67

68 CHAPTER 5. DETAILED DESIGN: CONFLICT REPRESENTATION

accessed are likely to be in an inconsistent state, i.e., their value does not satisfy the necessary
consistency requirements. Because transaction T is a past thread of computation, it is those
objects that embody the conflicts caused by T. We define an object obj to be inconsistent if it
satisfies both of the following two conditions:

1. obj2(R(T)[W(T)) where T is an invalidated transaction. In other words, an inconsis-
tent object must have been accessed by an invalidated transaction.

2. lv(obj) 6=gv(obj) where lv(obj) and gv(obj) stand for the local and global
version of obj respectively. This means that obj is either mutated by transaction T or
updated on the corresponding server during the disconnection, or both.

We use inc(T) to denote the set of inconsistent objects caused by transaction T. Any
object in inc(T) is either accessed by T and updated on the corresponding server or mutated
by T. It is not difficult to see that further accesses to objects in inc(T) could lead to cascading
conflicts. Suppose that an object obj2inc(T) is accessed by an ongoing transaction T’.
T’ will certainly be invalidated if obj has already been updated on the corresponding server.
Even if obj is only mutated by T, T’ is still likely to be invalidated because the resolution of
T may cause the server replica of obj to be updated.

Objects in inc(T) capture the key information about the conflicts caused by T for two
reasons. First, any object that is known to have a different current server state than T originally
accessed is a member of inc(T). Second, inc(T) contains the complete effect created by T
because it is a superset ofW(T) by definition. Thus, inc(T) embodies whatTwould have seen
and produced differently had it not been disconnected. In essence, conflict representation for
transaction T is exposing information about objects in inc(T) under different circumstances.

5.1.2 Two Venus Operation Modes

A transaction T may not be immediately resolved after its invalidation for two reasons. First,
T may have chosen the manual resolution option, and the user may defer repairing it. Second,
even though T has chosen one of the automatic resolution options, the transaction system may
not be able to resolve it right away because new failures could cause the client to lose some
of the necessary server connections. Hence, there could be an arbitrarily long period between
T’s invalidation and resolution. During this period, objects in inc(T) must be marked as
inconsistent and prohibited from any new accesses to prevent cascading conflicts. However,
as soon as the resolution starts, both the local and global state of objects in inc(T) must be
made visible to T’s resolver so that it can analyze and resolve the conflicts. Therefore, the
same inconsistent objects must possess different visibilities depending on whether T is being

5.2. CONFLICT REPRESENTATION IN SERVICE MODE 69

resolved or not. The IOT-Venus adopts two basic operation modes to serve these two distinct
needs.

The IOT-Venus operates in the service mode when no transactions are being resolved. In this
mode, accesses to inconsistent objects are denied while other non-inconsistent objects behave
normally. When an invalidated transaction T starts resolution, the IOT-Venus switches to
the resolution mode and dynamically adjusts the internal representation of relevant inconsistent
objects so that their local and global state can be accessed by the resolver. To avoid interference,
transactions are resolved one at a time and regular transaction executions are blocked during the
resolution mode. The IOT-Venus returns to service mode as soon as T’s resolution is completed.
At any given moment, it operates in either of the two modes and there is no overlap.

5.1.3 Conflict Representation Requirements

The central mission of conflict representation is to provide necessary information about the
conflicts caused by invalidated transactions to the resolvers. When operating in the service
mode, the IOT-Venus has two responsibilities other than the regular cache management duties
such as servicing cache misses. First, it must notify the users about the existence of conflicts.
Second, it must prevent inconsistent objects from being accessed. During the resolution mode,
the IOT-Venus must provide the resolver with convenient access to both the local and global
state of all the inconsistent objects accessed by the transaction being resolved. In addition, only
the global state of all other objects should be made visible to the resolver.

5.2 Conflict Representation in Service Mode

5.2.1 Conflict Notification

Design Alternatives There are two basic approaches to notifying the users about detected con-
flicts. The first approach utilizes outside communication facilities such as sending email [56],
displaying messages on terminals, sending on-line zephyr [10] messages, etc. This external
approach has the advantages of being informative and simple to implement. However, there
are many disadvantages. First, notification messages are often transient and non-repeatable. If
the users do not pay attention or the messages get lost, the users will remain ignorant of the
detected conflicts. Second, this approach is not suitable for informing ongoing applications
trying to access inconsistent objects. Third, it renders the proper functioning of the transaction
system dependent upon the availability of specific message communication facilities.

To overcome these shortcomings, our design adopts an internal conflict notification ap-
proach by changing the visibility of inconsistent objects inside the Coda namespace. The

70 CHAPTER 5. DETAILED DESIGN: CONFLICT REPRESENTATION

key idea is to make those objects look different from they otherwise would under normal cir-
cumstances so that both the users and the applications can be aware of the fact that they are
inconsistent. This approach is persistent in the sense that the notification message is attached
to the objects themselves and is repeated every time an inconsistent object is accessed. It also
makes the transaction system more self-contained.

Dangling Symbolic Link The mechanism for internal conflict notification is converting an
inconsistent object into a dangling symbolic link, i.e., a symbolic link that does not point
to any real object. The link content uses a special format of @x.y.z where x, y and z
are a hexadecimal number encoding the three components, volume-id, vnode-id and
uniquifier of the fid of the inconsistent object. Note that such dynamic conversion is
performed only on the client where inconsistent objects are detected and they appear as normal
objects on other clients. Figure 5.1 shows an actual example of dangling symbolic links. To
ensure that the symbolic links are always dangling and never point to any real objects, the Coda
file system forbids any object to have a name of the above format. In essence, we give up a
tiny portion of legal names so that accesses to inconsistent objects are guaranteed to yield an
unexpected result.

This xterm image displays the dangling symbolic links for a file inconsistent.c and a
directory test that are detected to be inconsistent. The three hexadecimal components of each
symbolic link correspond to the three components of the actual fid.

Figure 5.1: An Example of Dangling Symbolic Links

5.2.2 Access Prevention

The dangling symbolic link representation can not only visually notify the users about conflicts
but also serve the purpose of preventing new processes from accessing inconsistent objects.

5.2. CONFLICT REPRESENTATION IN SERVICE MODE 71

Performing common file access operations such as open, read and write, etc. on inconsis-
tent objects will all fail because the corresponding symbolic links point to nowhere. The only
exception is when the inconsistent object is a symbolic link itself because a readlink oper-
ation on it can still succeed. But the readlink operation will return the specially formated
string instead of the real link content.

However, it is possible for an object obj to be detected as inconsistent while an ongoing
process P has already obtained a reference to the vnode of obj, allowing P to continue
accessing the current server replica of obj. This causes a sudden content switch because P
was accessing the local version of obj and changes to the global version without knowing it.
Obviously, we must prevent this from happening because it can result in serious consequences.

Our solution is to create a table containing the fid of all the inconsistent objects. For
every file access operation, the IOT-Venus will search the table to see if any operand has a
fid already marked as inconsistent. If so, the error code EACCES will be returned to deny
the operation. An obvious drawback of this method is the performance overhead of searching
the table for every file access operation. To alleviate this problem, we attach a flag to each
cached volume to indicate whether it contains any inconsistent objects or not. Thus, we can
check the volume tag to avoid unnecessary table searching when the corresponding volume
does not have any inconsistent objects. Because conflicts are rare and tend to localize in a few
volumes, this technique allows us to avoid paying a significant performance price under normal
circumstances.

5.2.3 Visibility Maintenance

Visually notifying the users about inconsistent objects and preventing further access to them are
only part of the general task of maintaining tentative computation results for live transactions.

5.2.3.1 Maintaining Live Transaction Results

The IOT-Venus has two main responsibilities in service mode. First, it must perform the regular
cache management duties such as servicing cache misses and maintaining cache coherence.
Second, it needs to maintain the tentative computation results produced by the live transactions
so that they are visible in the client local state.

Object Asynchrony The essence of maintaining tentative computation results is to keep
relevant cached objects asynchronous from their server state. Here, we use the terms asynchrony
or asynchronous to refer to the situation where the client local state remains different from the
server global state. In order to keep the result of a running or pending transaction visible in the
client local state, the IOT-Venus must hold onto the cache copies of objects that are mutated

72 CHAPTER 5. DETAILED DESIGN: CONFLICT REPRESENTATION

by the transaction without fetching their server replicas even if they are updated. Furthermore,
cache copies of objects only read by those transactions need to remain in the client cache
even though their server counterparts might have been changed. Thus, inconsistent objects
are only a portion of the asynchronous objects that are made inaccessible to avoid spreading
inconsistencies.

Visibility Control The key to managing asynchronous objects is to control their visibility,
i.e., the way they are visible to the users and applications. Object visibility has many aspects
such as object form (regular file, directory and symbolic link) and object accessibility. The
IOT-Venus dynamically adjusts different aspects of object visibility of asynchronous objects to
serve different needs under different circumstances. The dangling symbolic link representation
for inconsistent objects is just one form of visibility control where the accessibility of an
inconsistent object is revoked and the form of the object is dynamically transformed to make a
visual difference.

5.2.3.2 State-Based Visibility Maintenance

The difficulty of maintaining asynchronous cached objects is that their visibility needs to be
dynamically adjusted in response to different kinds of system activities. Events such as a
new transaction starting execution, a pending transaction being committed, an invalidated
transaction being successfully resolved, and the server replica of an asynchronous object being
updated, require the visibility of the relevant objects to be dynamically changed. Because live
transactions may create complicated inter-dependencies among themselves, questions such as
when an inconsistent object can become a normal object again become very difficult to answer.

Our strategy is to use a state-based approach to maintain visibility for cached objects. The
key idea is to classify all the cached objects into a small number of states such that any system
activity only causes the relevant objects to transit from one state into another. By assigning a
specific visibility control policy to each state, visibility maintenance becomes the disciplined
action of following state transitions and adjusting visibility accordingly.

Basic States of Cached Objects Any asynchronous cached object obj must have been
accessed by at least one live transaction. Each such transaction is called a guardian of obj.
We classify all cached objects into the following four basic states.

� Consistent State

An object obj is in the consistent state if it does not have any guardian, i.e., it has
not been accessed by any live transaction. The visibility control policy for consistent
objects uses the regular callback cache coherence protocol to keep their cache copies

5.2. CONFLICT REPRESENTATION IN SERVICE MODE 73

fully synchronized with the corresponding server replicas. In other words, consistent
objects are synchronous objects.

� Clean-Local State

An object obj is in the clean-local state if it has at least one guardian and its local version
is identical to its current server version, i.e., lv(obj) = gv(obj). This means that
obj is accessed by some live transactions but has not been mutated either locally on
the client or globally on the server. It is clean because it has not been updated and it is
local because it must remain in the client cache until all its guardians are committed or
resolved. The visibility control policy for clean-local objects exposes their local state in
their original form but pins them inside the client cache so that their server state will not
be visible.

� Dirty-Local State

An object obj is in the dirty-local state if it has been updated by at least one of its
guardians and none of the guardians that mutated obj are invalidated. obj is local
because it needs to stay in the client cache until all its guardians are committed or
resolved. It is dirty because it has been updated on the client (and by definition not
updated on the server). The visibility control policy for dirty-local objects is the same as
clean-local objects. Their local state is accessible in their original form but their global
state remains invisible.

� Inconsistent Object

As previously defined, an object obj is in the inconsistent state if it has been accessed
by at least one invalidated guardian T such that it has either been mutated by T or it has
been updated on the server. Because accessing inconsistent objects will lead to cascading
inconsistencies, the visibility control policy for inconsistent objects prohibits their local
or global state from being visible and their form is changed into a dangling symbolic link
to visually notify the users about the conflicts.

Under normal circumstances, most of the cached objects are in the consistent state and
fully synchronized with their server replicas. A small portion of them remain asynchronous
because they are accessed by live transactions. Some of them display their local state in order to
represent the tentative computation results of live transactions. Some of them are temporarily
inaccessible due to invalidated transactions. Figure 5.2 depicts a visibility distribution among
all the cached objects in a client cache.

Object State Transitions The four basic states characterize all the possible situations of any
cached object. All the legal transitions among them are shown in Figure 5.3 and explained as
follows.

74 CHAPTER 5. DETAILED DESIGN: CONFLICT REPRESENTATION

clean-local objects

dirty-local objects

inconsistent objects

consistent objectssynchronous

asynchronous

global state
accessible

local state
accessible

inaccessible

Figure 5.2: Visibility of Cached Objects

� Consistent Object

A consistent object can become a clean-local or a dirty-local object when it is first
read or written by an ongoing transaction respectively. It cannot directly become an
inconsistent object because it has to be accessed by a running transaction first in order to
be inconsistent.

� Clean-Local Object

A clean-local object can go back to be a consistent object when its last guardian is
committed or resolved. It can become a dirty-local object when it is updated by an
ongoing transaction. In the worst case, it will degenerate into an inconsistent object
when its server replica is updated.

� Dirty-Local Object

A dirty-local object can similarly go back to be a consistent object when its last guardian is
committed. It can become a clean-local object when its last update-guardian is committed
while still having other read-guardians. It will fall into the inconsistent state when one
of the following two things happens: its server replica is updated or one of its update-
guardians is invalidated.

� Inconsistent Object

When the last guardian of an inconsistent object obj (it has to be an invalidated trans-
action by definition) is resolved, the object is reborn as a fully synchronized consistent

5.3. CONFLICT REPRESENTATION IN RESOLUTION MODE 75

object. The resolution or commitment of obj’s read-guardians does not change its state.
However, if obj still has other guardians when an update-guardian T is resolved, it could
remain inconsistent if it has other invalidated guardian(s) that have accessed a local
version of obj different from the current global version. Otherwise, obj will become
either a clean-local or a dirty-local object depending on whether it has been mutated by
the remaining guardians or not.

consistent inconsistent

clean-local dirty-local

Figure 5.3: Cached Object States and Their Transitions

5.3 Conflict Representation in Resolution Mode

The resolution mode is tied to the resolution of one and only one invalidated transaction. The
main responsibility of the IOT conflict representation mechanism is to provide the resolver
with convenient access to the local and global states of all inconsistent objects accessed by
the transaction. For all other objects, only their global state should be visible to the resolver
to guarantee that the resolution outcome does not depend on the result of any other live
transactions.

Despite its importance in conflict resolution, the issue of how to best represent conflict
information to the resolvers has not been adequately addressed in previous research. Our
design principle here is to expose conflict information to the resolvers in as simple and concise
a form as possible to reduce the burden of programming application-specific resolvers and
make the process of manual resolution easier. This section not only presents our novel conflict
representation scheme but also studies key alternatives to justify our design decisions.

76 CHAPTER 5. DETAILED DESIGN: CONFLICT REPRESENTATION

5.3.1 Exposing Local and Global State of an Inconsistent Object

5.3.1.1 Naming Replicas

The Need for Naming Replicas Conceptually, the local and global replicas of an inconsistent
object obj, denoted lr(obj) and gr(obj), are two physical copies recording the client
and server state of obj. Under normal circumstances, replicas are not first class citizens
because they cannot be directly named and accessed though the standard UFS API. However,
during the resolution of an invalidated transaction T, the local and global replicas of objects
in inc(T) need to be accessed by T’s resolver in the same way as normal objects. This is
vital to effective conflict resolution. Otherwise the resolver will require a separate interface for
accessing replicas. It means that all the existing system facilities, applications and tools cannot
be directly used for resolving conflicts. This will severely limit the capability and effectiveness
of resolvers and also complicate their programming.

There are two important usability issues for the IOT conflict resolution mechanism. For
manual conflict resolution, we should allow the users to take advantage of whatever facilities
exist at their disposal (such as emacs, latex, make and gcc) to repair an invalidated
transaction. For automatic conflict resolution, we should facilitate the programmingof resolvers
by allowing replicas to be accessed via the standard UFS API. This allows resolvers to use
existing applications and tools. It is clear that the practical usability of IOT conflict resolution
demands that replicas be treated as first class citizens during conflict resolution.

Design Alternatives In Unix file systems, objects are named with their unique locations in
the hierarchical namespace. Any object obj can be named by its unique pathname denoted
pn(obj) starting at the top of the namespace. Allowing a replica to be named in the same
way as a normal object requires it to be stored at a specific location of the file system. In
addition, there needs to be a convention that maps the pathname of an inconsistent object into
the pathnames of its local and global replicas. In other words, for any inconsistent object obj,
there needs to be a deterministic way of computingpn(lr(obj)) and pn(gr(obj)) based
on pn(obj).

The specific replica naming issues for an inconsistent object obj include the following:
What are the pathnames of lr(obj) and gr(obj) and where are they stored? What is
the visible content at the original location of pn(obj)? What is the convention to translate
pn(obj) into pn(lr(obj)) and pn(gr(obj))? There are different alternatives that can
address each of the questions. For example, an earlier Coda implementation stored the local
replica of an inconsistent object in a closure file using the tar format on a local disk file
system [26]. The local replica is not directly accessible until extracted from the closure file.
The corresponding global replica is accessible at the object’s original location.

5.3. CONFLICT REPRESENTATION IN RESOLUTION MODE 77

The In-Place Naming Strategy Our design uses an in-place replica naming strategy that
has been used in Coda for representing conflicts among server replicas [29]. It has two key
characteristics that are summed up by the phrase “in-place”. First, all replicas are represented
within the Coda namespace. We do not rely on any other file system to maintain replicas of
inconsistent objects. Second, the local and global replicas of an inconsistent object obj are
stored in locations near the original location pn(obj). The closeness in namespace makes
it easier for the resolver to locate and inspect needed replicas. It is also easier for users doing
manual resolution. When directly accessed via the UFS API, replicas are read-only and their
main purpose is to provide information about the local and global state of relevant inconsistent
objects.

The in-place naming convention of an inconsistent object obj uses pn(obj)/local
and pn(obj)/global as the pathnames of its local and global replicas. The visible content
at location pn(obj) becomes a directory containing only two children named “local” and
“global” representing the local and global replicas of obj respectively. For example, if
a file /coda/misc/test is inconsistent, its local and global replicas will be located at
/coda/misc/test/local and /coda/misc/test/global respectively.

5.3.1.2 Dealing with Directory Replicas

For a simple object such as a file or a symbolic link, its local or global replica is just another file
or symbolic link storing its local and global state. However, the representation of a directory
replica needs to be different because the data content of a directory contains references to other
objects.

Subtree Representation For compatibility reasons, we inherit the subtree representation
form for directory replica that is also employed by the Coda file system to represent conflicts
among server replicas [29]. Note that Coda employs a different set of mechanisms for sup-
porting optimistic server replication and disconnected operation. This subtree form of replica
representation was employed by the original Coda system to only represent conflicts among
server replicas, not in disconnected operation which is the focus of this dissertation. The con-
flict representation mechanisms discussed in this document are all newly added to the existing
Coda system for supporting IOT.

The local replica of an inconsistent directory dir is represented by the local subtree
consisting of cache copies of objects that are descendents of dir. Similarly, the global replica
of dir is represented by the global subtree consisting of server replicas of objects that are
descendants of dir. It is only during conflict resolution that they are represented by the
corresponding local subtree and global subtree respectively. We regard subtrees as the general
form of replica representation. Note that the local and global subtrees of an inconsistent file or
symbolic link contain only one node.

78 CHAPTER 5. DETAILED DESIGN: CONFLICT REPRESENTATION

The advantage of subtree representation is that it retains the original hierarchical structure
among replicas within the local and global subtrees of an inconsistent directory, making it easier
for the resolver to probe around inspecting and comparing relevant replicas. The drawback is
that it may cause significant client space overhead because two subtrees are needed to represent
an inconsistent directory. When a conflict occurs in a directory at a high level in the file system
hierarchy, hundreds of nodes could be involved.

Space Cost Analysis There are two kinds of client space costs associated with the subtree
representation for directory replicas. Because the entire local subtree of any inconsistent
directory needs to be kept in the client cache, the internal representation of cached objects
within the subtree could consume a fair amount of persistent storage space. In addition, the
cache files of those objects could occupy a significant amount of disk space. When the server
replicas of the corresponding global subtree are being accessed, more persistent storage and
disk space are needed.

We conducted a feasibility study by analyzing the persistent storage and disk space needed
for storing a typical subtree. The key observation is that directory update activities tend to
occur at the bottom levels of the namespace hierarchy. Since any inconsistent directory must
be caused by a directory update operation, the typical subtree corresponding to an inconsistent
directory is small. The analysis was performed based on previously collected file reference
traces [46] and statistics about file system object distributions [12]. It shows that the space
cost for storing a typical subtree is modest and acceptable in normal circumstances. Details are
presented in Chapter 9.

The Caching Factor Another important factor that enhances the feasibility of subtree repre-
sentation is that only the local subtree of an inconsistent directory needs to be resident in the
client cache. Because the server replicas within a global subtree can be accessed as normal
objects, they are demand fetched to the client cache and swapped out when the client runs out of
cache space. Furthermore, local subtrees of inconsistent directories already reside in the client
cache. Thus, both the local and global subtrees of any inconsistent directory can be accessed
through demand fetching and cache replacement activities.

Handling Uncached Objects The local subtree of an inconsistent directory sometimes is
incomplete because some of the objects in the subtree may not have been cached when the
client was disconnected. If we do not include those un-cached objects in the local subtree,
there will be an ambiguity problem because the resolver cannot distinguish whether those
objects were initially un-cached or locally removed. To avoid this problem, we bind the names
of un-cached objects to specially-generated fids so that their names are visible in the local
subtree but any attempt to access them will result in an error code of ETIMEDOUT. Although

5.3. CONFLICT REPRESENTATION IN RESOLUTION MODE 79

this approach may seem confusing to the users doing manual repair, it achieves the important
goal of presenting the local subtree in exactly the same way when the client was disconnected.

5.3.1.3 Providing Resolution Workspace

The Need For Workspace Resolving conflicts needs a workspace to build up the resolution
result. For example, suppose that an invalidated make transaction Tmake compiled an object
file work.o and its resolution needs to compile a new version for work.o. The IOT conflict
representation mechanism needs to provide a workspace for the inconsistent object work.o so
that it can be used as the place-holder for storing the new compilation result.

Design Alternatives Several different strategies can be used to provide resolution workspace.
One method used by the Coda file system for repairing conflicts among server replicas of a
file object allows the repairer to use any file from any file system as the workspace for holding
repair results. The repairer must provide information about the location of the workspace file
to Coda so that its data content can be fetched and installed as the repair outcome for the
corresponding inconsistent file.

The second alternative is to extend the current form of conflict representation so that an
inconsistent objectobjwill be dynamically converted into a directorycontaining three children.
In addition to the original local and global children, a third child named “workspace” is added
and initialized with an identical copy of the corresponding global subtree. The workspace
subtree is directly mutable via the UFS API so that the resolver can use it to store the resolution
result for obj. When resolution is over, the transaction system will automatically install the
current state of the workspace subtree as the final resolution outcome for obj.

The Dual Replica Representation The second alternative is appealing because it fits well
with the overall design philosophy of localizing conflict representation for access convenience.
However, its implementation will be very complicated because Venus needs to maintain the
internal representation of three different replicas of the same object, and allow two of them to
be mutable. Thus, we decided to settle for a variation. The key idea is to overload the global
and workspace subtrees of an inconsistent object obj. The global subtree of obj serves both
purposes of providing access to the current global state of obj and the place-holder for storing
the resolution result of obj. We call this approach the dual replica representation (DRR) and
Figure 5.4 shows its basic structure. A slight disadvantage of this approach is that the resolver
needs to access all the needed global replicas before updating them to store the resolution result.
Figure 5.5 presents an actual example of dual replica conflict representation.

80 CHAPTER 5. DETAILED DESIGN: CONFLICT REPRESENTATION

inconsistent
object

mutable

global
subtree

local
subtree

read-only

Figure 5.4: The Basic Structure of Dual Replica Representation

This xterm image shows the dual replica conflict representation of the two inconsistent objects
shown in Figure 5.1. As can be seen, file inconsistent.c has two replicas with different sizes.
The local subtree of directory test contains a directory named data while the global replica
contains a file named data.

Figure 5.5: An Example of Dual Replica Conflict Representation

5.3. CONFLICT REPRESENTATION IN RESOLUTION MODE 81

5.3.2 The Realization of Dual Replica Representation

The main difficulty of implementing DRR comes from the fact that the IOT-Venus must maintain
both the local replica and the cache copy of the global replica of the same inconsistent object in
the cache. The main data structures and methods used for DRR implementation are discussed
below.

5.3.2.1 Key Data Structures

A Special Local Volume As both a system administration unit and a key design component,
the concept of volume is deeply rooted in every aspect of the design and implementation of
Coda. Because the Coda implementation requires that every object must belong to a volume,
we use a special local volume to serve as the home of all local replicas. Unlike a normal
volume, the local volume does not correspond to any actual server and remains resident at
every client. It is a read-only volume and stays in the connected state, making local replicas
always accessible.

Logically, each client is the server of its own local volume because it provides the home
for storing the cache copies of all local replicas. In the actual implementation, the IOT-Venus
treats the local volume in the same way as a normal cached volume except that it must suppress
any attempt at server communication on behalf of the local volume. From the viewpoint of a
resolver, local replicas appear the same as normal objects except that they are read-only.

Internal Structure of Dual Replica Representation For an inconsistent object obj, its dual
replica representation uses an internal structure shown in Figure 5.6 and it will be referred to
as the DRR subtree of obj. The IOT conflict representation mechanism dynamically converts
obj from a dangling symbolic link into a directory containing the local subtree and global
subtree of obj. There are six key nodes in the DRR subtree and their roles are as follows:

� The topmost node is the parent of obj and is called the DRR-base because it provides
the basis for planting the DRR subtree of obj in the client local state. It plays the role of
a connector that links the regular Coda namespace hierarchy with obj’s DRR subtree.
It must be pinned in the client cache until the relevant conflicts are resolved because
fetching its server replica will cause the DRR subtree to be orphaned.

� The object that occupies the original location of obj in the Coda namespace is called
the fake-root of the DRR subtree. It uses a fake fid that does not correspond to any real
object in the file system. Its main functionality is to serve as a place-holder directory to
host the local and global subtrees of obj. Note that fake-root is a read-only directory.

82 CHAPTER 5. DETAILED DESIGN: CONFLICT REPRESENTATION

local
child

global
child

global
root

local
root

mount
point

mount
root

mount
point

mount
root

fake-root

DRR-base

global subtree local subtree

Figure 5.6: Internal Structure of Dual Replica Representation

� local child is a temporary object with a fake fid. It is the child of fake-root named
“local” and serves as the mount-point for the local subtree of obj to be hooked with the
DRR subtree.

� Similarly, global child is also a temporary object with a fake fid. It is the child of fake-
root named “global” and is used as the mount-point for connecting the global subtree of
obj with the DRR subtree. Since the top three nodes play the role of a joint linking the
obj’s local and global subtrees with its parent and they all use the fake fid, we call
them the fake-joint of the DRR subtree.

� local root corresponds to the local cache copy of obj. When obj is a file or a symbolic
link, its local subtree only contains the local root itself. When obj is a directory, local
root is the root of the local subtree of obj. The mounting of the local subtree to the
local child is lazy. In other words, it is deferred until the resolver tries to access the local
replica of obj.

� Similarly, global root corresponds to the server replica of obj, which is root of the global
subtree of obj if it is a directory. The mounting of the global subtree to the global child
is also lazy.

5.3. CONFLICT REPRESENTATION IN RESOLUTION MODE 83

A DRR Subtree Table In order to keep track of all the inconsistent objects and their associated
DRR subtrees, we maintain a persistent table storing information of all the DRR subtrees. Each
entry of the table contains key information such as fids of the top six nodes of a DRR
subtree. This table plays an important role in situations where the detection of new conflicts
or the resolution of existing conflicts require adjustment to existing DRR subtrees, as will be
explained later in this section.

A Local/Global Fid Map In the dual replica conflict representation, the global replica of an
object retains its original fid while the local replica must use a generated local fid so that
it can belong to the special local volume. Since the maintenance of DRR subtrees needs the
correspondence between local and global replicas, we maintain a persistent table to provide
this mapping.

5.3.2.2 DRR Subtree Construction

Building the Fake-Joint To create a DRR subtree for an inconsistent object obj, the first
step is to locate the cache copies of obj and its parent denoted p(obj). After de-linking
the parent/child relation between p(obj) and obj, we fashion a new directory with a fake
fid and use it as the fake-root by making it a child of p(obj) with the original name of
obj. In addition, two mount-point objects with fake fids are manufactured and inserted as
the children of fake-root named “local” and “global” respectively.

Creating the Local Subtree The second step is to create the local subtree ofobj by traversing
the cache copies of objects that are descendants of obj. For each traversed cached object, we
generate a new local fid and use it to replace its original fid and insert the pair of fids
into the local/global fid map. This step is called localization because the fid replacement
effectively localizes the entire cached subtree rooted at obj. In other words, it virtually copies
the cached subtree of obj into the local volume. Note that the cache manager guarantees that
the ancestors of any cached object are also cached.

Forming the Global Subtree Because the global replica of each individual object retains the
original fid, the formation of the global subtree of obj becomes a natural result of the demand
fetching and cache replacement activities performed by the IOT-Venus. The global subtree is
mounted when the server replica of obj is first accessed by the resolver. The server replicas
within the global subtree are brought to the client cache only when they are accessed by the
resolver. At any given moment, the global subtree may be partially or fully cached depending
on the activities performed by the resolver and the IOT-Venus.

84 CHAPTER 5. DETAILED DESIGN: CONFLICT REPRESENTATION

5.3.2.3 DRR Subtree Destruction

When an invalidated transaction is resolved, its associated DRR subtrees need to be discarded
immediately. The first step is to de-link fake-root from DRR-base, unmount the local and
global subtrees, and remove the three fake-joint objects. The second step simply restores the
parent/child linkage between DRR-base and global root and discards those local replicas that
are not pinned by any other live transactions.

However, throwing away all the un-pinned local replicas could be very wasteful when the
subtree contains a large number of nodes and few of them are involved in conflicts. This problem
is particularly acute on a mobile client operating in a weakly connected environment with low
network bandwidth because re-fetching many of the discarded objects that are unchanged on
the servers takes a long time to complete. We address this problem by recovering local replicas
that have not been mutated and whose corresponding server replicas are not cached. Their
original fids will be restored and their cache status will be marked as questionable. The next
time they are accessed, the client only needs to validate their cache status instead of fetching
their data content as long as they are not updated on the servers.

5.3.2.4 DRR Subtree Maintenance

When new conflicts are detected or old conflicts are resolved, some existing DRR subtrees need
to be adjusted.

Subtree Merge Suppose that an inconsistent object obj1 is represented by a DRR subtree
ST1 and one of its ancestors obj2 is later detected to be in conflict. Because of the subtree
representation, the local and global subtrees of obj2 contain those of obj1 respectively. Thus,
creating the DRR subtree ofobj2, denotedST2, requires a merge withST1. The construction of
ST2 can proceed with the normal steps except when the localization encounters the DRR-base of
ST1. The fake-joint of ST1 is removed and its local subtree is merged with the partially formed
local subtree of ST2 before the localization resumes. The DRR subtree table still maintains an
entry for ST1 but marks it as a covered subtree.

Subtree Split Suppose that the above two inconsistent objects obj1 and obj2 belong to two
independent, invalidated transactions T1 and T2, respectively, and T2 is resolved before T1.
This requires ST2 to be discarded and ST1 to be recovered because obj1 remains inconsistent.
The destruction of ST2 can proceed with the regular procedure except that the original local
subtree of ST1 needs to be split out from that of ST2 and the full DRR subtree of ST1 must be
re-established based on recorded information in the DRR subtree table.

5.3. CONFLICT REPRESENTATION IN RESOLUTION MODE 85

5.3.3 The Multiple View Capability

The Need for Multiple Views Conflict resolution often needs to apply existing Unix applica-
tions and tools on replicas of relevant inconsistent objects. However, the proper functioning of
many applications such as make requires involved objects to be positioned in specific locations
within the namespace hierarchy. In other words, the pathnames of the relevant objects must
satisfy certain configuration requirements. For example, system buildings using make often
require a particular structure for source and object directories. This requirement is violated by
the insertion of “local” and “global” into pathname in DRR subtrees.

Our solution is to provide the ability for resolvers to view global or local replicas of
inconsistent objects in their original locations. We provide three different views. The default
is called mixed view which is the canonical form of DRR subtree where both local and global
replicas are accessible with twisted pathnames. The resolver can select the global view to
access the global replica of an inconsistent object obj using its original pathname. It can also
choose the local view to view the local replica of obj at its original location. The multiple
view capability is the key to allow existing applications to be utilized for conflict resolution.

local
child

global
child

global
root

local
root

mount
point

mount
root

mount
point

mount
root

local
child

global
child

global
root

local
root

mount
point

mount
root

mount
point

mount
root

internal structure for global view internal structure for local view

DRR-base DRR-base

fake-root fake-root

global subtree local subtree global subtree local subtree

Figure 5.7: The Internal Structure of Local and Global Views

86 CHAPTER 5. DETAILED DESIGN: CONFLICT REPRESENTATION

The Global View Intuitively, the global view allows the resolver to see through the local
mutations of live transactions and access the server replica of selected objects in their original
namespace locations. It can be used in several different ways to support conflict resolution.

First, automatic transaction re-execution only needs to access the global replicas of relevant
inconsistent objects. Setting the global view for their DRR subtrees would allow the corre-
sponding server replicas to be accessed using their original pathnames while none of the local
replicas are visible.

Second, the automatic execution of an application-specific resolver for an invalidated
transaction T may need to access objects that T originally did not access. If some of them are
currently inconsistent due to other invalidated transactions, their global state must be exposed
to the resolver and this can be accomplished by setting the global view for the corresponding
DRR subtrees.

Third, the global view capability allows the users to access the global state of certain
inconsistent objects to serve immediate needs without having to resolve the conflicts first.

The Local View The local view allows the local replica of an inconsistent object to be viewed
with its original pathname. Although not quite as useful as the global view, it can be used in the
situations where the local state of certain inconsistent objects are needed to serve immediate
purposes without having to resolve the conflicts. This is particularly useful for mobile clients
operating in a weakly connected environment where resolving conflicts is too time consuming
due to fetching needed global replicas over slow connections.

The Realization of Multiple Views The implementation of the global and local views are
almost identical. The key is to alter the internal structure of a DRR subtree so that its global
or local subtree is directly hooked with the DRR-base. Figure 5.7 depicts the updated internal
structures for both views. To create the global view, the IOT-Venus will temporarily de-link the
parent/child relations between DRR-base and fake-root as well as fake-root and global child, as
indicated by the dotted lines in the picture. In addition, it establishes a temporary parent/child
linkage between DRR-base and global child, which enables the global subtree to be accessed
at the original location of the inconsistent object. The local view can be created in the same
manner.

5.3.4 Establishing Transaction Resolution Object View

At the start of conflict resolution of an invalidated transaction T, the IOT conflict representation
mechanism will perform resolution initialization to create an appropriate object view for the
corresponding resolver. At the conclusion of the resolution, resolution finalization is performed

5.3. CONFLICT REPRESENTATION IN RESOLUTION MODE 87

to discard the relevant DRR subtrees, and to adjust and restore object views according to the
resolution outcome.

Two Basic Requirements First, the resolver must be able to access both the local and global
replicas of any object in inc(T). In addition, the local replicas must contain the original
content that was last accessed by T. This is necessary for T’s resolver to find out what T has
performed locally and what has been changed on the servers. Furthermore, the resolver needs
to use the corresponding global replicas to store resolution results. Second, for any object not
in inc(T), only its global state should be visible to the resolver. This guarantees that the
resolution outcome will not depend on any other live transactions.

Mixed View for Accessed Inconsistent Objects To satisfy the first requirement, resolution
initialization will create a DRR subtree for each object in inc(T). By setting the mixed view
for the relevant DRR subtrees, the resolver can access the local and global replicas of any
object in inc(T). Resolution finalization will discard these DRR subtrees immediately after
the resolution succeeds.

There are two important issues to mention here. First, the local replicas of relevant DRR
subtrees must reflect the data content that was originally accessed by the execution of T. For any
object obj2inc(T) updated by subsequent transactions, resolution initialization will restore
its original content using the following method. If obj is a file object and was overwritten by
a later transaction, the transaction system can restore its original content by binding obj to the
corresponding shadow cache file in shdset(T) which saved the data last accessed by T. If
obj is a directory object, its original content can be restored by performing the inverse operation
for every directory mutation operation performed on obj by the subsequent transactions. For
example, if a new object foo is created under obj, the inverse operation is to remove foo
from under obj. Finally, if obj’s attributes were updated by subsequent transactions, the
original values can be restored using the corresponding attribute values recorded in TML(T)
or the initial attributes stored in the internal representation of obj. Note that a reverse process
needs to be performed by resolution finalization.

Second, transaction T may have multiple inconsistent objects and some of them may
have ancestor/descendant relationships. In order to avoid unnecessary DRR subtree merges,
resolution initialization will first compute the set root(T) = fobj j obj2inc(T) ^ obj
does not have any ancestor in inc(T)g. Creating a DRR subtree for each object of root(T)
can cover the entire inc(T) without any subtree merges.

Global View for Other Inconsistent Objects When T is being resolved, there could be
other inconsistent objects that are not in inc(T). The resolution initialization for T needs to
construct DRR subtrees for those inconsistent objects and set global view for them so that only

88 CHAPTER 5. DETAILED DESIGN: CONFLICT REPRESENTATION

their global state is visible. Because the resolution of T tends to only access objects it has
already accessed, the actual creation of the global view DRR subtrees for those inconsistent
objects can be performed lazily until they are accessed by the resolver. Resolution finalization
will revert their representation back to the dangling symbolic link form.

Hiding Other Local Mutations If there are pending transactions when T is about to be
resolved, resolution initialization needs to hide all the local mutations made by those transactions
so that only the corresponding global state is visible. This can be accomplished by creating
a global view DRR subtree for each dirty-local object. Similarly, the actual creation of the
global view DRR subtrees can be delayed until the resolver tries to access the corresponding
dirty-local objects. Resolution finalization will simply discard all the DRR subtrees associated
with dirty-local objects.

Optimization for Automatic Re-execution Because automatic transaction re-execution does
not need the local state of any inconsistent object, resolution initialization will simply set global
view for all DRR subtrees that are created.

Chapter 6

Detailed Design: Conflict Resolution

Conflict resolution is the process of restoring consistency to the inconsistent objects updated by
an invalidated transaction. This chapter presents detailed designs for realizing the four conflict
resolution options provided by the IOT consistency model. We first describe a conflict resolution
framework based on the cooperation between the transaction system and the resolver. We then
discuss the basic mechanisms that support both automatic and manual conflict resolutions.

6.1 A Cooperation-Based Resolution Framework

Resolving conflicts in general requires knowledge about the application associated with the
invalidated transaction being resolved, referred to as the target transaction in the rest of the
discussion. Resolution actions that understand application semantics must be supplied by
either a pre-programmed resolver or a human user. Our main design objective is to minimize
the burden on the resolver to enhance the practical usability of the IOT conflict resolution
mechanisms. To that end, the transaction system must fully cooperate with the resolver by
performing those resolution actions that do not require application-specific knowledge. This
section focuses on establishing a cooperation-based resolution framework where the transaction
system and the resolver are each responsible for a core set of resolution actions necessary for
supporting the four IOT conflict resolution options.

6.1.1 A Resolution Session Model

Resolution Session and Its Process Model As discussed in Chapter 4, invalidated transac-
tions are resolved one at a time. We use the term resolution session to refer to the process of
resolving an invalidated transaction. Sometimes, a resolution session is also called a repair

89

90 CHAPTER 6. DETAILED DESIGN: CONFLICT RESOLUTION

session if the resolution is performed manually. Figure 6.1 presents a resolution session process
model describing the main control flow.

Start
Resolution
Session

Create
Resolution
Result

Inspect
Replicas

Resolution
Initialization

Resolution
Finalization

Discard
Resolution
Result

Discard
Local
Result

Consistency
Validation

invalidated

Commit
Resolution
Result

abort

commit

fail

succeed

validated

Transaction System Action

Resolver Action

User/Transaction System Action

Figure 6.1: A Cooperation-Based Resolution Session Model

Transaction Encapsulation The cooperation-based session model requires an entire resolu-
tion session to be treated as if it is a connected isolation-only transaction. Such transaction
encapsulation provides three key properties. First, the mutations used by the resolver to create
the resolution result are performed only locally and will not be visible on the servers until the
session is successfully completed. Second, a resolution session must be validated in the same
way as a normal transaction to guarantee that the resolution result is consistent with the most
recent server state. Third, the resolution result is committed to the servers atomically. These

6.1. A COOPERATION-BASED RESOLUTION FRAMEWORK 91

properties are very important for conflict resolution to achieve its ultimate goal of restoring
consistency for the inconsistent objects caused by the target transaction. Conceptually, a reso-
lution session is just another computation and is subject to the inconsistency problems caused
by partitioned sharing. Transaction encapsulation enables the resolution result to obtain the
same level of consistency guarantees provided by the IOT model.

Basic Resolution Actions As shown in Figure 6.1, each resolution session must go through
a sequence of basic steps:

� Start Resolution Session

The beginning of a resolution session is triggered either implicitly by the propagator
thread descried in Chapter 4 in an attempt to automatically resolve the target transaction,
or explicitly by the user using the transaction repair tool to be discussed later in this
chapter.

� Resolution Initialization

The purpose of resolution initialization is to create the resolution object view described
in Chapter 5, so that only the original local state accessed by the target transaction and
the up-to-date global state are visible.

� Inspect Replicas

The first step a resolver usually undertakes is inspecting the relevant local and global
replicas to find out the cause of inconsistency (if any) and decide the resolution actions
that can restore consistency.

� Create Resolution Result

The central act of a resolution session is when the resolver performs the necessary
computation to create the resolution result. As in connected transaction execution, all
the mutation operations issued by the resolver are logged and performed locally. Their
effect is not visible on the servers until the resolution session is successfully completed.

� Consistency Validation

New updates on the servers during a resolution session may cause the resolution result to
be in conflict with the latest global state. Consistency validation safeguards the validity
of the resolution outcome by ensuring that none of the objects accessed by the resolver
have been updated on the servers during the resolution session.

� Commit Resolution Result

This step gathers all the logged mutations performed by the resolver and atomically
commits them to the corresponding servers.

92 CHAPTER 6. DETAILED DESIGN: CONFLICT RESOLUTION

� Discard Resolution Result

In case the resolution session needs to aborted due to failures in consistency validation
or result commitment, all the mutations performed by the resolver will be discarded
immediately so that the local client state appears to the users as if this resolution session
has never happened.

� Discard Local Result

After the resolution result has been successfully committed to the servers, the original
local result of the target transaction is no longer needed and is immediately thrown away.

� Resolution Finalization

As described in Chapter 5, the main responsibility of resolution finalization is to properly
restore and adjust object views to reflect the resolution outcome.

Model Generality The four IOT conflict resolution options can be fully accommodated by
the resolution session model, although not all of them need to go through every step.

� Automatic ASR Execution

The automatic execution of an application-specific resolver is the most powerful res-
olution option and can be realized by the transaction system automatically invoking a
user-supplied resolver immediately after resolution initialization. The resolver will typ-
ically inspect replicas and create the resolution result using application-specific knowl-
edge. Upon termination of resolver execution, an exit status of zero indicates that
the resolver actions have succeeded and the transaction system will immediately commit
the resolution result. Any non-zero exit status will cause the resolution session to be
aborted.

� Automatic Re-execution

The resolution session model regards automatic transaction re-execution as a special case
of the previous option where the resolver is the transaction itself. The only difference
is that the resolver starts creating the resolution result right away without examining the
relevant local replicas.

� Automatic Abort

The automatic abort option can be accomplished by the transaction system alone per-
forming only the steps that discard the local result of the target transaction and adjust
object views accordingly. Note that this option is equivalent to a resolver that does not
perform any mutation.

6.1. A COOPERATION-BASED RESOLUTION FRAMEWORK 93

� Manual Repair

The default resolution option is supported by a stand-alone transaction repair tool whose
details will be provided at the end of this chapter. After the user initiates a repair session
with the begin repair command, the transaction system will perform resolution
initialization so that the user can repair the conflicts by directly operating on the relevant
objects. When the user issues a commit repair or abort repair command, the
transaction system will go through the necessary steps to commit or abort the repair
session respectively.

6.1.2 Supporting Application-Independent Resolution Actions

Detailed designs on supporting a resolver to perform application-specific resolution actions will
be presented in the next two sections. This section focuses on the basic mechanisms that are
application-independent and performed by the transaction system to support the various steps
in the cooperation-based resolution model described in Figure 6.1.

6.1.2.1 Handling the Resolution Result

Almost all resolution sessions involve creating, committing or discarding the resolution result.
The proper handling of resolution mutations in the following three areas is the key to supporting
these activities.

Logging Resolution Mutations The resolution result is created by the resolver performing
mutation operations on three kinds of targets: the global replica of an inconsistent or local-dirty
object, the cache copy of a clean-local object, or the cache copy of a consistent object. Because
global replicas can be accessed in the same way as normal objects, all resolution mutations
are treated uniformly. Similar to connected transaction execution, mutation operations are
performed locally and logged in the CML of the corresponding volumes. Internally, the entire
resolution session is treated as a special transaction and a unique transaction-id is used to
identify all the CML records performed by the resolver. One thing worth pointing out here
is that overwriting a clean-local file object by the resolver will cause a corresponding shadow
cache file to be created if the object has live guardians other than the target transaction. This
is because its local content needs to be saved for possible future resolution as explained in
Chapter 4.

Committing Resolution Mutations The resolution result is committed to the servers using
the underlying reintegration mechanism. Because a special transaction-id identifies all the

94 CHAPTER 6. DETAILED DESIGN: CONFLICT RESOLUTION

logged resolution mutation operations, the commitment can be performed by the transaction
reintegration process described in Figure 4.5. Although the resolution session model requires
atomicity for result commitment, it is only guaranteed on a single-volume granularity as
explained in Chapter 4. Since most transactions and therefore their corresponding resolution
sessions only mutate objects within a single volume, either all or none of the resolution result
will be globally visible under normal circumstances. If the underlying reintegration process
fails because of lost server connections or new conflicts against the latest server updates, the
resolution session will be aborted. After the resolution mutations are successfully reintegrated,
special care must be taken to restore the original state for any clean-local object that is updated
by the resolver and has other live guardians. Such state restoration can be accomplished by the
same methods described in Chapter 5, using shadow cache files and inverse directory mutation
operations.

Discarding Resolution Mutations When a resolution session needs to be aborted, all the
resolution mutations must be immediately discarded. For mutation operations performed
on consistent objects or the global replicas of inconsistent and local-dirty objects, this can
be accomplished by simply throwing away their cache copies and the corresponding CML
records. For mutation operations performed on clean-local objects, the transaction system must
similarly restore their original state prior to the resolution session as mentioned above. The
corresponding CML records are discarded afterwards.

6.1.2.2 Handling the Local Transaction Result

Discarding Local Transaction Result Ultimately, any invalidated transaction T will be
successfully resolved and its original local result needs to be discarded. The first step is to
eliminate T’s effect on the cache copy of objects in W(T). If an object obj2W(T)will become
a consistent object again after resolution, its cache copy is discarded and fetching the server
replica will wipe out T’s mutation on obj. If obj has other live guardians, the transaction
system needs to revert its local state to the one prior to the resolution session if resolution
initialization had adjusted the local replica of obj to represent the state last accessed by T.
This can be achieved through a process that is the inverse of the one described in Chapter 5
for restoring previous object state. The second step simply throws away all the CML records
belonging to TML(T).

Preserving Local Transaction Result The ASR conflict resolution option can be used for
application-specific consistency re-validation where a resolver utilizes application semantics
to determine whether the local result of the target transaction is actually consistent with the
up-to-date global state. If such re-validation succeeds, the local result can be reused and

6.1. A COOPERATION-BASED RESOLUTION FRAMEWORK 95

committed to the corresponding servers as is. To facilitate application-specific consistency
re-validation, the transaction system provides a special preserve-operator (an IOT library call)
that can be used by the resolver to preserve the local result of the target transaction. The operator
automatically replays all the logged mutation operations performed by the target transaction
on the corresponding global replicas. Note that such replay may fail because some of the
operations could be in conflict with the latest server state.

6.1.2.3 Other Issues

Resolution Initialization/Finalization Resolution initialization is responsible for creating an
appropriate object view for the resolution session, while resolution finalization is responsible
for restoring and adjusting object views based on the resolution outcome. Details about these
two steps have been presented in the previous chapter. There is a minor adjustment in the object
view for a manual repair session which will be discussed in the last section of this chapter.

Resolution Consistency Validation The transactional encapsulation of a resolution session
requires the transaction system to automatically record all the objects that are accessed by a
resolver in the same way as recording the transaction readset and writeset. Since the consistency
validation of a resolution session is intended to ensure that none of those objects have been
changed on the servers during resolution, the transaction certification technique discussed in
Chapter 4 can be directly applied for this purpose.

6.1.3 Extending Transaction State Transitions

To fully account for the difference between automatic and manual resolution, as well as the
handling of resolution failures, the original transaction state transition model described in Figure
3.3 needs to be extended, as shown in Figure 6.2. The original resolving state is expanded into
several new states. Their meanings and state transitions are discussed below.

To-be-resolved State When a pending transaction T is invalidated and has chosen one of
the automatic resolution options, it goes into the to-be-resolved state. The transition from the
pending state to the to-be-resolved state can be triggered by any event that would make it
known to the transaction system that there is an object whose global version cannot possibly be
equal to the local version that T has accessed. For example, it can happen when T fails the GC
validation, when an object accessed by T is updated on the corresponding server, or when the
resolution of an earlier transaction that T read from causes T to have accessed an object value
that no longer exists. Twill remain in the to-be-resolved state as long as it is not fully connected
or has at least one predecessor in the SG. As soon as it is fully connected, all its predecessors

96 CHAPTER 6. DETAILED DESIGN: CONFLICT RESOLUTION

running pending

committed

invocation

without
partitioned
file access

with partitioned file access

repairing

resolved

resolving

repaired

to-be-
repaired

to-be-
resolved

validated invalidated & use
automatic resolution

invalidated & use
manual repair

abort
resolution
session

abort
repair
session

commit
resolution
session

commit
repair
session

invoke
resolution
session

invoke
repair
session

Figure 6.2: Extended IOT State Transitions

are resolved or committed, and there is no other transaction execution or resolution going on,
T will transit into the resolving state and start its automatic resolution session.

To-be-repaired State Similar to the to-be-resolved state, a pending transaction T goes into
the to-be-repaired state when it is invalidated and has selected the manual resolution option.
The transition from the pending state to the to-be-repaired state can be triggered by the same
events described above. T will go into the repairing state when the user successfully invokes
a repair session for it using the repair tool. More details about starting a repair session are
presented at the end of this chapter.

Resolving State A transaction T remains in the resolving state as long as its automatic
resolution session is still going on. If the session is successfully committed, T goes into the
resolved state. Otherwise, the transaction system will force T to be manually repaired by
transiting it into the to-be-repaired state.

6.2. AUTOMATIC CONFLICT RESOLUTION 97

Repairing State Similarly, a transaction T stays in the repairing state as long as its manual
repair session continues. If the repair session is successfully committed, T goes into the repaired
state. Otherwise, it goes back to the to-be-repaired state and the users have to start another
repair session to repair it again.

Resolved and Repaired State Both the resolved and the repaired states are conceptually
identical to the committed state in that they are the final state of a terminated transaction. Once
again, for the purpose of enhancing the practical usability of IOT, we decided to use different
states to inform the users about the different paths the transaction has gone through in its
lifecycle.

6.2 Automatic Conflict Resolution

The ability to resolve conflicts automatically is vital to the overall practicality of the IOT
conflict resolution mechanisms. This section concentrates on important design issues related
to the automatic execution of a resolver, whether it is a pre-programmed application-specific
resolver or the target transaction itself. Note that the original Coda file system provides a
different application-specific resolution mechanism for resolving write/write conflicts among
server replicas for individual objects [29]. The new automatic resolution mechanisms discussed
in this section are specifically designed for resolving conflicts caused by invalidated transactions
as required by the IOT consistency model.

6.2.1 Site of Resolver Execution

A fundamental design issue about automatic conflict resolution pertains to the site of resolver
execution. There are two main choices: on the client machine where the target transaction
was originally executed or on a selected server machine. We decided to use the same strategy
adopted by earlier work in Coda [32] and execute the resolver on the client machine for the
following reasons. First, allowing arbitrary resolvers to be executed on a server machine would
violate the Coda security model’s basic requirement that server machines only run trusted
software. The second reason is for maintaining system scalability. Since the resource cost of
resolver execution could be significant for many applications, overall system scalability is better
preserved by shifting such burden to the client machines. The third and the most important
reason is that much of the supporting machinery such as conflict representation is only present
on the client machine. Furthermore, the server machines may not be able to execute resolvers
at all if they use different architectures (CPU and operating system).

98 CHAPTER 6. DETAILED DESIGN: CONFLICT RESOLUTION

6.2.2 Resolver Invocation

Recording Necessary Information In order to automatically resolve the target transaction
T, the transaction system must record the following information when T is initiated.

� The resolution option chosen by T, denoted opt(T).

� The pathname of the application executable file of transaction T, denoted app(T). This
is necessary when opt(T) is automatic re-execution since the resolver is just app(T)
itself.

� The pathname of the user-supplied resolver executable file, denoted asr(T). This is
necessary when opt(T) is automatic ASR execution.

� The original execution environment ofT including the command line arguments (denoted
argv(T)), the environment variable list (denoted env(T)), the umask value of the
master process (discussed in Chapter 3) of T (denoted umask(T)), and the pathname of
the working directory (denoted pwd(T)).

Restoring Original Execution Environment The automatic invocation of the resolver for
target transaction T must be performed under an appropriate environment. Our design restores
the recorded original environment of T. The rationale behind this decision is to regard the
automatic resolution of T as an alternative computation for achieving the original goal of
T under a different system state. Because any slight difference in execution environment
could result in drastic changes in the computation outcome, restoring the recorded execution
environment before the resolver invocation is necessary to provide an identical starting point.
Immediately before the invocation starts, the transaction system will cd into pwd(T), set the
environment variable list to env(T) and pass argv(T) as the command line arguments to
the resolver.

Process Structure Automatic resolution sessions are initiated by the propagator thread. To
invoke the resolver, the propagator thread spawns a subprocess and uses the exec system
call to launch the resolver after appropriately closing the open file descriptors. Note that the
propagator thread cannot use the wait system call to await the completion of the resolution
process because that will cause the entire Venus process to be blocked. Instead, it will yield
and sleep until it is awakened up by the Venus signal handler when it catches a SIGCHILD
generated by the termination of the resolution process. The file access operations on Coda
objects performed by the resolver are serviced by a worker thread after the corresponding
requests are passed through the kernel, as shown in Figure 6.3.

6.2. AUTOMATIC CONFLICT RESOLUTION 99

fork

sleep

resolution
process

wake

propagator
thread

worker
thread

worker
thread

Venus process

Kernel

file
access
request

SIGCHLD

Coda request

exec resolver service
Coda
access
request

idle
signal
handler

Figure 6.3: The Process Structure of Automatic Resolver Execution

6.2.3 Resolver Execution

6.2.3.1 Transactional Encapsulation

The automatic execution of a resolver for the target transaction T is performed within the scope
of a special isolation-only transaction denotedres(T). The transaction system manipulates the
internal representation of res(T) so that it implicitly inserts the begin iot and end iot
calls before the exec and after the exit of the resolution process respectively. The entire
execution of res(T) is performed in a manner similar to a normal connected transaction. All
the file access operations performed by the resolver are recorded in the readset and writeset of
res(T). In addition, mutation operations are performed locally and logged in the CML of the
corresponding volumes.

6.2.3.2 Handling Failures

The only differences between the execution of res(T) and a regular connected transaction
are the way in which failures are handled.

Validation Failure The consistency of an automatic resolution session for target transaction T
is validated by performing the OCC validation forres(T). For a normal connected transaction,

100 CHAPTER 6. DETAILED DESIGN: CONFLICT RESOLUTION

the response to OCC validation failure is automatic abortion and re-execution. However, this
approach is not suitable for res(T) because the automatic resolver execution holds exclusive
control over many client resources and automatically re-executing res(T) could deny the
users needed services for a long period of time. For simplicity, our design aborts the result of
res(T) as well as the whole resolution session and conservatively forces the users to manually
repair T by transiting it into the to-be-repaired state.

Abnormal Termination For a regular connected transaction, the termination of its execution
means the completion of the transaction regardless of theexit status. With respect tores(T),
however, any abnormal termination such as crashes due to segmentation fault, etc., must be
treated as a failure and the resolution session must be aborted. Thus, it is very important for
the resolver to carefully check for abnormal conditions such as getting an ETIMEDOUT error
code when opening a Coda file, and exit with non-zero status appropriately.

6.2.3.3 Managing Interactive I/O

The Challenge of Interactive I/O Unix applications often employ interactive I/O to inform
the users about the status of the execution and request feedback for further computation.
Previous research has demonstrated that including interactive I/O into the transaction model
is a very difficult problem and there is no general solution [54]. Handling interactive I/O
during automatic resolution is even more of a challenge because the I/O environment is often
different from when the target transaction was originally executed. The user who executed
the target transaction may not even be logged in on the client machine while the resolution is
going on. In general, it is very difficult for the transaction system to automatically select the
proper devices for the resolver execution to conveniently interact with the users. The current
IOT implementation only provides limited support for the standard input/output operations
performed by the resolver so that automatic conflict resolution for typical Unix applications
can be performed. Tackling the complete problem of interactive I/O in automated conflict
resolution is beyond the scope of this dissertation.

Supporting Automatic Transaction Re-execution When the resolver is the target transac-
tion itself, standard I/O during resolution is performed in the same way as during the original
transaction execution. Our strategy of supporting standard output is to maintain resolution
transparency while preserving output messages. The specific mechanism binds the standard
output of the re-execution process to a special disk file so that a complete history of standard
output during the resolution is recorded. The output messages are not visible to the users unless
specifically requested. A monitoring tool is provided to continuously display the growing
content of the special file for any user who wishes to closely follow the resolution process.

6.2. AUTOMATIC CONFLICT RESOLUTION 101

Standard input during automatic re-execution is much harder to deal with and there is no
satisfactory solution. Although it is possible for the transaction system to create a designated
window or pseudo-terminal for the users to type input data, resolution transparency has to be
sacrificed because standard output messages must be made visible to prompt for user input.
The current IOT implementation does not provide special support for standard input other than
binding it to the terminal where the current Venus incarnation was initiated. Thus, the automatic
re-execution resolution option should be used only for applications that do not need interactive
input such as make and gcc. Fortunately, this is not a severe limitation in practice because
Unix applications for which automatic re-execution is likely to be selected as the resolution
option typically read input from files instead of interactively from the users.

Supporting Automatic ASR Execution The default support for interactive I/O during the au-
tomatic execution of an application-specific resolver is the same as for transaction re-execution.
However, an application-specific resolver does not have to perform interactive I/O in the same
way as its corresponding transaction. It has the complete freedom to manage interactive I/O
in its own way. For example, the resolver can take advantage of existing facilities such as
tcl/tk [52] to dynamically create windows for displaying messages to the users and reading
input data from them. An actual example using this approach will be presented in Chapter 9.
In summary, the transaction system only provides support for resolvers that perform standard
output but not standard input. If reading interactive input is a necessity for a resolver, it must
manage its own standard input and output together.

6.2.3.4 Local Concurrency Control

Strict local concurrency control is imposed to protect a resolution session from being interfered
with by the execution of other ongoing transactions. New isolation-only transactions are not
allowed to start until an ongoing resolution session is completed. Furthermore, all the cached
volumes are write-locked by the resolution process.

6.2.4 Safety Issues

Enforcing safety is a critical issue for automatic conflict resolution because an application-
specific resolver or a target transaction itself is not a piece of trusted software. A wide
range of catastrophes from simple coding mistakes to full-fledged Trojan horse attacks have
to be guarded against. The problem is made more difficult because resolution is performed
transparently. In other words, a user may be completely unaware of the damages caused by
an erratic or even malicious resolver. We address the following three resolution safety issues
using measures similar to those used in previous Coda research [32].

102 CHAPTER 6. DETAILED DESIGN: CONFLICT RESOLUTION

Security To limit the potential damage that can be done by the automatic execution of a
resolver, the transaction system provides two levels of security protection. At the first level, we
employ the setuid mechanism so that the execution of a resolver only has the privilege of
the user who originally invoked the target transaction. Thus, the potential damage is limited to
those portions of the Coda namespace where the target transaction’s invoker has update rights.

The second level provides control over which resolvers can be automatically executed.
The transaction system will only execute resolvers residing at certain trusted locations. Users
and system administrators can store trusted resolvers in designated directories where only they
have the privilege to make changes and provide the transaction system with the pathname of
those directories. The transaction system will verify that the resolver is from one of the trusted
directories before automatically executing it. This scheme can be further extended to include
a fingerprinting mechanism [73] to detect tampering of resolvers.

Robustness Erratic resolvers with programming errors can seriously degrade the robustness
of a client. For example, a resolver trapped in an endless loop can hold the client hostage forever
without allowing the users to obtain needed services. As another example, a resolver waiting
for the user to provide input data without properly informing them will also lead to prolonged
service denial. The transaction system addresses this issue by limiting the total elapsed time of
resolver execution. Because no statically chosen time limit can meet the demand for all possible
resolution tasks, the key is to impose a limit that is proportional to the expected amount of work
needed by the resolution task at hand. The best estimation known to the transaction system is
the target transaction’s original execution time. Since the resolver is expected to spend some
extra time probing relevant local and global replicas, we set the time limit of resolver execution
to be twice that of the original transaction execution time. There is a Venus daemon thread
that periodically checks the time limit for the resolution process. If its limit is exceeded, the
transaction system will stop the resolver execution and abort the resolution session.

Another measure that can enhance the robustness of automatic resolution is to periodically
check the progress of the resolution process. If the resolver stays idle for more than a threshold
value, there is reason to believe that it may be waiting for user input. Warning messages can
be displayed by the codacon tool [60] so that the users watching the monitoring window are
notified.

Atomicity Resolver execution can crash for various reasons such as coding errors, abnormal
conditions and client machine crashes. Coping with partial resolution results can be very
messy and needs failure atomicity support. Globally, the reintegration mechanism assures that
the resolution result will show up on the servers atomically. Locally, the partial resolution
result left behind by a resolver crash is automatically cleaned up by the relevant steps of the
resolution session. If the client machine crashes while the resolution is going on, special

6.2. AUTOMATIC CONFLICT RESOLUTION 103

cleanup is performed during the ensuing IOT-Venus start-up. The transaction system will
analyze the persistent image of the internal system state to discover that a resolution session did
not complete because of the machine crash. It will automatically abort the unfinished resolution
session and transit the target transaction into the to-be-repaired state.

6.2.5 Programming Application-Specific Resolvers

As a fundamental component of the IOT consistency model, executing application-specific
resolvers plays a key role in automatic conflict resolution. The viability of the application-
specific resolution approach very much depends on how effectively the task of programming
the resolver of a given target application can be accomplished. In order to make resolver pro-
gramming as convenient as possible, the overall IOT design envisions a basic paradigm within
which resolvers can be methodically developed for their corresponding target applications.
Such a paradigm relies on a set of basic assumptions and is supported by the combination of
various system components as well as specially designed facilities.

6.2.5.1 Programming Model

Basic Assumptions A fundamental assumption about resolver programming is that the de-
velopers of a resolver must possess intimate knowledge about the internal details of the target
application. The best candidates for writing a resolver are the target application’s original
developers or installation site maintainers. For other programmers to develop a resolver for
an existing application, they need to devote a significant amount of time to learn the internal
mechanisms of the application. In our experience of writing resolvers for some typical Unix
applications, much of the time is spent on studying the source code of the applications. The
availability of the source code of a target application is essential to its resolver development.

Scope Isolation The incremental transaction propagation framework described in Chapter 4 is
designed very much with the ease of resolver programming in mind. Invalidated transactions are
resolved one at a time and the target transaction does not depend on any other live transactions
when it is being resolved. In addition, the conflict representation mechanisms guarantee that
the effect of other live transactions are not visible during the resolution. Therefore, the scope
of inconsistency is greatly reduced since the resolver is relieved from the burden of considering
complicated interactions between the target transaction and other live transactions. Logically,
the resolver can regard the target transaction as the only one performed during the disconnected
operation session. Hence, the task of a resolver is confined to investigating what the target
transaction has done locally and what has been changed globally, determining the nature of
inconsistency (if any), and performing the necessary actions to restore consistency.

104 CHAPTER 6. DETAILED DESIGN: CONFLICT RESOLUTION

Object View The design of the IOT conflict representation is directly aimed at supporting
resolver programming. The in-place dual replica representation formallows the resolution result
to be created via direct mutations on the relevant global replicas, eliminating the need for the
resolver to use an extra workspace for resolution computations. The multiple view capabilities
enable the resolver to utilize existing software tools and packages to resolve conflicts more
effectively. Finally, the automatic elimination of the target transaction’s local result further
reduces the resolver’s responsibilities.

Overall Structure For brevity, we use APP and asr(APP) to denote the target application
and its application-specific resolver respectively. A key design rationale in supporting resolver
programming is to regard the task of a resolver as performing an alternative computation to
achieve the original goal of the target transaction under a different system state. This enables
asr(APP) to be programmed with an overall structure that parallels that of APP. The main
control flow of APP can usually be decomposed into performing a sequence of specific tasks.
For each task that APP would attempt under the new conditions (reflected by the automatically
restored original execution environment and the relevant global replicas), asr(APP) can
perform the following actions.

It first checks whether the same task has already been performed by the target transaction
and whether the local result is still compatible with the global state. If so, asr(APP) can
reuse the local result by copying it into the relevant global replicas. Otherwise, asr(APP)
needs to perform the task using the up-to-date global replicas. If the original goal of the task
needs to be adjusted due to changes in the global state, asr(APP)must come up with the new
goal and perform the necessary computation to achieve it. Actions for compensating external
side effects such as sending email are typically performed under such circumstances.

Several special resolution outcomes are worth mentioning. They are effectively degenerate
cases. If the resolver execution reuses the entire local result of the target transaction, this is
equivalent to a successful application-specific revalidation rescuing a syntactically invalidated
transaction. If the resolution ends up performing every attempted task using the up-to-date
global replicas, it is the same as resolution via automatic re-execution. If the global state is
changed so much that asr(APP) does not attempt any task, the target transaction is effectively
aborted.

6.2.5.2 Programming Facilities

The main support for resolver programming is embodied in the incremental transaction propa-
gation framework and the way conflicts are represented to the resolvers. There are two groups
of library routines designed to provide information and convenience to the resolvers. The first
group includes routines that allow the resolver to test which objects are read or written by the

6.3. MANUAL CONFLICT RESOLUTION 105

target transaction. In addition, given the original pathname of a Coda object, there are routines
that can translate it into the pathnames of the corresponding local and global replicas. The
second group contains routines that enable the resolver to dynamically adjust object views. It
also includes the preserve-operator that automatically reproduces the target transaction’s local
result on the corresponding global replicas. The specific details of these routines are presented
in the next chapter.

6.3 Manual Conflict Resolution

Manual conflict resolution is the safety net of the IOT conflict resolution mechanisms. It is
used not only as the default choice of resolution options but also the fall-back mechanism
when other alternatives fail. This section first discusses the main areas where a manual repair
session differs from an automatic resolution session and then describes a repair tool provided
for manually repairing invalidated transactions.

6.3.1 Maintaining A Repair Session

Transaction Group The transaction system allows multiple transactions to be repaired in a
single session because sometimes repairing a group of related transactions together is more
effective and easier for the users to handle. Thus, each manual repair session is associated
with a transaction group TG = fT1.....Tng (n > 1) that satisfies the following two conditions.
First, all the transactions in TG are fully connected and in the to-be-repaired state. Second,
transactions in TG do not depend on any live transactions that are not in TG.

Identifying Repair Mutations A difficult problem in supporting a repair session is identi-
fying which mutation operations are performed for the purpose of repairing conflicts. This
is because manual repair actions can be issued by a user from different processes (e.g., from
different windows) and it is quite possible for the user to perform some mutation operations
that are completely unrelated to repairing conflicts. Since there is no reliable means for the
transaction system to exactly identify the mutation operations belonging to the repair session,
the current implementation includes all the mutation operations performed on those volumes
originally updated by the target transactions. They will be performed locally and logged in the
CML of the corresponding volumes with a special transaction-id.

Relaxed Consistency Validation Because a repair session is carried out interactively, the user
may browse many files for other purposes during the repair session. It is highly inappropriate to
abort a repair session just because the user read some irrelevant objects that are updated on the

106 CHAPTER 6. DETAILED DESIGN: CONFLICT RESOLUTION

servers during the repair session. Thus, the original resolution consistency validation is relaxed
so that it only requires those objects mutated during the repair session to remain unchanged on
the servers.

Relaxed Local Concurrency Control Local concurrency control during a repair session still
prohibits any new isolation-only transaction to be started. However, cached volumes are no
longer write-locked and there is no limit on accessing Coda objects.

Repair Object View The users repairing a group of invalidated transactions are usually less
knowledgeable about the internal details of the applications involved than the corresponding
automatic resolvers. However, they typically know more about the current client state and other
live transactions. Since providing full conflict information about other transactions generally
helps the user to better repair conflicts, the mixed view is adopted for all the DRR subtrees
during a repair session.

6.3.2 The Transaction Repair Tool

begin repair <tid> [<tid>]
commit repair
abort repair
list predecessor <tid>
list successor <tid>
set global view <tid>
set local view <tid>
set mixed view <tid>
list local mutations<tid>
preserve local mutations<tid>

Figure 6.4: A List of Transaction Repair Tool Commands

We have developed a transaction repair tool that provides a set of commands supporting
manual transaction resolution, as shown in Figure 6.4. The usage and functionality of these
commands are as follows:

6.3. MANUAL CONFLICT RESOLUTION 107

� The begin repair command takes a list of transaction identifiers (integers) as argu-
ments and starts a new repair session for the corresponding transactions. It will verify
the necessary conditions required by a transaction group discussed above and perform
the resolution initialization to create the repair object view.

� The commit repair command tries to commit the current repair session. If the
commitment fails, the repair session is automatically aborted. Because some of the
inconsistent objects may remain inconsistent even after the session is successfully com-
mitted and cause confusion to the users, this command prints out a list of such objects
and explains that they will remain inconsistent until some of their guardians are resolved
or committed.

� The abort repair command simply aborts the current repair session.

� The list predecessor and list successor commands take a transaction iden-
tifier as an argument and print out a list of SG predecessors or successors of the cor-
responding transaction respectively. The main purpose of these two commands is to
provide information about the inter-dependency among live transactions.

� The set global view, set local view and set mixed view commands set
the selected view for all the inconsistent objects corresponding to the transaction whose
identifier is given as the argument.

� The preserve local mutations command replays all the logged mutations for
the given transaction on the relevant global replicas. It is intended to support reusing the
local result of a target transaction being repaired by the current session.

� The list local mutations command prints out the local mutation operations per-
formed by the target transaction whose identifier is given as the argument.

108 CHAPTER 6. DETAILED DESIGN: CONFLICT RESOLUTION

Chapter 7

Detailed Design: User Interface

Presenting the IOT functionality to users and application programmers in a simple and easy-
to-use manner is extremely important to the viability of the IOT model. This chapter describes
an IOT programming interface that consists of a set of library routines, an interactive interface
of a special C Shell, and related facilities.

7.1 Programming Interface

7.1.1 Interface for Programming Isolation-Only Transactions

7.1.1.1 Library Routines

Because the IOT service is intended as an extension to Unix file systems, there are two basic
alternatives to presenting its programming interface: using new system calls implemented
in the kernel or library routines at user level. We choose the latter for the following two
reasons. First, placing the IOT programming interface at system level runs against the long-
held tradition of keeping the system call interface intact while enhancing operating system
services for various purposes. Second, a library interface is more convenient to implement and
port to other platforms. Although the current interface is provided only in the C programming
language, it can be extended to other programming languages straightforwardly if needed.

The IOT programming interface contains two basic routines indicating the beginning and the
end of a transaction. Because of the need to specify a conflict resolution option, they are not mere
syntactic tokens and carry crucial information from the application to the transaction system.
The definition of the two routines is shown in Figure 7.1 and their usage and functionality are
described below.

109

110 CHAPTER 7. DETAILED DESIGN: USER INTERFACE

typedef struct f char opt, char *asr g iot spec;
typedef struct f char **argv, char **env,

char *pwd, int umask
g iot env;

int begin iot(iot spec *, iot env *);
int end iot(int, iot spec *);

Figure 7.1: Library Routines for Programming Transactions

The begin iot routine is used to start a new transaction. Its return value is either a
positive integer which represents the identifier of the newly created transaction or a negative
integer which records an IOT-defined error code. The first argument specifies the conflict
resolution requirement of the transaction. The opt component uses pre-defined constants to
select the resolution option, and the asr component supplies the pathname of the resolver
executable file if the selected option is ASR. The second argument provides the environment
information necessary for automatic conflict resolution. The argv component is a list of
strings containing the pathname of the transaction application executable file and the command
line arguments. The env component is a list of strings representing the environment variable
definitions. The pwd component records the pathname of the working directory where the
transaction execution is started.

The end iot routine is used to terminate a currently running transaction. A return value of
zero means that the call succeeded. Otherwise it contains an IOT-defined error code. The first
argument is the identifier of the transaction to be terminated, while the second argument is the
same as the first argument of the begin iot routine. Theoretically, iot end is a better place
than begin iot to specify the resolution option because the application has already known
what happened during the transaction execution when end iot is called. However, from the
reliability point of view, begin iot is a more appropriate choice because the transaction
execution may encounter abnormal situations and exit before the corresponding end iot ever
gets called. As a compromise, we allow resolution requirement to be specified in both routines.

7.1.1.2 Programming A Transaction

Well Structured Code Adaptation The programming of a transaction is straightforward by
simply using the two routines to wrap up the code segment whose execution needs to be treated
as a transaction. When the source code of the target application is available, the additional
transaction code only needs to make up the resolution requirement specification, obtain the

7.1. PROGRAMMING INTERFACE 111

necessary environment information and put a pair of begin iot and end iot calls at the
appropriate locations, as shown in Figure 7.2. Even if the source code of the target application
is not available, it is still possible to put the transaction wrappers around it as shown in Figure
7.3.

#include "iot.h"
/* other decls. */
extern char **environ;
main(char **argv, int argc) f

iot spec spec = f ASR, "/coda/misc/bin/resolver" g;
iot env env;
char pwd[MAXPATHLEN];
int tid;
/* other definitions */
getwd(pwd);
env.argv = argv; env.env = environ; env.pwd = pwd;
env.umask = umask(0); umask(env.umask);
tid = begin iot(&spec, &env);
/* main body */
(void) end iot(tid, &spec);

g
/* the rest of the program */

This is a template that shows the overall structure of a transaction program. ASR is a pre-defined
constant used to indicate the corresponding conflict resolution option. The error handling for the
IOT interface calls is intentionally left out for clarity.

Figure 7.2: A Template Transaction Program Using Target Application Source Code

Transactional Application Development The development of a transactional application is
rather simple. The IOT system provides a standard header file iot.h that contains all the
necessary declarations and definitions for using the two IOT interface routines. The transaction
program only needs to include iot.h and link with the provided IOT library file libiot.a.

112 CHAPTER 7. DETAILED DESIGN: USER INTERFACE

Transaction Scope Limitation In principle, a transaction should be able to cover any segment
of a program and obtain the standard IOT properties for the execution of that segment. In the
current implementation, it is only suitable to bracket the entire application, i.e., the whole main
function of the program, as a single transaction. The main reason is that when the transaction
needs to be OCC re-executed, the transaction system is only capable of re-executing the entire
application instead of the selected segment. Note that this restriction is more the consequence
of the transaction system’s lack of run-time transaction execution knowledge rather than the
design decision of using OCC as the concurrency control algorithm. If the transaction system
were fully integrated with the application run-time system, it would be possible to provide the
ability to re-execute any segment of a program.

#include "iot.h"
extern char *environ;
main(char **argv, int argc) f

iot spec spec = f MANUAL, (char *)0 g;
iot env env;
char pwd[MAXPATHLEN], cmd[1024];
int tid, i;
getwd(pwd);
env.argv = argv; env.env = environ;
env.pwd = pwd; env.umask = 0;
tid = begin iot(&spec, &env);
sprintf(cmd, "/usr/misc/bin/latex");
for (i = 1; i < argc; i++)

sprintf(cmd + strlen(cmd), " %s", argv[i]);
system(cmd);
(void)end iot(tid, &spec);

g

This program can execute latex as a transaction using the manual conflict resolution option, as
indicated by the pre-defined constant MANUAL. The system call will create a sh sub-process to
execute the assembled latex command. The error handling for the IOT interface calls is left out
for clarity.

Figure 7.3: A Transaction Program not Using Target Application Source Code

7.1. PROGRAMMING INTERFACE 113

7.1.2 Interface for Programming Application-Specific Resolvers

We provide a set of library routines to assist the programming of application-specific resolvers
for target applications. They are listed in Figure 7.4 and their usage and functionality is as
follows:

int in read set(char *);
int in write set(char *);
int set global view();
int set local view();
int set mixed view();
int get local replica(char *, char *);
int get global replica(char *, char *);
int preserve local result();

Figure 7.4: Library Routines for Programming Resolvers

� The in read set() and in write set() routines allow the resolver to determine
whether a particular Coda object has been read or written by the target transaction
respectively. The argument is the pathname of the object to be tested. Any positive
return value means that the test is positive, i.e., the object has been read or written by the
target transaction respectively. On the other hand, a zero return value means that the test
is negative. A negative return value corresponds to an IOT-defined error code.

� The set global view(), set local view() and set mixed view() rou-
tines enable the resolver to dynamically adjust views for the relevant inconsistent objects
according to its need. A zero return value means that the call has succeeded and negative
return values are IOT-defined error codes.

� The get local replica() and get global replica() routines can translate
the pathname of a regular Coda object into the pathnames of its local or global replicas
respectively. The first argument is the input pathname and the second argument contains
the result pathname of the corresponding replica. The return value has the same meaning
as the previous three routines.

114 CHAPTER 7. DETAILED DESIGN: USER INTERFACE

� The preserve local result() routine implements the preserve operator dis-
cussed in chapter 5 which allows the resolver to reuse the local result of the target
transaction. The return value has the same meaning as the previous routines.

7.1.3 Other Issues

Communicating Between Application and IOT-Venus Since the IOT interface routines are
linked and executed as part of the transaction application, they must be able to communicate
with the IOT-Venus. There are several alternatives for supporting such communication, such
as using a standard RPC package. We decided to use the I/O control call ioctl [1] on the
pseudo device where the Coda file system is mounted. The information exchange between the
interface routines and the transaction system is encoded in the ioctl buffer and passed through
Coda’s Mini-Cache [67] in the kernel. The main benefit of this approach is implementation
convenience. Another benefit is that there is less object code needs to be linked in the transaction
executable.

Handling Automatic OCC Re-execution We decided to implement automatic OCC Re-
execution through the cooperation between the end iot routine and the transaction system so
that standard I/O operations during re-execution can be performed in the transaction’s original
execution environment. When a transaction T fails OCC validation, the transaction system will
put the internal representation of T into a special queue and notify end iot that T needs to be
OCC re-executed. The end iot routine will then restore T’s original execution environment
obtained from the transaction system and employ the exec call to re-execute the transaction
program. When the ensuing begin iot call issued by the re-execution is received by the
transaction system, it will be able to locate T from the special queue and manipulate its internal
representation so that T appears as if it has just started its execution.

7.2 Interactive Interface

Although the IOT programming interface is simple to use, it still requires the target applications
to be adapted and re-compiled before they can be executed as transactions. To enhance
Unix compatibility, we decided to develop an interactive IOT interface so that existing Unix
applications can be executed as transactions without change. Since Unix users typically interact
with the operating system through a shell command interpreter, we extended the CMU C-Shell
so that transactions can be specified and executed. We use IOT-Shell to refer to the extended
C-Shell that contains a set of new built-in commands for interactive transaction specification,
execution and monitoring.

7.2. INTERACTIVE INTERFACE 115

7.2.1 Interactive Transaction Manipulation Using the IOT-Shell

Transaction Specification Figure 7.5 shows the two new commands that support interactive
transaction specification. The setiot command takes one mandatory argument which is the
pathname of the executable file of the application to be specified as a transaction. The other
two arguments are optional. The option argument uses one of the four strings f“manual”,
“reexec”, “abort”, “asr”g to indicate the corresponding conflict resolution option. If the “asr”
option is selected, the third argument must be supplied with the pathname of the resolver
executable file. The effect of this command is to treat any subsequent invocation of the
specified application from this shell as a transaction using the conflict resolution requirement
provided by the command arguments. The unsetiot command allows users to eliminate
a transaction specification when the corresponding application no longer needs to be treated
as a transaction. Figure 7.5 shows transaction specification examples for some commonly
used Unix applications. The similarity between setiot/unsetiot and the commonly used
setenv/unsetenv commands enables the new commands to be used in traditional Unix
styles. For example, the users can use a profile to automatically set transaction specifications
at login time just like setting environment variables.

Command Syntax
setiot <pathname> [<option>] [<asr>]
unsetiot <pathname>

Examples
setiot /usr/misc/bin/latex reexec
setiot /usr/cs/bin/make asr /coda/usr/luqi/bin/make-asr
setiot /usr/cs/compress abort
setiot /usr/cs/bin/emacs manual

Figure 7.5: Transaction Specification Commands and Examples

Transaction Invocation The invocation of a transaction is the same as any normal application.
When transactions are specified using the setiot command, the IOT-Shell maintains an
internal table containing all the current transaction specifications. When a new command
is issued, the IOT-Shell will search the transaction specification table to check whether the
pathname of the command executable file is specified in the table. If so, the IOT-Shell will

116 CHAPTER 7. DETAILED DESIGN: USER INTERFACE

automatically insert the appropriatebegin iot andend iot calls so that the entire command
execution is enclosed within the scope of a single transaction.

On-line Transactions There are situations where users want to enclose a sequence of activ-
ities into the scope of a single isolation-only transaction. For example, writing a report on a
disconnected client machine often involves browsing, editing and typesetting a collection of
related files. It is desirable to treat these actions as a unit and be notified about server updates
to any of the involved files. To support this goal, the IOT-Shell provides a pair of commands
begin iot and end iot so that the users can bracket a sequence of shell commands into an
on-line transaction. The standard IOT properties are guaranteed for on-line transactions except
that their only conflict resolution option is manual repair.

Transaction Monitoring We provide an additional command lt(short form for list trans-
actions) for displaying transaction information. When used without argument, this command
will print out the identifier, the state and the application name for all the live transactions
as well as the recently terminated ones. It can also take a transaction identifier as the argu-
ment and display detailed information about the corresponding transaction including resolution
specification, readset, writeset, and other statistics.

7.2.2 Internal Mechanisms for Interactive Transaction Execution

Inserting Transaction Wrappers The key to supporting interactive transaction execution is
the automatic insertion of transaction wrappers, i.e., the begin iot and end iot calls, by
the IOT-Shell as shown in Figure 7.6. For every new command received by the IOT-Shell, it
spawns a child process which will lookup the pathname of the command’s executable file in the
transaction specification table. If the command has been specified as a transaction, the child
process will automatically issue a begin iot call using the resolution specification from the
table and spawn a grandchild process to execute the received command as a transaction. The
corresponding end iot call is made as soon as transaction execution is completed. Note that
a modified end iot routine is used so that it will pass the OCC re-execution request from the
transaction system back to the IOT-Shell, which in turn will repeat the previous two steps to
perform automatic OCC re-execution.

Executing On-line Transactions Because an on-line transaction consists of a sequence
of commands, its execution needs special support to ensure that all the relevant file access
operations are properly included in the scope of the transaction. Because the IOT-Shell spawns
a child process for every new command it receives and assigns a new process group identifier
to it, the file access operations performed by an on-line transaction will be associated with

7.2. INTERACTIVE INTERFACE 117

different process group identifiers. This creates difficulty for the transaction system to correctly
recognize the file access operations belonging to the on-line transaction. Our solution is to let
the IOT-Shell inform the transaction system of the new process group identifier every time a
new command is to be executed within the scope of an on-line transaction. The transaction
system can then dynamically update the process group identifier associated with the on-line
transaction to recognize the corresponding file access operations.

shell
process process

child

iot
spec
table

begin_iot

fork
wait

end_iot

OCC
re-execution

look up

fork
wait

normal
execution

transactional
execution

cmd

exec

exec
cmd

cmd

cmd

grand-child
 process

Figure 7.6: Interactive Transaction Execution in the IOT-Shell

7.2.3 Controlling and Monitoring Facilities

We extended Coda’s cfs [60] utility program to provide facilities for controlling the behavior
of the transaction system and displaying transaction information. The “cfs shd <pct>”
command takes an integer argument (between 0 and 100) and sets it as the percentage limit
on how much cache space can be allocated for storing shadow cache files. The “cfs asrd
<path>” command takes the pathname of a directory as the argument and notifies the trans-
action system that the directory contains trusted resolver programs. The “cfs lt [tid]”

118 CHAPTER 7. DETAILED DESIGN: USER INTERFACE

command prints out transaction information in the same way as the IOT-Shell’s lt command.
In addition, the transaction system uses a dedicated local file /usr/coda/iot/log to record
the messages about important events such as the start of a new transaction, the commitment
of a pending transaction and the resolution of an invalidated transaction. It also includes the
standard output messages from any automatic resolver execution. There is a tool to open a
transaction monitor window that continuously displays the growing content of the message file.

7.2.4 A Practical Example

Figure 7.7 is the screen image of a Coda laptop showing an actual example of using the
interactive IOT interface. The work window displays the process of disconnecting the client,
specifying make and latex as transactions, executing a make transaction and a latex

Figure 7.7: A Practical Transaction Example

7.2. INTERACTIVE INTERFACE 119

transaction, reconnecting the client, and checking the transaction status using the lt command.
At reconnection time, the make transaction is invalidated because it has linked a library
libutil.a which was updated on the server during the disconnection. The IOT monitor
window shows the automatic re-execution of the make transaction and the commitment of the
latex transaction.

120 CHAPTER 7. DETAILED DESIGN: USER INTERFACE

Chapter 8

Implementation Issues

The last four chapters have presented detailed designs on how to enforce the IOT consistency
model for transactions executed under various circumstances and how IOT can be used by users
and application programmers. To complete the picture, this chapter addresses the remaining
important implementation issues.

We begin by describing the overall architecture and main components of the transaction
system. Because many of the basic mechanisms have already received in-depth coverage
in previous chapters, we focus on issues that have not yet been addressed. These include
internal transaction representation, space management for shadow cache files and tuning of the
implementation for reduced performance overhead and resource cost.

8.1 Overall Architecture

As shown in Figure 8.1, the entire transaction system is predominately implemented inside
the user-level Venus cache manager. There are two main reasons for such an architectural
organization. First, because of the strong distinction between the roles of a client and a server
in both the underlying Coda architecture and the IOT consistency model, conducting much of
the transaction operations on the client side better preserves Coda’s security model and overall
system scalability. Second, building transaction mechanisms at user level is more convenient
for system development and maintenance.

The transaction system inside the IOT-Venus consists of four components. The execution
monitor is in charge of recording transaction execution information such as readset/writeset
and maintaining important data structures such as the transaction serialization graph. The
concurrency controller performs two levels of concurrency control: OCC across clients and
2PL within a client. The representation manager’s main responsibility is maintaining conflict

121

122 CHAPTER 8. IMPLEMENTATION ISSUES

representation, providing accesses to local and global replicas, and managing shadow cache
files. The consistency maintainer is responsible for the central tasks of validating, committing
and resolving transactions.

IOT
system

Application

Kernel

execution
monitor

consistency
maintainer

concurrency
controller

Repair Tool

representation
manager C

FS
 T

oo
l

Se
rv

er

Client

This picture presents the overall architecture of the IOT extension to Coda. Each rectangular box
represents a major component of the underlying Coda system. The shaded areas represent system
components that are modified or created to support transaction operations. Note that the shaded
area in Application refers to the IOT interface.

Figure 8.1: The IOT System Architecture

Minor modifications are made to other parts of the Coda system. The interface between
the kernel and Venus is extended so that process information can be obtained and employed
to identify the file access operations belonging to ongoing transactions. There are some
slight adjustments to the server to simplify the process of reintegrating a subsequence of
the CML of a volume. In addition, a stand-alone transaction repair tool is provided so that
invalidated transactions can be manually repaired. Finally, the cfs utility tool is extended
with new commands for controlling the transaction system behavior and displaying transaction
information.

8.2. MAINTAINING INTERNAL TRANSACTION REPRESENTATION 123

8.2 Maintaining Internal Transaction Representation

The design of internal transaction representation is very important to overall system performance
and resource consumption. This section describes the main data structures shown in Figure 8.2
and how transaction readset and writeset are recorded.

8.2.1 Main Data Structures

A Client-Wide Transaction Database To centralize data management, all the important
transaction information is stored in a client-wide data structure called IOTDB, which contains
the following items.

misc
data SG

env
DB

pending
iot-list

running
iot-list

committed
iot-list

. . . .

misc
data

iot
spec

iot
env

read
set

write
set

read
vol-set

write
vol-set

IOTDB

misc
data

name
listnamenamename

fid
spec

vid

iotrep

objrep

vid

vid

This figure shows the main data structures used by the internal transaction representation. Each
rectangular box corresponds to a major data item and the shaded areas represent data structures that
are further explained in the figure or the subsequent discussion.

Figure 8.2: Main Data Structures in Internal Transaction Representation

124 CHAPTER 8. IMPLEMENTATION ISSUES

� Transaction Lists

The most important IOTDB component is a group of transaction lists, each contain-
ing all the transactions in a particular state. For example, all the running transac-
tions are in the running-iot-list and all the pending transactions are in the
pending-iot-list. Each element of the list is a pointer to iotrep, the inter-
nal representation of an IOT. The main purpose of using multiple transaction lists is
to reduce the performance overhead resulting from frequent internal search activities.
Note that terminated transactions are temporarily maintained in their lists and garbage
collected by a periodic daemon.

� Serialization Graph

The transaction serialization graph (SG) maintains the local dependency among all live
transactions with each node representing an IOT or an IFT. SG nodes and edges are
inserted and removed as transaction activities proceed. Internally, SG is represented by
a group of doubly linked lists.

� Environment Database

An environment database (envDB) is created to allow different transactions executed by
the same user to share common environment variables.

� Miscellaneous Data

There are miscellaneous data items mainly used by the basic internal transaction opera-
tions. An example is the wait-for graph for detecting transaction deadlock.

Transaction Representation The internal representation of an isolation-only transaction,
referred to as iotrep in Figure 8.2, contains the following key elements.

� Transaction Specification

This group of information contains both the identity and the conflict resolution require-
ment of the transaction. It includes the transaction identifier, the process-id and process
group-id of the Unix process that invoked the transaction, the transaction’s selection of
resolution option and the pathname of the resolver executable file if the selected option
is ASR.

� Environment Information

iotrep stores the environment information needed for possible automatic resolution.
As described in Chapter 7, such information contains the pathname of the transaction
executable file, the command line arguments, the environment variable list, the umask
of the master process, and the pathname of the working directory.

8.2. MAINTAINING INTERNAL TRANSACTION REPRESENTATION 125

� Readset and Writeset

Readset and writeset are the most important components of iotrep. They are repre-
sented by a doubly linked list with each element containing a pointer to objrep, the
internal representation of an object accessed by the transaction. objrep records the
information about all the access operations this transaction has performed on the object.

� Volume Lists

Because of the need to frequently check transaction connectivity, a list of volumes read
by a transaction is included in its iotrep with each element containing the internal
identifier of a volume. Similarly, the iotrep also maintains a list of volumes that are
updated by the transaction.

� Miscellaneous Data

There are miscellaneous data items in iotrep for recording information such as the
current transaction connectivity, transaction execution time, etc.

Representation of a Transactionally Accessed Object The most important information
recorded in objrep is the fid of the object. The data item named spec in Figure 8.2 is a
bitmap recording the sub-parts of the object that are actually read or written by the transaction.
For a directory object, its objrep contains a list of the names that are accessed in the directory.
Miscellaneous data items include a pointer to the shadow cache file of the object if one exists.

8.2.2 Recording Transaction Readset/Writeset

The most frequent internal bookkeeping activity during transaction execution is recording
readset and writeset. For every file access operation, the transaction system must detect
whether it is performed on behalf of an ongoing transaction. Because such detection needs
the process group-id associated with each file access operation, the communication interface
between the kernel and the IOT-Venus is extended to pass such process information.

Extending the Kernel/Venus Interface Client support in Coda is divided between a small
in-kernel Mini-Cache [67] and a much larger user-level Venus cache manager. The main
purpose of Mini-Cache is to reduce the frequency of kernel/Venus communication by caching a
small amount of information (such as the result of successful lookup calls) in the kernel. The
Mini-Cache intercepts file system calls on Coda objects from the kernel Vnode layer [28, 57]
and redirects them to the user-level Venus by exchanging messages through the Coda pseudo-
device. The information about each operation passed from Mini-Cache to Venus is defined in
the Vnode interface including the operation code, the internal identifier of the operands and the

126 CHAPTER 8. IMPLEMENTATION ISSUES

ucred data about the user who issued the operation [28, 57]. Unfortunately, such information
does not include the needed process information associated with the operation. To address this
problem, we extended the Mini-Cache/Venus communication interface to pass this information,
as shown in Figure 8.3.

Coda MiniCacheuarea

VFS/Vnode Layer

vnode_opr +
process_info

process_info

vnode_opr

Kernel

Application IOT-Venus

This figure illustrates the kernel extension needed for the IOT-Venus to obtain the necessary process
information for every file access operation on Coda objects. The Mini-Cache packs the process
information obtained from the kernel uarea into messages sent to the IOT-Venus.

Figure 8.3: Extending Kernel/Venus Communication with Process Information

Recording Readset/Writeset Recording transaction readset and writeset involves searching
and updating the relevant data structures. Upon receiving a new file access operation opr from
the kernel, the first step the transaction system undertakes is checking whether opr belongs to
an ongoing transaction. This is accomplished by linearly scanning all the transactions in the
running-iot-list using the attached process information. If opr is found to belong to a
currently running transaction T, we must search T’s readset or writeset depending on whether
opr is a read or update operation.

Suppose that opr is a read operation and has only one operand obj. The transaction
system will linearly search through the linked list representing T’s readset. If obj is not in
the list, a new objrep is created and inserted into the list, storing information about obj and
the sub-parts of obj accessed by opr. If obj is already in the readset, the spec bitmap in

8.3. SHADOW CACHE FILE MANAGEMENT 127

the objrep of obj is updated to include the sub-parts of obj accessed by opr. If obj is a
directory, a new name may need to be inserted into the name-list of the objrep depending on
the actions performed by opr. Update operations involving multiple operands can be processed
in a similar manner. Note that the performance overhead caused by the linear search activities
can be reduced by using more advanced data structures such as a hash table, particularly for
large transactions accessing hundreds of objects.

Detecting Abnormal Termination The ability to accurately identify the scope of a running
transaction influences the amount of search activity needed for recording transaction readset
and writeset. If a transaction T forgot to issue the end iot call or its program exits before the
end iot call can be made, T will remain in the running state and cause unnecessary internal
search activities. Thus, we need a reliable mechanism to detect such abnormal transaction
termination. Intuitively, solving this problem requires either the kernel to notify the IOT-Venus
every time a process exits or the IOT-Venus to poll the kernel about whether the master process
of a running transaction has exited. Both approaches are costly in performance and increase
complexity to the kernel/Venus communication interface.

We use a much simpler solution based on the observation that whenever a process exits,
the kernel always closes all its open descriptors. We designate a special Coda object /coda
and internally open it for read on behalf of any transaction at the beginning of its begin iot
call. The transaction system maintains a counter in iotrep which is incremented whenever
/coda is opened by the transaction and decremented whenever it is closed by the transaction.
If the counter reaches zero while the transaction is still in the running state, this means that
the transaction’s master process has exited without calling end iot and the final decrement
causing the counter to reach zero resulted from the kernel closing the open /coda. Note that
this approach assumes that transactions do not close /coda without opening it first.

8.3 Shadow Cache File Management

8.3.1 Shadow Cache File Organization

As discussed in Chapter 4, the transaction system maintains two entities for each shadow cache
file, a disk container file holding the shadow content, and a shadow entry containing a pointer
to the contained file and a counter recording the number of live transactions that accessed the
shadow content. An example of the internal organization of shadow cache files is shown in
Figure 8.4. There is a central database (SCFDB) containing key information about shadow
cache files and their management. The main components of SCFDB are a list of shadow entries
and some data items used for managing shadow space allocation. The relation between a

128 CHAPTER 8. IMPLEMENTATION ISSUES

transaction and its shadow cache files is maintained by the shadow entry pointer stored in the
relevant objrep belonging to the transaction.

SCFDB misc
data

obj-1 obj-2 obj-3obj-2

T T1 2

Container File Pool

shadow entry list

read
set

write
set

read
set

write
set

This figure presents an example to illustrate the internal organization of shadow cache files. SCFDB
is a central data structure that contains a list of all the shadow entries, each of them pointing
to a container file in the container file pool. The same shadow entry can be shared by multiple
transactions. There are three highlighted shadow entries shared by two live transactions T 1 and T2.
The first entry corresponds to the shadow cache file for obj-1 that is read by T1, while the second
entry corresponds to the shadow cache file for obj-2 that is shared by the writeset of T1 and the
readset of T2. The last entry corresponds to the shadow cache file for obj-3 that is written by T2.

Figure 8.4: An Example of Internal Organization of Shadow Cache Files

8.3.2 Prioritized Cache Space Management

The main challenge in maintaining shadow cache files is space management. Our overall
principle is best-effort allocation, allocating shadow space as long as the physical capacity and
the user-specified policy permit. Specifically, we adopted a strategy that manages regular cache
space and shadow cache space under the same pool by assigning lower priority to shadow

8.3. SHADOW CACHE FILE MANAGEMENT 129

cache files. In addition, we introduce a user adjustable hard limit on how much shadow space
can be allocated, with the default set at 20% of the total cache capacity. The main advantage
of this combined and prioritized space allocation scheme is that it maximizes cache space
utilization while giving preferential treatment for normal cache files. When allocating space
for a regular cache file, the total available space is the capacity minus all the occupied space.
When allocating space for a shadow cache file however, the total available space is restricted
by the hard limit, as illustrated in Figure 8.5.

Shadow Space Limit

Shadow SpaceRegular Cache Space
User Adjustable

(a)

(b)

(c)

The picture in (a) illustrates that regular and shadow cache space allocation is similar to the stack
and heap space allocation scheme where each side starts at the end and grows toward the middle.
However, there is a hard limit on how much shadow space can grow while there is no limit on
regular cache space until the capacity is exhausted. Pictures in (b) and (c) show the situations where
shadow space exhausts its limit and regular cache space allocation reduces the amount of space
available for shadow cache files respectively.

Figure 8.5: Prioritized Cache Space Allocation

130 CHAPTER 8. IMPLEMENTATION ISSUES

8.3.3 Reclaiming Shadow Space

When the cache capacity is exhausted, a variety of techniques can be employed to reclaim
shadow space while minimizing the negative effect on potential conflict resolution. The
current IOT implementation only supports the automatic compression mechanism.

Manual Deletion One approach is to provide information about shadow space usage and to
allow users to select files to be deleted. However, this approach exposes the details of resource
management and puts extra burden on the users.

Incorporating User Heuristics We allow the users to supply heuristics to the transaction
system so that the shadow cache files for those objects that are deemed unimportant to conflict
resolution can be automatically reclaimed. For example, a shadow cache file recording the
content of a large object file created by a make transaction can be safely discarded because it
can be easily regenerated.

Compression Compression is a commonly used technique for reducing file size without
information loss. In the context of reclaiming shadow space, it has an extra advantage because
most shadow cache files are discarded without ever being used, eliminating the need for de-
compressing.

8.4 Implementation Optimizations

Many aspects of the transaction system have been optimized to minimize the performance
degradation and resource consumption resulting from transaction operations. This section
describes the most important cases of these optimizations.

8.4.1 Lazy Serialization Graph Maintenance

One performance optimization is lazy SG maintenance. Our initial implementation followed a
straightforward strategy: a new SG node was added as soon as a transaction was invoked and
new edges were inserted as soon as dependencies among transactions are detected. However,
this approach results in significant performance overhead during disconnected sessions where
isolation-only transactions are rarely used. The reason is that each disconnected mutation
operation is treated as a separate inferred transaction and requires adding a new node and
related edges to SG. Because SG is maintained in persistent storage, each update entails an
asynchronous disk I/O operation, which substantially increases the performance overhead.

8.4. IMPLEMENTATION OPTIMIZATIONS 131

To alleviate this problem, we switched to a lazy maintenance scheme where SG updates are
delayed until necessary. There are two situations where SG needs to be updated immediately.
The first situation is when an isolation-only transaction completes its execution and enters the
pending state. The transaction system must establish all the edges representing the dependency
between the newly completed transaction and other live transactions. The second occasion
is when a partition is healed and disconnected transactions must get ready for validation and
commitment/resolution. The propagator thread requires the correct dependency among all
the live transactions during the incremental transaction propagation process. This technique
substantially reduces the performance overhead for disconnected operation, particularly when
isolation-only transactions are seldom used. When isolation-only transactions are not used
at all during a disconnected operation session, a further optimization is adopted to skip SG
building all together and avoid penalizing the users for the service that they do not use.

8.4.2 Coalescing the Serialization Graph

T

T

T

T

T

T

1

2

3

4

0

5

T

T

T*

0

5

(a) Before Coalescing (b) After Coalescing

The picture in (a) shows an SG containing two nodes(large and dark) corresponding to IOTs and
four nodes (small and light) corresponding to consecutively executed IFTs. As described in Chapter
4, an edge from Ti to Tj means that transaction Ti must be serialized before transaction Tj. The
picture in (b) shows the result of coalescing with the large light node representing the compound
node.

Figure 8.6: An Example of Coalescing a Serialization Graph

132 CHAPTER 8. IMPLEMENTATION ISSUES

Another SG maintenance optimization is to reduce the space cost by coalescing the nodes
corresponding to a consecutive sequence of inferred transactions. For a long-lasting discon-
nected operation session containing few isolation-only transactions, there could be a large
number of SG nodes and edges corresponding to inferred transactions. We have experienced
SGs with hundreds of nodes and over two thousand edges. A huge SG costs a significant amount
of persistent storage space, a scarce resource on a mobile client. To mitigate this problem, we
have modified the SG maintenance mechanism so that the nodes corresponding to a long se-
quence of consecutively executed inferred transactions will be automatically coalesced into a
compound node whenever transaction propagation is triggered. Edges among the coalesced
nodes are eliminated while those in and out of the group are preserved and connected to the
compound node, as shown in Figure 8.6.

This method can drastically reduce the size ofSG and its persistent space cost. The price paid
for this optimization is that all the inferred transactions corresponding to the coalesced nodes
must now be treated as a unit, validated and committed together. The increased granularity can
lead to unnecessary dependency among transactions. In the example shown in Figure 8.6, if
transaction T0 is invalidated, transaction T4 must wait until T0 is resolved to be propagated to
the server. Without SG coalescing, the transaction system will know that T4 does not depend
on T0 and can be propagated without waiting. However, thanks to the low likelihood of conflict
in practice, this strategy is acceptable and consistent with the batch reintegration adopted in the
vanilla Venus.

8.4.3 Sharing Environment Variables

Another optimization that can significantly reduce persistent space cost is sharing environment
variables among live transactions. As will be shown in the next chapter, the persistent space
used to store environment variables is about 2KB per transaction in our environment. The key
observation that leads to this optimization is that users rarely change their environment variable
definitions. Even if there is modification, the changes are limited to only a few variables.
Instead of maintaining an entire environment variable list for each individual transaction, the
transaction system maintains a global environment variable list in IOTDB for each user who
has invoked at least one live transaction. The environment variable information stored in the
iotrep of a particular transaction only records the difference between the variables defined
in the global list and those specific to the transaction.

8.5 Persistence and Crash Recovery

Because the client can crash for various reasons such as fatal runtime errors and machine
shutdown, maintaining critical information in persistent storage is crucial for the transaction

8.5. PERSISTENCE AND CRASH RECOVERY 133

system to resume normal operations after system restart. This section focuses on recording a
persistent image of the transaction system and recovering from crashes.

8.5.1 Persistent Data Structures

The RVM Package Like the rest of the Coda system, the IOT implementation uses RVM [63],
a lightweight transaction facility, for maintaining persistent data structures. RVM exports the
abstraction of recoverable virtual memory to its host application which can map regions of
recoverable segments onto portions of its virtual address space. Accesses to mapped data are
performed using normal memory read and write operations. However, if such accesses are
bracketed with RVM’s begin and end-transaction statements, failure atomicity is automatically
provided. RVM asynchronously flushes updates to recoverable memory to the backing disk
and allows the application to control the frequency of such flushes. The transaction system
inherits existing Coda policies of scheduling asynchronous RVM flushes during disconnected
operation [26].

Recoverable Image Almost all the important information included in the transaction data
structures discussed previously such as transaction readset/writeset, transaction specification
and environment information are stored in RVM. Because RVM space is a scarce resource,
particularly on a portable client machine, the design of the data structures minimizes the portion
that must remain persistent. Data items used to record transient system state, such as the current
connectivity of a transaction are not kept in RVM because their values can be re-computed
from other data.

8.5.2 Crash Recovery

Upon startup, the transaction system on a client loads necessary information from RVM and
restores the internal transaction data structures to a consistent state so that previous transactions
are retained and normal transaction services can be resumed.

Recovering Live Transactions Recovering transactions in the pending, to-be-resolved and
to-be-repaired state is straightforward and merely consists of reloading the RVM image of
the relevant data structures and resetting those data items that can be re-computed from other
data. The recovery of transactions in the running, resolving and repairing state needs additional
work. The current implementation forces such active transactions into a steady state because
their original execution or resolution before the crash cannot be automatically resumed. For a
running transaction, the recovery mechanism will transit it into the pending state because its

134 CHAPTER 8. IMPLEMENTATION ISSUES

execution result is still in the client cache. This allows the transaction to be propagated to the
servers via commitment or resolution. For a resolving transaction, the recovery mechanism
will automatically abort the resolution result and transit it into the to-be-repaired state. Thus,
a client crash during the resolution is considered the same as a resolver crash. Similarly, a
repairing transaction will be recovered as a to-be-repaired transaction again and the original
repairing result is automatically discarded.

Recovering Conflict Representation Because updates to the persistent data structures for
conflict representation can be originated from different modules of the transaction system and
not enclosed within a single RVM transaction, it is possible for a client crash to occur during
certain operations such as splitting a DRR subtree and to leave the corresponding data in a bad
state. Thus, the key to recovering conflict representation is to gather the relevant persistent data
and reorganize them into a previous state that satisfies the requirements of conflict representation
for the involved objects. Note that some of the work up to the point of crash could be lost.
For example, a local subtree could be left unmounted due to resolution activities when a crash
happened. The recovery mechanism must clean up the fake-joint objects of the corresponding
DRR subtree so that the local subtree can be automatically re-mounted when accessed again.
As another example, all the DRR subtrees that switched to the local or global views before the
crash will be automatically reset to the default mixed view.

8.6 Transaction Validation

As discussed in Chapter 4, both OCC validation for connected transactions and GC validation for
disconnected transactions are performed by the underlying transaction certification mechanism.
This section discusses three important implementation issues about transaction validation that
have not been addressed in the previous chapters.

8.6.1 Overloading with Cache Coherence Maintenance

Transaction validation is an expensive operation involving exchanging a variable number
of messages between the client and the relevant servers depending on the transaction being
validated. However, it can be overloaded on Coda’s underlying cache coherence mechanisms.

Coda servers maintain a callback for every cached object on a connected client and send a
message to break the callback of an object when its server replica is updated by another client.
As soon as the callback of an object obj is broken, the transaction system iterates through all
the live transactions that have accessed obj and immediately invalidate them if they have not
already been. If such a transaction is still in the running state, the transaction system will make

8.6. TRANSACTION VALIDATION 135

an internal mark so that it can continue its execution and be automatically invalidated upon
completion. On the other hand, new callbacks for cached objects are also established whenever
possible after a transaction validation contacted the servers for the corresponding objects.

During disconnected operation, all the cached objects are demoted by marking their CCS
(cache coherence status) as suspect. When the client is reconnected to the corresponding
servers, Venus (via a periodic daemon) will try to verify for each demoted object whether it
has a newer version on the server or not, and re-synchronize the local and server versions by
establishing the callback relationship and promoting the CCS. When validating a disconnected
transaction, the transaction system first checks the CCS for every accessed object. If the CCS
is demoted, it will check with the servers in the same way as the Venus daemon would do. As
a result, it will also re-establish callback and promote CCS whenever possible.

8.6.2 Object Version Maintenance

Certifying a transaction involves comparing the local version-id and the global version-id
of objects accessed. As indicated in Figure 8.2, the transaction data structures do not include
version-id’s in the readset/writeset. This significantly reduces the space cost because the current
Coda implementation uses a version-vector as the version-id. This means that the IOT-Venus
cache manager must maintain the following invariant for any transaction T when it is being
OCC or GC validated: For any object obj2(R(T)[W(T)), lvv(obj) 6=gvv(obj) if and
only if T accessed a version of obj that is different from its current server replica. Recall that
lvv(obj) and gvv(obj) are the local and global version-vector of obj respectively.

The key to maintaining the invariant is to keep lvv(obj) unchanged when obj is locally
updated. Only the successful commitment of a local transaction that updated obj will cause
both lvv(obj) and gvv(obj) to change to an identical new version-vector. When T is
being validated, there are two basic scenarios about obj. If obj had not been locally updated
before being accessed by T, lvv(obj) represents the server version of obj when it was last
fetched by the client. If obj had been locally updated by previous transactions before being
accessed by T, those transactions must have already successfully committed their update on
obj to the server. Either way, lvv(obj) represents a version of obj that has not only been
accessed by T but has also appeared on the server. Thus, a different gvv(obj) means that T
has accessed a different version of obj than its current server replica.

8.6.3 Validation Atomicity

To guard against race conditions among concurrent transactions across clients, the validation of
a transaction and its ensuing commitment need to be performed in an atomic unit. As explained
in Chapter 4, such atomicity has not been fully provided in the current implementation. The

136 CHAPTER 8. IMPLEMENTATION ISSUES

purpose of this discussion is only to present a relatively simple scheme that can satisfy the
atomicity requirement.

Integration with 2PC The standard technique for achieving atomicity among a set of dis-
tributed activities is the two phase commitment protocol (2PC). Previous research proposed a
strategy that can integrate transaction validation and commitment into a 2PC framework so that
they can be performed atomically [70, 55].

The validation and the possible commitment of a transactionT starts with the client selecting
one of the involved servers as a coordinator and sending it information about (R(T)[W(T))
and TML(T). In the first phase, the coordinator sends a PREPARE message to all the involved
servers and their share of the objects to be validated as well as the mutations to be committed
(if any). Upon receiving the message, a participating server will perform its local validation. If
such validation fails, a FAIL message is sent back to the coordinator. Otherwise, it will replay
the necessary mutations in shadow space [38, 5], log a PRE-COMMIT record and send an OK
message back to the coordinator.

The second phase begins when the coordinator receives all the responses from the partic-
ipating servers. If all the local validations are successful, a COMMIT record is logged and
the COMMIT message is sent to all those servers. When a remote server receives a COMMIT
message, it simply commits the shadowed replay result (if any). If any of the local validations
fails, the coordinator will send an ABORT message to those servers that voted OK so that their
replay result can be discarded. Finally, the coordinator will notify the originating client about
the outcome of the validation and commitment.

Global Mutual Exclusion In addition to atomicity, the global validation of transactions must
ensure that the corresponding local validations are processed in the same order at all the involved
servers. Any server participating in the validation of one transaction cannot be involved in
the same task for another. Mutual exclusion among global transaction validations is necessary
to ensure the correctness of the validation outcome. A simple scheme to achieve this can be
the following. Each server dedicates a shared resource such as a mutex and requires that
any server thread trying to participate in the validation of a transaction must acquire exclusive
control of the resource before it can start the process. Thus, whenever a server receives a
request from a coordinator or the originating client, it will first try to grab the resource and will
have to wait if the server is already engaged in the validation of another transaction. A problem
of this approach is that servers may deadlock. However, this can be addressed by selecting an
appropriate interval to timeout and re-try.

Chapter 9

Evaluation

A working implementation of an IOT extension to the Coda file system has been operational for
nearly a year. This realization of the IOT model in a practical distributed file system establishes
a solid foundation for us to demonstrate the viability of this thesis. In this chapter, we provide
data from the implementation to quantify the cost of supporting IOT. We also provide some
qualitative usage data to augment the quantitative data.

9.1 Overview

9.1.1 System Evolution and Status

An early version of an IOT extension to the Coda file system with basic transaction function-
alities and the automatic re-execution resolution capability became operational in the summer
of 1994. It served as a basic prototype for experimenting and fine tuning various design and
implementation alternatives. The IOT programming interface as well as the C-Shell interactive
interface were developed shortly afterwards. However, further development was briefly stalled
while design and implementation complications pertaining to conflict representation and res-
olution were being resolved. In late 1994, a major system overhaul and re-implementation
were conducted for the integration of the conflict representation and resolution components.
A new version supporting most of the IOT model has been operational and stable since early
1995. Since then, most of the development activities have been of the nature of bug fixing and
minor enhancement. The current IOT implementation supports most functionality of the IOT
model. The two major exceptions are: (a) only the global certification consistency guarantee
is provided; (b) the commitment of distributed transactions is not fully atomic.

As of this writing, the IOT implementation is maintained as a separate branch of the mainline
Coda system with the portions for conflict representation, kernel changes and server changes

137

138 CHAPTER 9. EVALUATION

being incorporated in the production Coda release. The IOT facility is available to the Coda
user community for anyone willing to install the client with the IOT extension. The transaction
system is supported on two client platforms shown in Table 9.1. Besides being used by the
author on a daily basis for over a year, the IOT service has also been used by another Coda user
as a base for implementing a mobile CSCW repository system [47].

Client Brand CPU Memory Disk OS
desktop DEC 5000/200 R3000(25MHz) 32MB 400MB Mach 2.6
laptop DECpc 425SL i486(25MHz) 32MB 200MB Mach 2.6

This table displays key information about the two kinds of client machines that IOT supports. In
the rest of this chapter, we will simply use the term laptop and desktop to refer to them.

Table 9.1: Client Platforms Supported by IOT

The current IOT system configuration consists of the following components. The binary
of a special Venus that embodies most of the transaction system (referred to as the IOT-Venus)
must be used in place of the regular Venus(referred to in contrast as the vanilla Venus). The
executable of the special IOT C-shell needs to be installed at a proper location so that it can
be used as a login shell or conveniently invoked when needed. In addition, a special repair
tool is needed for manually repairing invalidated transactions. Programming transactions or
application-specific resolvers requires the installation of a set of IOT libraries and header files.

The IOT source code lives in several Coda modules, all maintained as branches off the
mainline Coda source. The iot module implements the core IOT functionality and contains
over 9000 lines of C++ code. The venus module contains IOT related modifications and
extensions to the vanilla Venus. It is a shadow of the mainline venus module and has 24 files
containing about 1000 lines of modified or added C++ code. The source module for the special
IOT C-Shell is also a shadow of the CMU Mach C-Shell source containing eight source files.
The conflict representation mechanisms implemented by over 5000 lines of C++ code have
been merged into the production release of Coda. There are separate modules for the IOT
programming interface and the IOT repair tool totaling about 1000 lines of C++ code. Other
miscellaneous IOT related system items include the IOT data collection mechanism, minor
Coda server changes and Mach kernel extensions, which all have been promoted to production
Coda release.

The current IOT implementation in Coda is more complex than anticipated. The primary
source comes from the need to operate the client in two different modes for conflict repre-

9.2. TRANSACTION PERFORMANCE 139

sentation and resolution. The design is optimized for simplifying the resolution process and
resolver programming. However, it requires using complicated data structures and algorithms
to manage replicas and the relevant system resources. The implementation could be much
more complicated if we were to provide the G1SR consistency guarantee because it would
require the servers to maintain a complete transaction history and a distributed graph during
consistency validation. Tasks such as managing server space for recording transaction history
and handling failures during consistency validation could add a great deal of complexity to the
overall system.

9.1.2 Basic Evaluation Approach

The ultimate purpose of this dissertation is to verify the thesis that an explicit transaction ex-
tension to the Unix file system with serialization-based isolation guarantees can substantially
improve consistency support for mobile file access using disconnected operation. Recall that
the specific goals we set to achieve are: offering improved consistency support for discon-
nected operations; maintaining upward Unix compatibility; and seeking good performance,
low resource cost and practical usability. The previous chapters have shown how the IOT
model, by design, meets the first two goals. This chapter focuses on the third goal: showing
that the performance and resource cost for supporting transaction operations in Coda are indeed
acceptable.

Our evaluation approach is to rely on carefully controlled experiments. Transaction per-
formance and resource cost are evaluated based on quantitative experimental results. Other
facilities such as collected file reference traces and previous file system study data are utilized
to enhance the realism and quality of the evaluation. Section 9.2.1 and Section 9.2.2 employ
both controlled experiments and trace replay to measure IOT incurred performance overhead.
Section 9.3.1 relies on controlled experiments to measure global system resource costs such as
server CPU and I/O time and network traffic. Section 9.3.2 uses trace simulation and analysis
to examine local system resource cost such as client disk and RVM space. Because of its
subjective nature, only a preliminary assessment of IOT usability is presented in Section 9.4.
Finally, a plan is presented for further usability evaluation in section 9.5.

9.2 Transaction Performance

The design and implementation of IOT in Coda has pursued a lightweight strategy, stripping
away as many unnecessary features as possible to minimize performance overhead. The key
performance evaluation question we want to answer is: can the Coda file system with an IOT
extension offer satisfactory overall system performance for executing common applications with
or without using the transaction service? Because the performance is predominantly influenced

140 CHAPTER 9. EVALUATION

by the underlying Coda operations, our evaluation will focus on comparing performance with
and without using transactions to determine IOT-incurred overhead.

We use the term transactional operation to stand for the file access operations that are
executed within the scope of an explicit isolation-only transaction and normal operation for
those that are outside the scope of any transaction. Obviously, an application executed as a
transaction will have to pay a performance cost. What is not so obvious is that even normal
file access operations suffer a small performance penalty when executed in a system that sup-
ports IOT. This is because both transactional and normal operations share the same underlying
infrastructure and the file system often has to commit internal resources to differentiate and co-
ordinate these two kinds of operations. We measure the IOT incurred performance overhead for
normal operations and transactional operations in section 9.2.1 and Section 9.2.2 respectively.

9.2.1 Performance Overhead for Normal Operations

Minimizing the performance overhead for normal file access operations is critical to the success
of the IOT model. Because IOT is an optional facility intended to be used only for selective
applications, normal operations usually dominate file system activities. Slowing down these
operations significantly will render the entire system unattractive to the users.

In the current implementation, almost all of the internal transaction activities occur in the
IOT-Venus, which works with the production Coda servers, kernel and client/server commu-
nication facilities. This means that our evaluation only needs to compare the performance
between the IOT-Venus and the vanilla Venus running the same set of applications. In addition,
the experiments focus only on disconnected operation because the current IOT implementation
performs the same amount of extra work for normal operations regardless of whether the client
is connected or disconnected. The specific question we investigate here is: what is the IOT
incurred performance overhead on normal file access operations for common activities during
disconnected operation?

9.2.1.1 Methodology

The main source of performance overhead comes from the need to distinguish and coordinate
the transactional and normal file access operations. For example, we need to decide for every
file access operation whether it belongs to a running transaction or not. This involves getting the
additional process group information from the kernel and searching linked lists representing
active transactions. Also contributing to the overhead are the searching and bookkeeping
activities performed by internal tasks such as local concurrency control and shadow cache file
maintenance.

9.2. TRANSACTION PERFORMANCE 141

We use a variety of experiments to evaluate this performance overhead. Each of them
involves executing a certain workload on both the laptop and desktop clients described in Table
9.1 and measuring the total elapsed time. The first experiment uses the Andrew Benchmark,
a widely used file system benchmark [24]. The second experiment consists of trace replay of
file references traces collected by Lily Mummert from workstations in our environment [46].
Four segments of file reference traces are replayed to emulate the execution of the applications
that generated the references originally. From the two main target application domains of
software development and document processing, we select two representative tasks from each:
compiling the Coda server and client, and typesetting a Ph.D. dissertation and a thesis proposal
using latex.

Laptop Desktop
Vanilla IOT Over- Vanilla IOT Over-

Venus(sec) Venus(sec) head Venus Venus head
MakeDir 1.3 (0.5) 1.3 (0.5) 0.0% 0.9 (0.6) 1.0 (0.5) 11.1%
Copy 12.8 (0.9) 13.3 (0.9) 3.9% 11.3 (0.9) 11.3 (0.9) 0.0%
ScanDir 14.7 (0.7) 15.6 (0.7) 6.1% 14.6 (0.7) 15.6 (0.7) 6.9%
ReadAll 23.6 (0.8) 24.6 (0.8) 4.2% 25.2 (1.0) 25.6 (1.0) 1.6%
Make 85.0 (1.2) 85.4 (1.0) 0.5% 59.2 (2.4) 59.3 (1.9) 0.2%
Total 137.4 (0.7) 140.2 (0.9) 2.0% 111.2 (3.3) 112.8 (2.5) 1.4%

This table shows the elapsed time of executing the Andrew Benchmark as a normal application on
disconnected client machines. The time values represent the mean over ten runs of the benchmark.
Numbers in the parentheses are standard deviations. In addition, the performance overhead of
IOT-Venus versus vanilla Venus is also listed.

Table 9.2: Normal Operation Performance of Andrew Benchmark

9.2.1.2 Results

Andrew Benchmark The Andrew Benchmark performs file access operations in five phases.
The MakeDir phase creates four directories in the test area; the Copy phase copies files from
the source test tree; the ScanDir phase opens all the directories and examines the status of all
the files; the ReadAll phase opens and reads all the files; and the Make phase compiles an
application from those files. The measured elapsed time of all five phases on both laptop and
desktop clients is listed in Table 9.2.

142 CHAPTER 9. EVALUATION

The results on both laptop and desktop clients indicate that the maximum performance
overhead incurred by the IOT extension is about 7%, ignoring the MakeDir phase which is
too short. The overall performance overhead is 2% or less. The MakeDir phase has a higher
overhead than that of the entire benchmark and the probable cause is that the metric of seconds
is too coarse relative to its duration. Any noise in the measurement can lead to a significant
skew in the result. This can also explain why the standard deviations as a percentage of the
execution duration for this phase are higher than that of any other phase.

Laptop Desktop
Trace Vanilla IOT Over- Vanilla IOT Over-

Venus(sec) Venus(sec) head Venus(sec) Venus(sec) head
Concord1 1655.8 (5.3) 1659.8 (16.5) 0.2% 1615.8 (10.1) 1624.6 (20.6) 0.5%
Concord2 1564.8 (7.8) 1572.4 (5.4) 0.5% 1541.0 (11.6) 1546.0 (12.7) 0.3%
Messiaen 1523.4 (8.1) 1537.4 (8.8) 0.9% 1526.8 (5.1) 1529.8 (6.7) 0.2%
Purcell 1564.6 (5.1) 1570.2 (3.9) 0.4% 1602.6 (5.9) 1607.6 (8.4) 0.3%

Table 9.3: Normal Operation Performance of Trace Replay with � = 1

This table shows the elapsed time of running trace replay with � = 1 on disconnected laptop and
desktop clients. The time values represent the mean over five runs. The numbers in parentheses
are standard deviations.

Trace Replay To further examine the performance overhead of normal operations, we replay
segments of collected file reference traces as the experiment workloads. File access operations
recorded in a reference trace are first extracted using the untrace tool [46] and then stored in a
command file. We then use the creplay tool [46] to re-run the file access operations recorded
in the command file. creplay reads the operations from the command file and generates
Unix system calls that are serviced by the Coda file system as if they have been generated by
a human user or an application. Realism in the workload is largely preserved because the only
difference is that now a single Unix process issues all the replayed system calls whereas the
original trace might have been produced by multiple processes. The four trace segments used
in the experiments each lasted 30 minutes in their original execution and are carefully screened
to ensure that they contain active file references. Their names, purcell, messiaen, concord-1
and concord-2 come from the workstations from which the traces were taken.

An important issue in trace replay is to incorporate the effect of the delay intervals between
the file access operations in the original traces. We adopt a parameter called think threshold (�)

9.2. TRANSACTION PERFORMANCE 143

Laptop Desktop
Trace Vanilla IOT Over- Vanilla IOT Over-

Venus(sec) Venus(sec) head Venus(sec) Venus(sec) head
Concord1 224.2 (9.0) 225.0 (8.3) 0.4% 156.6 (1.5) 157.0 (4.7) 0.3%
Concord2 277.2 (5.0) 278.6 (8.7) 0.5% 173.0 (3.4) 174.2 (4.7) 0.7%
Messiaen 125.0 (1.6) 125.4 (4.7) 0.3% 80.2 (0.8) 80.8 (0.8) 0.8%
Purcell 24.6 (0.6) 24.8 (0.8) 0.8% 15.4 (0.5) 15.6 (0.5) 1.3%

Table 9.4: Normal Operation Performance of Trace Replay with � = 60

This table shows the elapsed time of running trace replay with � = 60 on disconnected laptop and
desktop clients. The time values represent the mean over five runs. The numbers in parentheses
are standard deviations.

proposed in [45] to control the delay effect. It means that any delay greater than � seconds in
the original trace will be preserved in the replay experiment. We choose two different � values
of 1 and 60 in our experiments. When � = 1, most of the original delays were preserved so
that the trace replay proceeds at a speed close to the original pace. When � = 60, there are
no delays between file references during the replay, giving us an opportunity to observe the
performance overhead under very I/O intensive conditions.

The trace replay results are shown in Table 9.3 and Table 9.4. The measured time is the
total elapsed time of executing the creplay program on a given trace command file. The
observed performance overhead for normal operations is less than 1% in almost all cases.

Software Laptop Desktop
Build Vanilla IOT Over- Vanilla IOT Over-
Task Venus(sec) Venus(sec) head Venus(sec) Venus(sec) head
Venus 3662.0 (37.0) 3679.2 (50.7) 0.5% 2960.8 (49.7) 2976.0 (70.6) 0.5%
Server 992.0 (8.0) 998.6 (6.3) 0.6% 642.6 (4.6) 645.6 (3.4) 0.5%

This table shows the elapsed time of building a Coda client and a Coda server on disconnected
laptop and desktop clients. The time values represent the mean over five runs. The numbers in
parentheses are standard deviations.

Table 9.5: Normal Operation Performance of Building Coda Client and Server

144 CHAPTER 9. EVALUATION

Software Build Tasks We measure the performance of two common software build tasks in
the Coda project, building a Coda client and a Coda server. The results in Table 9.5 show that
the performance overhead for the two common software build tasks is only about half a percent.

Document Laptop Desktop
Build Vanilla IOT Over- Vanilla IOT Over-
Task Venus(sec) Venus(sec) head Venus(sec) Venus(sec) head
Thesis 145.4 (0.6) 146.0 (1.9) 0.4% 96.0 (2.2) 96.4 (1.8) %0.4
Proposal 33.8 (0.5) 34.2 (0.5) 1.2% 24.0 (1.2) 24.2 (0.8) %0.8

This table shows the elapsed time of typesetting a Ph.D. dissertation and a thesis proposal using
latex. The time values represent the mean over five runs. The numbers in parentheses are
standard deviations.

Table 9.6: Normal Operation Performance of Typesetting a Dissertation and a Proposal

Document Build Tasks Document processing is one of the most common activities in our
target environment. We measure the performance of using latex to typeset a 272-page Ph.D.
dissertation and a 54-page thesis proposal. The results in Table 9.6 confirm that the IOT
incurred performance overhead for normal operations in such tasks is small.

9.2.1.3 Discussion

The above set of experiments cover a broad range of workloads in disconnected operation.
The observed performance degradation for normal operations caused by the IOT extension is
small across all our workloads. The measured results are also in complete agreement with our
qualitative perception of performance in actual usage.

There are two kinds of pathological situations where the performance can be worse than
what has been measured. First, when a normal file access operation is trying to access an object
that is currently locked by an ongoing isolation-only transaction, it will have to block until
the two-phase-locking protocol completes. Second, if a normal mutation operation is trying to
update an object accessed by a currently pending transaction, additional internal work needs
to be done to create a shadow cache object. We do not take these two factors into account in
our experiments because they are rare and because their impact can vary widely, depending on

9.2. TRANSACTION PERFORMANCE 145

the frequency and the extent of interaction between transactional and normal operations. Only
empirical data from actual IOT usage can provide meaningful data on these two factors.

Finally, the current implementation has not been fully tuned for performance. More careful
tuning could lead to further reduction in the performance overhead.

9.2.2 Performance Overhead for Transactional Operations

Clearly, there are performance costs to be paid for applications to gain the improved consistency
support from the IOT service. The question is, how much?. More specifically, we want to
know: what is the performance overhead for executing common applications as transactions
on a disconnected client?

9.2.2.1 Methodology

The performance overhead for transaction execution comes from a variety of sources. First,
maintaining transaction readset and writeset requires frequent operations on the linked lists
representing them, such as searching, inserting and deleting. Second, every list mutation
operation requires an RVM transaction, triggering asynchronous disk writes caused by RVM
flushes. Finally, there are other internal bookkeeping operations such as maintaining the
serialization graph, pinning transactionally accessed objects in the client cache, and recording
the transaction environment and consistency specification at transaction start-up time.

To quantify this overhead, we repeated the set of experiments described in Section 9.2.1,
this time using IOTs. Each experiment involves running the workload first encapsulated in a
transaction, and then as a normal application. The experiments are conducted on the IOT-Venus
on disconnected laptop and desktop clients as specified in Table 9.1. We measure the elapsed
time and compare the results from the two Venii to derive the performance overhead. In order
to measure the performance of multiple transaction executions, we also compare running each
phase of the Andrew Benchmark as a separate transaction versus running the entire benchmark
as a single transaction.

9.2.2.2 Results

Andrew Benchmark Table 9.7 show the results of executing the Andrew Benchmark as a
single transaction or one transaction per phase. Figure 9.1 presents a graphical representation
of the same data combined with the data presented earlier in Table 9.2. The performance
overhead for single transaction execution is around 10% on both platforms. However, different
phases exhibit different levels of performance degradation. This is because the key factor in
determining transaction performance overhead is the intensity of I/O activity of an application.

146 CHAPTER 9. EVALUATION

Higher I/O intensity usually leads to a bigger performance penalty. As more file access
operations are performed per unit execution time, the more likely that the transaction readset
and writeset need to be updated using RVM transactions. Hence, there are fewer opportunities
for asynchronous RVM flushes to overlap with application computation (or user think) time,
thus leading to higher performance overhead.

Laptop Desktop
Single Multiple Single Multiple

Phase Transaction Transaction Transaction Transaction
Elapsed Over- Elapsed Over- Elapsed Over- Elapsed Over-

Time head Time head Time head Time head
(second) (%) (second) (%) (second) (%) (second) (%)

MakeDir 1.6 (0.5) 23.1 1.7 (0.7) 30.8 1.3 (0.5) 30.0 1.4 (0.5) 40.0

Copy 17.9 (1.0) 34.6 19.5 (1.1) 46.6 14.9 (1.1) 31.9 16.0 (1.1) 41.6

ScanDir 17.3 (0.8) 10.9 18.5 (0.8) 18.6 17.4 (0.7) 11.5 18.0 (0.9) 15.4

ReadAll 27.5 (1.3) 11.8 28.2 (0.9) 14.6 27.5 (1.1) 7.4 27.9 (1.0) 9.0

Make 87.7 (1.6) 2.7 87.9 (2.3) 2.9 60.5 (1.5) 2.0 60.7 (1.8) 2.4

Total 152.0 (2.2) 8.4 155.8 (2.8) 11.13 121.6 (2.7) 7.8 124.0 (1.9) 9.9

Table 9.7: Transaction Execution Performance of Andrew Benchmark

This table shows the elapsed time of executing the Andrew Benchmark first as a single transaction
and then with each phase encapsulated in its own transaction, on disconnected laptop and desktop
clients. The time values represent the mean over ten runs. The numbers in parentheses are standard
deviations. The displayed performance overhead is relative to the elapsed time of executing the
benchmark as a normal application on the IOT-Venus as shown in Table 9.2.

For example, the first two phases of the benchmark take a much worse performance hit
than the overall benchmark because they contain consecutive mkdir, create and store
operations which result in internal RVM transactions. Although the third and fourth phases also
require updates in the transaction readset, the overhead is much lower because these phases
spend time reading the contents of objects. This permits overlap of I/O from asynchronous
RVM flushes. The last phase incurs a very small overhead because there is plenty of compilation
time in between file access operations to accommodate more overlapping RVM flushes.

The overhead for each phase is higher in the multiple-transactionexecution of the benchmark
mainly due to the separate transaction initialization and finalization costs. The higher standard
deviations for the MakeDir phase is due to the coarse metric of seconds. This magnifies slight
timing differences in system internal activities such as RVM flushes.

9.2. TRANSACTION PERFORMANCE 147

El
ap

se
d

Ti
m

e
(s

ec
s)

20

40

60

80

100

120

140

160

180

0

Phase 1

Phase 2 Phase 3
Phase 4

Phase 5

Total

V I T M V I T M V I T M V I T M V I T M V I T M

(a) On Disconnected Laptop Client

El
ap

se
d

Ti
m

e
(s

ec
s)

20

40

60

80

100

120

140

0
Phase 1

Phase 2 Phase 3

Phase 4

Phase 5

Total

V I T M V I T M V I T M V I T M V I T M V I T M

(b) On Disconnected Desktop Client

The two graphs in this figure plot the performance data displayed in Table 9.2 and Table 9.7. The
capital letters on the X-axis indicate the condition under which the benchmark is executed. V
means that it is executed on the vanilla Venus as a normal application. I means that the execution
is on the IOT-Venus as a normal application. T means that the benchmark is executed as a single
transaction, and M means that each phase of the benchmark is executed as a separate transaction.

Figure 9.1: Performance Comparison for Andrew Benchmark

148 CHAPTER 9. EVALUATION

Laptop Desktop
Trace Normal Transaction Over- Normal Transaction Over-

Execution Execution head Execution Execution head
second) (second) (%) (second) (second) (%)

Concord1 1659.8 (16.5) 1687.4 (20.8) 1.7 1624.6 (20.6) 1649.4 (21.3) 1.5
Concord2 1572.4 (5.4) 1597.8 (9.0) 1.6 1546.0 (12.7) 1553.4 (9.5) 0.5
Messiaen 1537.4 (8.8) 1564.0 (19.5) 1.7 1529.8 (6.7) 1536.8 (8.0) 0.5
Purcell 1570.2 (3.9) 1575.4 (5.0) 0.3 1607.6 (8.4) 1618.4 (6.1) 0.7

Table 9.8: Performance of Transactional Trace Replay with � = 1

This table shows the elapsed time of running trace replay as a normal application and as a transaction
on disconnected clients using the IOT-Venus. Because the � parameter is set at 1, the total replay
elapsed time is close to the original trace duration of 30 minutes. The time values represent the mean
over five runs. The numbers in parentheses are standard deviations. The table also displays the
performance overhead of transactional trace replay relative to normal trace replay on the IOT-Venus.

Trace Replay We also conducted trace replay experiments to examine the transaction per-
formance overhead under actual workloads. Table 9.8 and Table 9.9 show the elapsed time of
running the trace replay experiments as transactions and their performance overhead compared
to running them as normal applications on the IOT-Venus. The same data in Table 9.3, Table
9.4, Table 9.8 and Table 9.9 are plotted into more informative graphs displayed in Figure 9.2.

Laptop Desktop
Trace Normal Transaction Over- Normal Transaction Over-

Execution Execution head Execution Execution head
(second) (second) (%) (second) (second) (%)

Concord1 225.0 (8.3) 250.0 (10.8) 11.1 157.0 (4.7) 176.8 (5.9) 12.6
Concord2 278.6 (8.7) 309.4 (7.4) 11.1 174.2 (4.7) 201.2 (5.8) 15.7
Messiaen 125.4 (4.7) 149.6 (2.9) 19.3 80.8 (0.8) 95.2 (3.6) 17.8
Purcell 24.8 (0.8) 29.2 (1.6) 17.7 15.6 (0.5) 17.4 (0.5) 11.5

Table 9.9: Performance of Transactional Trace Replay with � = 60

This table shows the elapsed time of running trace replay as a normal application and as a transaction
on disconnected clients using the IOT-Venus. Because the � parameter is set to 60, the replay is very
I/O intensive with few delays between file references. The time values represent the mean over five
runs. The numbers in parentheses are standard deviations. The table also displays the performance
overhead of transactional trace replay relative to normal trace replay on the IOT-Venus.

9.2. TRANSACTION PERFORMANCE 149

E
la

p
s
e
d

 T
im

e
 (

s
e
c
s
)

50

100

150

200

250

300

350

0 V I T V I T V I T V I T

Concord1

Concord2

Messaien

Purcell

E
la

p
s
e
d

 T
im

e
 (

s
e
c
s
)

600

1200

1800

0 V I T V I T V I T V I T

Concord1
Concord2 Messaien Purcell

(a) Trace Replay with � = 60 on Laptop (b) Trace Replay with � = 1 on Laptop

E
la

p
s
e
d

 T
im

e
 (

s
e
c
s
)

40

80

120

160

200

240

0 V I T V I T V I T V I T

Concord1

Concord2

Messaien

Purcell

E
la

p
s
e
d

 T
im

e
 (

s
e
c
s
)

600

1200

1800

0 V I T V I T V I T V I T

Concord1
Concord2 Messaien Purcell

(c) Trace Replay with � = 60 on Desktop (d) Trace Replay with � = 1 on Desktop

The four graphs in this figure plot the trace replay performance data presented earlier in Table 9.3,
Table 9.4, Table 9.8 and Table 9.9. Note that there are big differences in the time scale on the
y-axis between the horizontally adjacent graphs. The letters V, I, T indicate the measurement of
running the workload on vanilla-Venus, as a normal application on IOT-Venus, and as a transaction
respectively.

Figure 9.2: Comparison of Trace Replay Performance

150 CHAPTER 9. EVALUATION

The performance of transactional replay on the four traces with � = 60 demonstrate the
negative impact of I/O intensity on transaction performance, causing degradations between
10% to 20%. They are still significantly lower than those of the first two phases of the Andrew
Benchmark mainly due to their much longer execution durations, making RVM flushes less
influential in total performance. However, they are slightly higher than that of the entire Andrew
Benchmark because the trace replay transactions have much larger readsets and writesets,
resulting in longer search times on transaction readset/writeset membership testing. Replaying
the same traces with � = 1 only results in less than 2% performance overhead.

Laptop Desktop
Software Normal Transaction Over- Normal Transaction Over-
Build Execution Execution head Execution Execution head
Task (second) (second) (%) (second) (second) (%)
Venus 3679.2 (50.7) 3738.8 (34.5) 1.6 2976.0 (70.6) 3020.0 (60.1) 1.5
Server 998.6 (6.3) 1018.6 (3.6) 1.9 645.6 (3.4) 655.8 (11.3) 1.6

Table 9.10: Transaction Performance Overhead for Software Build Tasks

This table shows the elapsed time of building a Coda client and a Coda server both as a transaction
and as a normal application on disconnected clients using the IOT-Venus. The time values represent
the mean over five runs. The numbers in parentheses are standard deviations. This table also displays
the transaction performance overhead comparing the two kinds of performance data listed in the
table.

Software Build Tasks The measured elapsed time for the two software build tasks are
presented in Table 9.10 and Figure 9.3. Because of the long execution duration, transaction-
triggered RVM flushes have plenty of opportunities to be overlapped with computations per-
formed by the compiler, linker, etc. Therefore, the main contributor to performance overhead
becomes search activities for the transaction readset/writeset membership test, which incur less
than 2% of performance overhead.

Document Build Tasks The measured elapsed time for the two document build tasks are
presented in Table 9.11 and Figure 9.4. The performance overhead is a little higher than
that of the two long-running software build tasks, mainly due to shorter execution duration.
This allows IOT-generated RVM flushes to have a stronger negative impact on the overall
performance.

9.2. TRANSACTION PERFORMANCE 151

Laptop Desktop
Document Normal Transaction Over- Normal Transaction Over-
Build Execution Execution head Execution Execution head
Task (second) (second) (%) (second) (second) (%)
Thesis 146.0 (1.9) 150.8 (1.5) 3.3 96.4 (1.8) 99.2 (1.1) 2.9
Proposal 34.2 (0.5) 35.6 (0.6) 4.1 24.2 (0.8) 25.0 (1.2) 3.3

Table 9.11: Transaction Performance Overhead for Document Build Tasks

This table shows the elapsed time of typesetting a Ph.D. dissertation and a thesis proposal both as
a transaction and as a normal application on disconnected clients using the IOT-Venus. The time
values represent the mean over five runs. The numbers in parentheses are standard deviations. This
table also displays the transaction performance overhead comparing the two kinds of performance
data listed in the table.

E
la

p
s
e
d

 T
im

e
 (

s
e
c
s
)

1000

2000

3000

4000

0 V I T V I T

Desktop Venus Build

Laptop Venus Build

E
la

p
s
e
d

 T
im

e
 (

s
e
c
s
)

300

600

900

1200

0 V I T V I T

Desktop Server Build

Laptop Server Build

(a) Venus Build Performance (b) Server Build Performance

The two graphs in this figure plot the performance data for the software build tasks presented earlier
in Table 9.5 and Table 9.10. Note that there is a big difference in the time scale on the y-axis
between the two graphs. The letters V, I, T indicate the measurement of running the workload on
vanilla-Venus, as a normal application on IOT-Venus, and as a transaction respectively.

Figure 9.3: Comparison of Software Build Task Performances

152 CHAPTER 9. EVALUATION

E
la

p
s
e
d

 T
im

e
 (

s
e
c
s
)

60

120

180

0 V I T V I T

Desktop Thesis-Build

Laptop Thesis-Build

E
la

p
s
e
d

 T
im

e
 (

s
e
c
s
)

10

20

30

40

0 V I T V I T

Desktop Proposal-Build

Laptop Proposal-Build

(a) Thesis Typesetting Performance (b) Proposal Typesetting Performance

The two graphs in this figure plot the performance data for the document build tasks presented
earlier in Table 9.6 and Table 9.11. Note that there is a big difference in the time scale on the y-axis
between the two graphs. The letters V, I, T indicate the measurement of running the workload on
vanilla-Venus, as a normal application on IOT-Venus, and as a transaction respectively.

Figure 9.4: Comparison of Document Build Task Performances

9.2.2.3 Discussion

During the IOT design and implementation stages, we expected that the performance overhead
for transaction execution would come from two main sources: transaction readset and writeset
membership testing and RVM transactions for manipulating the persistent transaction data
structures. We were very much concerned about the first source because our implementation
uses a simple linked list to represent the transaction readsets and writesets. When the transaction
size gets bigger, the quadratic growth of search time for set membership testing could incur
significant slow down. But we decided to defer the use of more complex data structures until
measurements indicate the necessity.

Our experiment results confirm the impact of the two sources on transaction performance.
However, they also reveal the clear dominance of the second source in performance overhead
which we did not fully anticipate. The first source turns out to be only mildly influential in

9.2. TRANSACTION PERFORMANCE 153

transaction performance, even for large transactions such as the trace replay and Venus build
tasks where the transaction readsets contain hundreds of files.

In summary, I/O intensive applications should expect a performance degradation between
10% to 20%. Generally speaking, given the same I/O intensity, the longer it takes to run the
transaction the less performancepenalty it suffers. Fortunately, file access operations are usually
interleaved with application computation time and/or user think time in normal disconnected
operation. Thus, the typical user observable performance degradation is likely to be around
3%, which is quite acceptable and in agreement with our qualitative usage experience.

Finally, the performance of the current implementation can be further fine tuned. Priority
should be given to re-arranging the persistent transaction data structures to reduce RVM flush
activities. In addition, using more advanced data structures such as hash tables in place of
linked lists to represent transaction readsets and writesets could further reduce the performance
overhead.

9.2.3 Performance of Automatic Resolution

Although automatic conflict resolution is expected to be used only occasionally, its performance
still needs to be investigated to make sure that it can be done within a reasonably amount of
time. Excessively slow resolution could hold up system resources for a long time causing great
inconvenience.

The latency of an automatic conflict resolution task depends mainly on the resolver involved,
which could be an application-specific resolver or the application itself in the case of automatic
re-execution. In the current implementation, the execution of a resolver is performed in a
manner identical to a normal transaction. The performance overhead of this has already
been evaluated in section 9.2.2. Therefore, what we evaluate here is the performance cost of
resolution initialization and finalization. The main task of resolution initialization is to create
the appropriate object views for the resolver, i.e., the localization of subtrees that are in conflict.
Resolution finalization is mainly responsible for de-localization: i.e., removing the relevant
localized subtrees and restoring the normal object view. The specific question we investigate
is: what is the latency associated with localization and de-localization?

9.2.3.1 Methodology

The latency of localization and de-localization is determined by the size of the subtrees to be
localized and de-localized. Since subtree size can vary over a wide range depending on the
conflicts involved, we conducted a sensitivity analysis for this parameter. Based on the size of
a typical subtree (to be discussed in section 9.3.2.3 on page 176), we can obtain an estimate of
the typical latency for resolution localization and de-localization.

154 CHAPTER 9. EVALUATION

Our experiment first creates a subtree of specified size on a disconnected laptop client; it
then performs a conflicting mutation through another connected client; finally the first client is
reconnected to the servers. We measure the total elapsed time for the laptop client to localize
the subtree after the conflict is detected. Similarly, we measure the elapsed time of de-localizing
the subtree after discarding all local mutations using the repair tool.

Subtree Localization De-localization
Size Latency(ms) Latency(ms)
50 2855 (28) 2890 (194)
100 5852 (208) 5804 (232)
150 8921 (221) 8579 (157)
200 12033 (39) 11553 (243)
250 15479 (119) 14473 (176)
300 18985 (69) 17655 (197)
350 22707 (61) 20870 (268)
400 27286 (640) 24282 (237)
450 30735 (264) 27140 (195)
500 35617 (309) 31096 (65) Subtree Size(Number of Nodes)

100 200 300 400 500

T
im

e
(m

s
)

10000

20000

30000

40000

0

Localization Time
De-localization Time

The table in this figure shows the latency of localization and de-localization of subtrees of different
sizes. The time values are in milliseconds and represent the mean over ten runs. The numbers
in parentheses are standard deviations. The same data are plotted in the graph to present a visual
display of the relationship between localization/de-localization latency and subtree size.

Figure 9.5: Latency of Localization and De-localization

9.2.3.2 Results and Discussion

Figure 9.5 shows the measured latencies of localization and de-localization for different subtree
sizes. A simple linear regression finds good fit for both curves. For localization latency, the
regression coefficient is 70.62 with respect to the size of the subtree and the R2 value is .994.
For de-localization, the regression coefficient is 61.56 and the R2 value is .998. Both latencies

9.2. TRANSACTION PERFORMANCE 155

grow slightly faster than linear because they involve quadratic components in their operations
such as scanning the cached object database to perform fid-translation. The graph also shows
that the latency for localization grows a bit faster than that of de-localization. This is because
localization needs to perform more internal operations such as checking for un-cached objects
within a local subtree.

To obtain an estimate of latency for resolution localization and de-localization, we need to
know the number of nodes in a local subtree and the number of local subtrees associated with a
transaction to be resolved. The analysis in Section 9.3.2.4 on page 177 shows that a typical local
subtree contains about 30 nodes. Our experience indicates that a non-certifiable transaction
typically has two local subtrees. In this case, the resolution localization/de-localization latency
should typically be between 4 and 5 seconds.

While 4 to 5 seconds may seem high, the cost must be considered within context of automatic
conflict resolution. First, the automatic resolution for typical applications such as make usually
involves a fair amount of computation, making such latency insignificant. More importantly,
transparent conflict resolution relieves the user from spending possibly much more time to
manually repair conflicts. Thus, a few seconds is a small price to pay.

9.2.4 Other Performance Issues

So far we have evaluated the primary factors reflecting the overall IOT performance for common
applications in disconnected operation. In this section, we address some of the secondary
performance issues.

Connected Transaction Execution We do not measure the performance of transaction ex-
ecution in a connected environment for two main reasons. First, since IOT is intended to be
used mainly on disconnected mobile client machines, connected transaction performance is not
a particularly important metric. Second, by design, the performance overhead of connected
transaction execution is basically the same as that of disconnected execution. The only differ-
ence is that connected transaction execution has the write-back caching effect for its mutation
operations. Even on a fully connected client, all the mutations performed by a transaction are
logged and committed (reintegrated) at the end. This is similar to the write-back caching policy
for propagating updates from a client to the servers. As is well known, write-back caching
offers superior performance to the write-through caching policy currently employed by Coda.
Hence, it is possible for transactional execution of a particular application to take less time than
its non-transactional execution on a connected client. To avoid misleading results resulting
from this major difference, we decided not to evaluate connected transaction performance.

156 CHAPTER 9. EVALUATION

Global Concurrency Control For connected transaction execution, a potential performance
cost is the need to automatically re-execute transactions when cross-client read/write sharing is
detected. This is, of course, intrinsic to the OCC concurrency control scheme. We do not have
enough usage information to offer a reasonable estimation of how likely OCC re-execution will
be. Nor do we have sufficient data to design meaningful controlled experiments that can yield
insightful results. There have been OCC performance studies in the literature [71, 6, 75], but
they mostly assume a traditional database environment. To the best of our knowledge, there has
been no actual transaction system in practical use employing OCC as its concurrency control
algorithm. A credible study of the performance impact of OCC in a distributed file system
environment needs to await adequate usage experience.

Two Phase Commitment The 2PC protocol for distributed transaction commitment will
cause additional performance overhead. Since 2PC has not been fully implemented due to time
constraints, we cannot measure its actual performance impact. In practice, however, 2PC has
very little effect on transaction commitment performance because almost all of the transactions
we experienced only update data in a single volume. In such a situation, the atomicity of
transaction commitment is guaranteed by the current Coda’s underlying reintegration process.

Local Concurrency Control IOT uses strict 2PL for local concurrency control among trans-
actions (both IOT and IFT). The performance of a file access operation will be affected whenever
it is in conflict with an ongoing IOT. We exclude 2PL from the evaluation for two main reasons.
First, a disconnected client is typically operated by a single user and the likelihood of executing
concurrent transactions performing conflicting accesses on shared data is very low. Second, the
performance impact of 2PL depends on the data sharing pattern among concurrent applications.
We do not have enough transaction usage experience to design meaningful experiments to
measure such effect.

9.2.5 Summary

It is still premature to draw definitive conclusions about the overall IOT performance when
the system has only been used by a few users. However, the experiments we have conducted
provide substantial evidence to support the following characterizations.

The performance degradation for normal file access operations is small and barely noticeable
for most disconnected activities. The performance overhead of running common applications
as transactions is generally around 3%. When the I/O intensity of the applications increases,
the performance overhead becomes higher, typically in the range of 10-20%. Long-running
transactions tend to suffer less from IOT incurred overhead because it allows more IOT-
generated internal disk writes to overlap with application computation or user think time.

9.3. RESOURCE COST MEASUREMENT 157

Some of the performance overhead is due to certain specific implementation choices and could
be improved by using better alternatives. In summary, there is sufficient evidence to believe
that the IOT model can be realized at modest performance cost.

9.3 Resource Cost Measurement

The discussion in the previous section focused entirely on the client CPU overhead of using
IOT. But the use of IOT also incurs other overheads, such as client memory, server CPU
and network bandwidth. The current IOT implementation ensures that normal file access
operations do not increase any system resource usage other than client CPU cycles. Hence, we
only examine resource costs associated with transactional operations. The key questions we
want to investigate are:

1. Which system resources are subject to increased consumption by transaction execution?

2. What is the overhead of executing a common application as a transaction for each kind
of affected resource?

We classify system resources into two broad categories: local system resources and global
system resources, and study the IOT impact on their usage separately.

9.3.1 Global System Resources

Global system resources refer to system resources outside of a Coda client such as network
bandwidth, server CPU time and server disk space. Because the current IOT implementation
requires no change to any server internal data structures, transaction execution does not cost
any additional server disk space. Hence, our evaluation focuses on two main global resources:
server load and network traffic. We use the term server load to refer to the total amount of
server CPU and server I/O time spent on behalf of a particular system task associated with
transaction operations. We studied the following two specific questions:

1. How is server load affected by transaction-related system activities?

2. How is network traffic affected by transaction-related system activities?

There are three kinds of transaction related activities that consume global system resources:
transaction reintegration, transaction validation, and connected transaction execution. We first
present the measurements of global system resource cost incurred by transaction reintegration,
and then discuss the impact of transaction validation and connected transaction execution on
global system resource usage.

158 CHAPTER 9. EVALUATION

9.3.1.1 Server Load for Reintegrating Disconnected Transactions

Methodology When there are no transaction executions, mutations performed in a discon-
nected operation session are reintegrated to the servers in one batch requiring a single reinte-
gration operation on the corresponding servers. When there are disconnected transactions, the
mutations will be reintegrated in different batches requiring multiple reintegration operations
on the servers. Thus, the impact of reintegrating disconnected transactions on server load boils
down to reintegrating the same set of mutations in one batch versus in multiple batches.

The server load for reintegrating a set of mutations depends on many factors such as the
number, the type and the mixture of the involved mutation operations. Overall, the reintegration
server load can be considered as consisting of two main factors: a fixed initial setup cost and
the cost that is proportional to the number of mutation operations involved. When the number
of mutations is small, the first factor dominates the reintegration server load. In contrast, when
the number of mutations is large, the second factor dominates. Moreover, it grows at a faster
than linear speed because it involves activities such as sorting.

Reintegration Server Load
Experiment One Run Two Runs
Workload (millisecond) (millisecond)

Andrew Benchmark 11003 (617.3) 45429 (1276)

CFS-Build 912 (8.2) 1724.6 (20.6)

This table shows the total elapsed time for a dedicated server to perform reintegration for the
disconnected mutations of one and two independent runs of the Andrew Benchmark and CFS-build
task. The time values are in milliseconds and represent the mean over five runs. The numbers in
parentheses are standard deviations.

Table 9.12: Impact of Disconnected Transactions on Reintegration Server Load

As a result, the impact of disconnected transactions on the total reintegration server load can
go either way. Generally speaking, when the total number of mutations is small, disconnected
transactions will increase the reintegration server load. On the other hand, when the total
number of mutations is large, disconnected transactions can reduce the reintegration server
load. We use two experiments to demonstrate this effect.

The first experiment compares the server load of reintegrating one and two independent runs
of the Andrew Benchmark, which contains a large number of mutations. The second experiment
compares the server load of reintegrating one and two independent runs of the CFS-build task,

9.3. RESOURCE COST MEASUREMENT 159

which compiles the Coda cfs tool and contains only a few mutations. Each experiment
run consists of the execution of the workload (one or two independent runs of the Andrew
Benchmark and CFS-build task) on a disconnected laptop client and the ensuing reintegration
from the laptop client to a dedicated server. In order to eliminate possible interference from
other clients, we use a separate network between the client and the server during reintegration
and make sure that there are no other concurrent threads or RVM activities on both the client
and the server during reintegration.

Results The results of the two experiments are shown in Table 9.12. Because the Andrew
Benchmark contains a lot of mutations, the server elapsed time for reintegrating two discon-
nected benchmark runs together is much bigger than the sum of reintegrating the two runs one
at a time. In contrast, the CFS-build task contains only a few mutations. Hence, reintegrating
the two runs separately costs more server time than reintegrating them together. Suppose
that there is a disconnected operation session containing two independent runs of the Andrew
Benchmark, the reintegration server load will decrease when either of the two runs is executed
as a transaction. Conversely, if the disconnected operation session contains two independent
runs of the CFS-build task, using a transaction for either of the two runs will increase the
reintegration server load.

9.3.1.2 Network Traffic for Reintegrating Disconnected Transactions

Methodology If a disconnected operation session does not contain any transaction execu-
tion, all disconnected mutations are sent to the servers using one reintegration RPC. When
disconnected transactions are involved, the same set of mutations will be broken up into several
smaller reintegration RPC calls. This results in network traffic overhead because transmit-
ting the same amount of data using multiple RPC calls consumes more packets than a single
RPC call. Unlike server load, disconnected transactions always increase reintegration network
traffic.

We use multiple independent runs of the Andrew Benchmark to measure the network traffic
overhead by comparing reintegrating the multiple runs using a single RPC to that using one
RPC per run. The experiment was conducted in the same environment as described in section
9.3.1.1.

Results The measured results displayed in Figure 9.6 indicate that there is only a slight over-
head in reintegration network traffic for disconnected transactions containing a large number of
mutations, such as the Andrew Benchmark. The overhead could be higher when the involved
disconnected transactions contain only a few mutation operations.

160 CHAPTER 9. EVALUATION

Run Reintegration
Number Traffic(KB)

1 1313 (7.6)
2 2366 (75.2)
3 3923 (30.3)
4 5222 (44.5)
5 6476 (34.7)
6 7689 (19.3)
7 8925 (40.3)
8 10262 (38.8)
9 11537 (24.8)

10 12858 (37.7)
Number of Andrew Benchmark Run

2 3 4 5 6 7 8 9 10
T

o
ta

l
N

e
tw

o
rk

 T
ra

ff
ic

(K
B

)

3000

6000

9000

12000

15000

0
1

Combined Reintegration
Separate Reintegration

The table in this figure shows the measured network traffic for reintegrating disconnected mutations
of multiple independent runs of the Andrew Benchmark. The metric used is KB and the values
represent the mean over five runs. The number in parentheses are standard deviations. The two
curves on the right plot the same data presented in the table and a linear projection based on the
reintegration traffic of a single benchmark run.

Figure 9.6: Reintegration Traffic for Multiple Runs of Andrew Benchmark

9.3.1.3 The Impact of Transaction Validation

Transaction validation as currently designed is just comparing version vectors for the involved
objects. We do not measure its effect on both server load and network traffic because it does
not have any long term effect on these two global system resources. The main reason is that the
internal mechanisms for transaction validation are overloaded with those for cache coherence
maintenance, as discussed in section 8.6.1. In essence, the server workload and network traffic
spent on behalf of validating a transaction will relieve the same amount of work that otherwise
would have been carried out by client cache validation and callback maintenance, and vice
versa.

9.3. RESOURCE COST MEASUREMENT 161

9.3.1.4 The Impact of Connected Transaction Execution

Connected transaction execution has an impact on both the server load and the network traffic.
There are two main factors: the write-back caching effect due to mutation logging and the 2PC
protocol for distributed transaction commitment. Obviously, 2PC will increase both the server
load and the network traffic. However, the write-back caching effect of mutation logging can
influence both the server load and network traffic in either direction due to the fact that the
current Coda implementation uses a write-through caching policy.

Connected transactional execution of applications containing a large number of mutation
operations can reduce both the server load and network traffic compared to connected non-
transactional execution. There are two main reasons. First, because mutations get batched
at the client, there are opportunities to cancel redundant mutation operations as discussed in
Chapter 4. Second, it consumes less network traffic and server load to transmit and perform a
large number of mutations at once than to process them one at a time. On the other hand, both
the server load and network traffic can be increased by connected transaction execution if the
application contains only a few mutation operations because the initial overhead of reintegration
will dominate the cost.

We decided not to evaluate the effect of connected transaction execution on server load
and network traffic for the following reasons. First, the 2PC protocol has not been fully
implemented yet. Thus, how it increases the server load and network traffic will not be known
until the actual mechanisms are put in place. Second, a fair comparison on the server load
and network traffic between connected transactional and non-transactional executions cannot
be made until Coda implements a write-back caching policy.

9.3.2 Local System Resources

With the continuing trend of miniaturization of portable computers, a mobile client is likely
to remain resource poor compared to its stationary counterpart. Hence, minimizing the con-
sumption of resources local to a mobile client machine is critical to the viability of the IOT
model. Two kinds of local resources are of primary concern: disk space and RVM space. Local
resources are heavily used and sometimes in shortage during disconnected operation. Our
evaluation concentrates on local resource cost of disconnected transactions. The key questions
to be addressed are:

1. What is the disk space and RVM space cost for executing a typical application as a
transaction?

2. How long can a disconnected client support transaction operations in the two target
application domains before exhausting local resources?

162 CHAPTER 9. EVALUATION

Disconnected transaction execution consumes additional client disk space in two main
categories: shadow cache files and the cache files of local objects used in conflict representation.
RVM space is used for storing persistent transaction information such as readsets and writesets,
local objects in conflict representation, the serialization graph, the wait-for graph and other
miscellaneous items. We only measure the first two contributors to RVM usage because the
rest of the items usually consume only a trivial amount of RVM space.

9.3.2.1 Disk Space Cost for Shadow Cache Files

Methodology A shadow cache file is created when its corresponding Coda object is to be
updated and its present content has been accessed by at least one live transaction (other than
the transaction that is doing the update). Reclamation of a shadow file occurs when all the live
transactions that accessed the shadow content are committed or resolved.

For a disconnected operation session, the total amount of disk space used for maintaining
shadow cache files is mainly decided by the amount of sequential read/write sharing among live
transactions (both IOTs and IFTs) executed during the same disconnected operation session.
Estimating disk usage for shadow cache files is difficult because of many complicating factors
such as the number, the size and the distribution of transactions as well as the sizes of objects
accessed by transactions.

Trace Identifier Machine Name Machine Type Simulation Start Records
Work-Day #1 brahms.coda.cs.cmu.edu IBM RT-PC 25-Mar-91, 11:00 197,985
Work-Day #2 holst.coda.cs.cmu.edu DECstation 3100 22-Feb-91, 09:15 354,105
Work-Day #3 ives.coda.cs.cmu.edu DECstation 3100 05-Mar-91, 08:45 136,425
Work-Day #4 mozart.coda.cs.cmu.edu DECstation 3100 11-Mar-91, 11:45 239,668
Work-Day #5 verdi.coda.cs.cmu.edu DECstation 3100 21-Feb-91, 12:00 299,560
Full-Week #1 concord.nectar.cs.cmu.edu Sun 4/330 26-Jul-91, 11:41 4,008,084
Full-Week #2 holst.coda.cs.cmu.edu DECstation 3100 18-Aug-91, 23:31 2,303,306
Full-Week #3 ives.coda.cs.cmu.edu DECstation 3100 03-May-91, 23:21 4,233,151
Full-Week #4 messiaen.coda.cs.cmu.edu DECstation 3100 27-Sep-91, 00:15 1,634,789
Full-Week #5 purcell.coda.cs.cmu.edu DECstation 3100 21-Aug-91, 14:47 2,193,320

The Records column refers to the number of trace records that are actually processed by the trace
simulator during the simulated period, i.e., between simulation-start and simulation-start plus 12 or
168 hours.

Table 9.13: Information for the Work-Day and Full-Week Traces

9.3. RESOURCE COST MEASUREMENT 163

To obtain a reliable measurement on how much shadow space is needed for a typical
transaction and the accumulated shadow space cost over an extended period of disconnected
transaction operations, we decided to simulate disconnected transaction executions using col-
lected file reference traces. We choose the same ten traces that were used in a previous Coda
performance study [26]. They were carefully screened to ensure that they contain active file
references and the main application domains involved are software development and document
processing. There are five “Work-Day” and five “Full-Week” traces that are 12 hours and 168
hours long respectively and cover a typical working day or week for the primary user of the
workstation. Table 9.13 lists key information about each of the selected traces.

The traces are fed to a simulator that mimics the space allocation and de-allocation activities
for disconnected transaction executions. The simulator takes as argument a list of pathnames
for those applications that are to be simulated as transactions. It tracks all the fork and

Application Path Name Occurrence
awk /bin/awk 8.72%
cc /usr/cs/bin/cc 5.26%
cp /bin/cp 2.12%
cpp /usr/cs/lib/cpp 0.34%
emacs /usr/cs/bin/emacs 1.10%
find /usr/cs/bin/find 1.44%
ld /usr/cs/bin/ld 0.04%
make /usr/cs/bin/make 6.61%
rcsci /usr/misc/bin/rcsci 0.07%
rcsco /usr/misc/bin/rcsco 0.42%
scribe /usr/misc/bin/scribe 0.34%
sed /bin/sed 8.29%
sh /bin/sh 64.30%
vi /usr/ucb/vi 0.95%

This table displays the list of applications that are to be simulated as transactions. The “Occurrence”
column shows the percentage of each application among the total number of transactions simulated.
awk and sed are selected because both are frequently used script languages. make, cc, cpp and
ld are commonly used in software development using the C programming language. scribe is
the only typesetting tool found in the traces, whereas the more popular latex is notably absent
from all trace records. Both emacs and vi are commonly used interactive editors at the time,
while rcsci and rcsco are important tools for maintaining source code revisions. Finally, sh is
chosen because important tasks are often carried out via a shell script.

Table 9.14: Simulated Transaction Applications

164 CHAPTER 9. EVALUATION

execve trace records that are performed on the selected applications and uses process group
id to identify the file reference trace records that belong to the corresponding transactions.
In order to accurately reflect important aspects of disconnected transaction execution such as
transaction optimization, the simulator maintains a mini-database of all accessed objects and
imitates key internal activities of the Venus cache manager and the transaction system. The
simulator is written based on some existing trace analysis tools and contains over 5000 lines of
C++ code, not including the linked libraries from the existing trace analysis tool package.

A key variable in this experiment is the selection of applications to be simulated as transac-
tions. We manually screened all the execve trace records and chose fourteen applications (listed
in Table 9.14) based on their importance in our target application domains and their frequency
of occurrence in the traces. Other applications were not chosen either because we deemed them
of lower importance or because they do not show up in the traces.

Results Because the trace simulation experiment produced a large quantity of informative
results, we discuss them in three steps: (a) how much disk space is needed to maintain shadow
cache files for an extended period of disconnected transaction operations; (b) how much shadow
space is needed for each individual transaction; (c) what is the key factor in keeping the shadow
space cost low.

First, Figure 9.7 shows the high-water mark of shadow space cost for the ten traces, where
each trace is interpreted as an extended disconnected operation session. A majority of the
Work-Day disconnected sessions require less than 100KB of shadow space. One of the traces
results in a much higher cost at about 6.4MB. The reason for this anomaly is that there are
several make transactions compiling the Coda Venus module that end up saving two shadow
copies of the 3MB Venus binary. In case shadow space is exhausted, the two make transactions
will lose their shadow Venus binary. Since binaries are easily regeneratedable from the relevant
source files, discarding the binaries will not pose serious problems for a future resolution of
these make transactions.

The shadow space cost in the five Full-Week sessions has much less variance, with the
highest cost less than 9MB and the average cost about 5MB. Similar to the Work-Day sessions,
many of the repeatedly shadowed objects are software target objects such as the library file
librvm.a (about 700KB) and the executable file rvmutil (about 500KB) in trace #4. The
curve corresponding to the second trace is shaped like a regularly increasing step function
because of a shell script that is executed daily over-writing a large sup [65] log file.

9.3. RESOURCE COST MEASUREMENT 165

Time(Hour)
2 4 6 8 10 12

S
ha

do
w

 S
pa

ce
 H

ig
h-

W
at

er
 M

ar
k(

K
B

)

10

100

1000

10000

0

Trace #1
Trace #2
Trace #3
Trace #4
Trace #5

(a) Work-Day Traces

Time(Hour)
24 48 72 96 120 144 168

S
ha

do
w

 S
pa

ce
 H

ig
h-

W
at

er
 M

ar
k(

M
B

)

1

2

3

4

5

6

7

8

9

0

Trace #1
Trace #2
Trace #3
Trace #4
Trace #5

(b) Full-Week Traces

The two graphs in this figure show the high-water marks of shadow space cost recorded by the
simulator for the five Work-Day and five Full-Week traces listed in Table 9.13. Note that the y-axis
in the Work-Day traces uses log scale to better represent the shadow space cost over time because
one of the traces has much higher cost than the others.

Figure 9.7: High-Water Marks of Shadow Space Cost

166 CHAPTER 9. EVALUATION

Total Live Read Cancelled Total Transactional
Trace Tran. Transaction Only Transaction File File

Count Count Transaction Count Reference Reference
Count Count Count

#1 49 13(26.5%) 17(34.7%) 19(38.8%) 197,985 20,915(10.6%)
#2 88 27(30.7%) 25(28.4%) 36(40.9%) 354,105 157,909(44.6%)
#3 50 14(28.0%) 19(38.0%) 17(34.0%) 136,425 12,321(9.0%)
#4 26 9(34.6%) 7(26.9%) 10(38.5%) 239,668 5,298(2.2%)
#5 23 8(34.8%) 4(17.4%) 11(47.8%) 299,560 104,315(34.8%)

Avg 47.2 14.2(30.1%) 14.4(30.5%) 18.6(39.4%) 245,548.6 60,151.6(24.5%)

(a) Work-Day Traces

Total Live Read Cancelled Total Transactional
Trace Tran. Transaction Only Transaction File File

Count Count Transaction Count Reference Reference
Count Count Count

#1 1028 51(5.0%) 277(26.9%) 700(68.1%) 4,008,084 2,596,980(64.8%)
#2 781 86(11.0%) 182(23.3%) 513(65.7%) 2,303,306 1,267,155(55.0%)
#3 495 57(11.5%) 231(46.7%) 207(41.8%) 4,233,151 396,427(9.4%)
#4 142 40(28.2%) 21(14.8%) 81(57.0%) 1,634,789 442,855(27.1%)
#5 952 63(6.6%) 514(54.0%) 375(39.4%) 2,193,320 642,647(29.3%)

Avg 679.6 59.4(8.7%) 245(36.1%) 375.2(55.2%) 2,874,530 1,069,212.8(37.2%)

(b) Full-Week Traces

Table 9.15: Transaction and File Reference Statistics of Trace Simulation

This table shows statistics of transaction and file reference activities during trace simulation such as
the number of transactions simulated during Week-Day and Full-Week, the number of transactions
that are cancelled, the number of file references that are issued by transactions, and the total number
of file references in each trace.

The shadow space cost is small considering the length of disconnection, the rapidly growing
disk capacity on portable computers, and particularly the amount of disconnected transaction
activity shown in Table 9.15. On average, 47 transactions are executed on each Work-Day and

9.3. RESOURCE COST MEASUREMENT 167

about a quarter of the file references are performed by transactions. During a Full-Week, an
average number of 680 transactions are executed and about 37% of the file access operations
are issued by transactions.

Second, Table 9.16 contains detailed transaction information about each selected applica-
tion during the trace simulation. It displays important statistics such as the total number of
transactional executions for each selected application, the number of transactions that are can-
celled, the average size of the readset and writeset, as well as detailed resource cost information.
The average shadow space cost associated with each live transaction is very small (less than a
couple of hundred bytes) for applications such as awk, cpp, ld, rcsci, rcsco, scribe,
sed and vi. Other applications such as emacs use more shadow space but average only
around a dozen KB.

The make transactions are the biggest shadow space consumers, which average around
718KB per transaction during Work-Day and 295KB per transaction during Full-Week. The
other big shadow space consumer is sh, which uses an average of 284KB per transaction
during Work-Day and 111KB per transaction during Full-Week. These two applications tend
to access large objects and have read/write sharing with subsequent transactions. However,
large shadow files are often associated with objects that can be automatically re-generated such
as library and executable files. Thus, the consequence is rather acceptable even if the limit on
shadow space is exhausted and some transactions must lose their shadow cache files.

Third, the modest shadow space usage for disconnected transactions is primarily due to the
effectiveness of transaction cancellation. In order to find out the exact impact of transaction
cancellation on shadow space cost reduction, we perform the same trace simulation experiment
to measure the shadow space cost without transaction cancellation, and the results are displayed
in Figure 9.8. Without transaction cancellation, the highest shadow space cost for Full-Week
is close to 115MB and the average cost is over 40MB. Compared to the data shown in Figure
9.7, the reduction in shadow space cost is about one order of magnitude. Another important
issue is that the longer the disconnected operation duration, the more effective the transaction
cancellation is. From Table 9.15, an average of 39.4% of transactions are cancelled during
Work-Day and an average of 55.2% of transactions are cancelled during Full-Week.

168 CHAPTER 9. EVALUATION

Total Live Read Cancelled Average Average Average Average
App. Trans. Trans. Only Trans. Read Write RVM Shadow
Name Count Count Trans. Count Set Set Space Space

Count Size Size Cost(B) Cost(B)
awk 6 0 4 2 1.0 0.3 225.0 0.0
cc 11 7 1 3 10.4 2.4 603.4 17.7
cp 27 19 3 5 22.0 11.1 1,562.4 211.9
cpp 10 0 10 0 16.7 0.0 805.9 0.0
emacs 14 13 1 0 22.9 2.6 1,042.4 2,089.8
find 3 0 3 0 1239.3 0.0 46,043.3 0.0
ld 1 0 0 1 7.0 1.0 447.0 0.0
make 28 10 4 14 78.9 4.8 3,121.0 718,190.7
rcsci 1 1 0 0 13.0 7.0 785.0 0.0
rcsco 5 3 2 0 7.6 3.4 540.0 24.0
scribe 9 4 2 3 10.6 2.1 614.3 8.8
sed 16 0 16 0 0.0 0.0 190.3 0.0
sh 99 12 26 61 14.5 1.5 730.0 284,348.2
vi 6 2 0 4 4.5 2.5 362.7 0.0

(a) Work-Day Traces

Total Live Read Cancelled Average Average Average Average
App. Trans. Trans. Only Trans. Read Write RVM Shadow
Name Count Count Trans. Count Set Set Space Space

Count Size Size Cost(B) Cost(B)
awk 311 0 309 2 0.02 0.01 188.8 0.0
cc 180 15 6 159 18.1 2.7 862.7 51,992.3
cp 50 33 10 7 30.5 15.3 2,126.3 28,770.2
cpp 2 0 0 2 51.5 1.0 2,093.5 0.0
emacs 26 22 1 3 35.6 4.0 1,543.3 11,054.0
find 49 2 46 1 62.5 0.3 2,512.5 98,906.0
ld 0 0 0 0 0 0 0 0
make 212 40 14 158 108.7 13.6 4,726.4 294,566.5
rcsci 1 1 0 0 13.0 7.0 779.0 0.0
rcsco 10 9 0 1 9.0 4.6 614.4 384.0
scribe 3 2 0 1 13.7 3.0 745.7 17.5
sed 285 1 279 5 0.1 0.02 193.1 0.0
sh 2241 165 561 1515 50.9 2.5 2,108.1 111,366.7
vi 28 6 0 22 5.5 2.4 390.2 99.7

(b) Full-Week Traces

Table 9.16: Transaction Application Statistics Of Trace Simulation

9.3. RESOURCE COST MEASUREMENT 169

Time(Hour)
2 4 6 8 10 12

S
ha

do
w

 S
pa

ce
 W

/O
 C

an
ce

lla
tio

n
(K

B
)

10

100

1000

10000

0

Trace #1
Trace #2
Trace #3
Trace #4
Trace #5

(a) Work-Day Traces

Time(Hour)
24 48 72 96 120 144 168

S
ha

do
w

 S
pa

ce
 W

/O
 C

an
ce

lla
tio

n(
M

B
)

20

40

60

80

100

120

0

Trace #1
Trace #2
Trace #3
Trace #4
Trace #5

(b) Full-Week Traces

The two graphs in this figure show the high-water marks of recorded shadow space cost when the
simulator does not perform transaction cancellation for the 10 traces listed in Table 9.13. Similar
to Figure 9.7, the y-axis in the Work-Day traces uses log scale.

Figure 9.8: Shadow Space Cost Without Transaction Cancellation

170 CHAPTER 9. EVALUATION

9.3.2.2 RVM Space Cost for Persistent Transaction Data Structures

Methodology For each transaction, key information such as the readset and writeset, the list
of accessed volumes, the conflict resolution option, and the execution environment needs to
be stored in RVM. These persistent transaction data structures are maintained only when the
transaction is alive and are reclaimed as soon as the transaction is committed or resolved. Two
main factors decide the total amount of RVM cost for persistent transaction data structures.
The first factor is the duration of a disconnected operation session: longer sessions typically
result in more live transactions. The second factor is the transaction usage pattern such as the
number and size of live transactions.

We employ the same trace simulation experiment described in the previous Section (9.3.2.1)
to measure the accumulated RVM cost over a sustained period of disconnected transaction
operations. We also use controlled experiments to measure the RVM cost for individual
transactions. The experiment workloads include software build and document build tasks of
small, medium and large sizes. In addition, we execute three different synrgen micro models
[12] as interactive transactions containing repeated editing and compiling activities.

RVM Space Cost(Byte)
Application Total Readset Writeset Volume-set Other
Latex Dissertation(252 pages) 3162 2340 612 96 114
Latex Proposal(54 pages) 1052 756 108 80 108
Latex Short Paper(6 pages) 830 540 108 80 102
Build Coda Venus 13278 8280 4794 96 108
Build Coda Server 7493 6012 1247 128 106
Build Repair Tool 2146 1584 340 112 110
Synrgen Codahacker 6071 2700 3205 48 118
Synrgen Programmer 5933 2664 3103 48 118
Synrgen Synrgenhacker 5641 2664 2808 48 121

This table shows the measured RVM space cost breakdown for executing common applications
as transactions. The Readset, Writeset and Volume-set columns display the RVM cost
for storing the transaction readset, writeset and the list of accessed volumes. The Other column
contains the RVM cost for storing the conflict resolution option, process group id, and pathname
of the working directory, etc. Note that the total cost here does not include the RVM space used to
store the environment variable list, which is stored in a shared environment variable database and
its average RVM space cost is about 2.4KB.

Table 9.17: RVM Cost for Common Transactions

9.3. RESOURCE COST MEASUREMENT 171

Time(Hour)
2 4 6 8 10 12

R
V

M
 S

pa
ce

 H
ig

h-
W

at
er

 M
ar

k(
K

B
)

30

60

90

120

0

Trace #1
Trace #2
Trace #3
Trace #4
Trace #5

(a) Work-Day Traces

Time(Hour)
24 48 72 96 120 144 168

R
V

M
 S

pa
ce

 H
ig

h-
W

at
er

 M
ar

k(
K

B
)

300

600

900

1200

1500

0

Trace #1
Trace #2
Trace #3
Trace #4
Trace #5

(b) Full-Week Traces

The two graphs in this figure show the high-water marks of RVM space cost recorded by the simula-
tor for the five Work-Day and five Full-Week traces listed in Table 9.13. The simulator assumes that
the environment variable list for individual transactions is stored in a shared environment database
occupying 3KB RVM space.

Figure 9.9: High-Water Marks of RVM Space Cost

172 CHAPTER 9. EVALUATION

Time(Hour)
2 4 6 8 10 12

R
V

M
 S

pa
ce

 W
/O

 C
an

ce
lla

tio
n

(K
B

)

30

60

90

120

0

Trace #1
Trace #2
Trace #3
Trace #4
Trace #5

(a) Work-Day Traces

Time(Hour)
24 48 72 96 120 144 168

R
V

M
 S

pa
ce

 W
/O

 C
an

ce
lla

tio
n(

K
B

)

500

1000

1500

2000

0

Trace #1
Trace #2
Trace #3
Trace #4
Trace #5

(b) Full-Week Traces

The two graphs in this figure show the high-water marks of recorded RVM space cost when the
simulator does not perform transaction cancellation for the 10 traces listed in Table 9.13.

Figure 9.10: RVM Space Cost Without Transaction Cancellation

9.3. RESOURCE COST MEASUREMENT 173

Results Similar to the discussion of shadow space cost, we present the measurement results
on RVM space cost in three steps: (a) how much RVM space is needed for an extended period
of disconnected transaction operation; (b) how much RVM space is needed for each individual
transaction; (c) what the key factor is in keeping the RVM space cost low.

First, Figure 9.9 displays the high-water marks of RVM space cost recorded during trace
simulation. The simulator assumes that the total RVM space cost for maintaining the shared
environment variable database is 3KB, which is typical under normal circumstances. For
supporting disconnected transaction operations in a Work-Day, the highest RVM space cost is
about 100KB and the average RVM space cost is less than 50KB. For the longer duration of a
Full-Week, the highest RVM space cost is about 1.2MB and the average cost is about half a MB.
Once again, considering the length of the disconnected duration and the amount of transaction
activity shown in Table 9.15, such RVM space costs are acceptable.

Second, we discuss the measurement results on RVM space cost for individual transactions
from both trace simulation and controlled experiments. Note that the RVM space cost shown
in Table 9.16 does not include the environment variable list since we store them in a shared
environment variable database as described in Chapter 8. For most applications, the RVM
space cost per transaction is quite small, from a couple hundred bytes to several KB. The only
exception is the find transactions in the Work-Day traces where they read 1239.3 objects on
average and cost about 46KB RVM space per transaction. Table 9.17 lists the RVM space cost
for running typical applications as transactions ranging from 1KB to 13KB.

Third, transaction cancellation again plays an important role in keeping the accumulated
RVM space cost low over an extended period of disconnected transaction operations, as shown
in Figure 9.10.

9.3.2.3 Disk Space Cost for Conflict Representation

Methodology When a subtree is localized to represent the client state of an object in conflict,
all the local objects inside the subtree still retain their container cache file. This results
in additional disk space usage. Two factors decide the amount of disk space used by a local
subtree: the number of files in the subtree and the sizes of those files. We employ a combination
of empirical data from AFS and trace analysis to first estimate the number of files in a typical
local subtree, and then estimate the corresponding disk space cost for maintaining that subtree.

Our first step in estimating the number of files in a typical local subtree is to use the result
of a previous study on the distribution of various physical characteristics of AFS reported by
Maria Ebling in [12] shown in Table 9.18. Although the study was done over a large number of
AFS volumes, the strong similarity in file system structures and usage environments between
Coda and AFS makes the extrapolation to Coda acceptable. Our second step is to obtain an
estimation of the height of a typical local subtree using trace analysis and then deduce the

174 CHAPTER 9. EVALUATION

Volume Type
Physical Characteristic User Project System BBoard All

Total Number of Volumes 786 121 72 71 1050
Total Number of Directories 13955 33642 9150 2286 59033
Total Number of Files 152111 313890 113029 144525 723555
Total Size of File Data(MB) 1700 7000 1500 560 11000
File Size (KB) 10.3 (65.0) 24.0 (145.7) 16.4 (72.6) 2.6 (7.0) 19.1 (118.0)
Directories/Directory 3.6 (13.4) 3.0 (4.5) 3.6 (10.4) 6.8 (19.4) 3.2 (8.3)
Files/Directory 14.6 (30.6) 16.2 (35.6) 15.9 (36.9) 66.9 (142.4) 15.7 (34.5)
Hard Links/Directory 3.7 (12.4) 2.0 (1.5) 4.0 (3.9) 0.0 (0.0) 3.4 (5.7)
Symbolic Links/Directory 4.1 (10.1) 3.4 (7.5) 13.6 (45.3) 6.0 (25.9) 6.3 (24.9)

This table, adapted from [12], summarizes various physical characteristics of system, user, project,
and bulletin board (“bboard”) volumes in AFS at Carnegie Mellon University in early 1990. This
data was obtained via static analysis. The numbers in parentheses are standard deviations. The data
in this table was collected by Maria Ebling.

Table 9.18: File System Object Distribution

number of files in the subtree. The basic idea is that every local subtree corresponds to a
conflict, and every conflict involves a partitioned mutation operation. If we know the typical
location of an object that is updated by a mutation operation in the file name space, we can
find out the corresponding height of the subtree rooted at that location. That subtree will be
localized if the mutation results in a conflict.

We built an analysis tool that reads trace records and computes the distribution of the
height of the subtrees rooted at the locations touched by directory mutation operations which
occurred in the input trace. We restrict the trace analysis to only directory mutations because
file mutations can only result in the trivial case of single node subtrees.

Results and Analysis We performed trace analysis on four of the five Full-Week traces listed
in Table 9.13. As indicated by the results shown in Figure 9.11, most directory mutations are
performed at the bottom levels of the file name space. A typical local subtree has only two
levels, i.e., its height is two.

To obtain the relationship between the height of a subtree and the number of files in that
subtree, all we need to do is to solve the following recurrences:

P (1) = 0 (9.1)

P (H) = F +D � P (H � 1) (9.2)

9.3. RESOURCE COST MEASUREMENT 175

Subtree Subtree Height Distribution Over Directory Mutation(%)
Height Create Link Unlink Mkdir Rmdir Symlink Rename Total
1 0.00 0.00 1.45 0.00 0.00 0.00 0.00 1.46
2 36.53 1.05 37.14 0.15 0.00 1.94 5.67 82.50
3 2.49 0.13 4.16 0.07 0.05 1.26 0.82 8.99
4 0.77 0.17 1.03 0.01 0.00 0.14 0.16 2.28
5 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.04
6 0.06 0.00 0.06 0.00 0.00 0.00 0.88 0.99
7 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.86
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11 0.13 0.13 0.27 0.00 0.00 0.00 0.00 0.53
12 0.67 0.32 0.98 0.00 0.00 0.00 0.00 1.98
13 0.03 0.03 0.31 0.00 0.00 0.00 0.00 0.36
total 40.69 1.83 45.40 0.24 0.07 3.36 8.41 100.00

Subtree Height
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Di
st

rib
ut

io
n

(%
)

20

40

60

80

100

0

The table in this figure shows the distribution of subtree height over different kinds of directory
mutation operations. The result is obtained by using the trace analysis tool on four Full-Week traces
listed in Table 9.13. Trace #3 is omitted because of a technical difficulty pertaining to a particular
record in the trace. The graph in this figure plots the same distribution data displayed in the table.

Figure 9.11: Subtree Height Distribution

176 CHAPTER 9. EVALUATION

where P (H) is the number of files in a subtree of height H , F is the number of files per
directory and D is the number of directories per directory. The solution to the above equations
is:

P (H) = F � (DH�1
� 1)=(D � 1)

Using the numbers from Table 9.18, we have:

P (H) = 15:7 � (3:2H�1
� 1)=2:2

Therefore, a typical local subtree of height 2 will have 16 files in it. Since the average
file size is 19.1KB from Table 9.18, a typical subtree costs about 306KB, which is reasonably
small.

9.3.2.4 RVM Space Cost for Conflict Representation

Methodology Local objects in conflict representation still need to be maintained in the cached
object database, which must be stored in RVM. The total amount of RVM space cost for a local
subtree depends on the number of objects in the subtree because each of them occupies roughly
the same amount of RVM space. We use the same methodology used in section 9.3.2.3 to
measure the RVM space cost for local subtrees.

Results and Analysis The relationship between the number of nodes and the height of a
subtree is the solution of the following recurrences.

N (1) = 1 (9.3)

N(H) = (1 + F + L+ S) +D �N(H � 1) (9.4)

whereN is the number of nodes; H is the subtree height; F is the number of files per directory;
L is the number of links per directory; S is the number of symbolic links per directory and D
is the number of directories per directory. The solution is the following formula:

N(H) = (DH + (F + L+ S) �DH�1
� F � L� S � 1)=(D � 1)

Using the numbers in Table 9.18, we have:

9.4. A PRELIMINARY USABILITY ASSESSMENT 177

N(H) = (3:2H + 25:4 � 3:2H�1
� 26:4)=2:2

According to this formula, a typical subtree with a height of 2 contains 30 nodes. Under
the current Venus implementation, each node costs about 392 bytes of RVM space. Hence, a
typical local subtree will cost around 11.7KB of RVM space. It is slightly higher than that of a
typical transaction in Table 9.17, but still small.

9.3.3 Summary

Global Resource Cost Our evaluation based on both quantitative measurements and quali-
tative analysis indicates that transaction executions have limited impact on the overall usage
of global system resources. By design, transaction validation has no long term effect on global
system resource usage. Due to the write-through caching policy employed by the current Coda
implementation, both the server load and network traffic can be increased or decreased as a
result of connected transaction execution depending on the specific circumstances. There can
be a slight increase in server load and network traffic caused by reintegrating disconnected
transactions.

Local Resource Cost Trace driven simulation and controlled experiments offer convincing
evidence that the local system resource cost associated with disconnected transaction usage for
common applications is modest. Both disk space and RVM space costs are small relative to the
normal capacity of today’s portable computers. This is in large part due to the effectiveness of
transaction cancellation.

Local resource cost for conflict representation is also affordable in typical situations and our
anecdotal experience conforms with our evaluation results. In addition, conflicts are rare and
often short lived (quickly resolved afterwards), thus conflict representation incurred resource
costs are unlikely to pose serious problems in practice.

9.4 A Preliminary Usability Assessment

While the previous sections demonstrate the feasibility of the IOT model on the cost side, key
usability issues remain unanswered. For example:

1. How easy it is to program, specify and invoke a transaction? How easy it is to program
an automatic resolver?

178 CHAPTER 9. EVALUATION

2. How often can conflicts be transparently and automatically resolved?

3. How effective is the transaction repair tool in helping users to manually resolve conflicts?

Questions such as these cannot be answered until there is substantial actual system usage
from a sizable user community. What is presented here is the best we can offer at the present
time: a preliminary assessment of a few usability issues based on our limited usage experience.

9.4.1 Interactive Transaction Invocation

Figure 9.12: Examples for Transaction Specification
The window image in this figure shows the content of an IOT profile and the effect of sourcing
it to specify applications such as rcsci, latex and make as transactions with various conflict
resolution options.

Our experience indicates that the interactive interface of the IOT C-shell serves its intended
purposes well. Specifying an application to be treated as a transaction as well as its resolution
option is straightforward. Any existing Unix application can be invoked as a transaction with
ease. This is largely due to the simplicity of the setiot and unsetiot commands, and their
resemblance to the commonly used setenv and unsetenv shell commands. For example,
transactions can be specified by setting a profile and sourcing it at the login time. Figure 9.12
shows the content of such an IOT profile and its effect on transaction specification.

We have experimented executing most of the common applications in our environment as
transactions. Two areas of our implementation need further improvement. First, we should
extend the current interface to better accommodate the traditional C-Shell idioms. Specifically,

9.4. A PRELIMINARY USABILITY ASSESSMENT 179

shell commands connected by pipelines or involving input/output re-directions need to be
properly included in the scope of transaction executions. Second, we need to extend the C-
Shell wild-card mechanism so that a group of applications can be specified as transactions
together. For example, we may want to specify that all applications under /usr/cs/bin are
to be treated as transactions by using the command of setiot /usr/cs/bin/*.

9.4.2 Programming A Transaction

We have used the IOT programming interface to put a transaction wrapper on several common
applications such as rcsco, make and latex. Our experience confirms much of what was
expected from the interface: straightforward programming and well-structured code adaptation.
The most sophisticated use of the IOT programming interface so far has been in developing the
IOT C-Shell. The begin iot and end iot calls are used to bracket the execution of any
applications specified by setiot to be treated as transactions. There is some extra code dealing
with failures and abnormal conditions. Overall, IOT related code is cleanly integrated with the
rest of the C Shell source code.

9.4.3 Resolver Development

Compared to programming a transaction, the programming of an application-specific resolver
can be a demanding task. We conducted a number of case studies to write resolvers for some non-
trivial and commonly-used Unix applications. Our purpose was to evaluate how well the task of
programming resolvers was supported. In this section, we first present two resolver examples,
and then summarize our resolver programming experience with some general observations.

9.4.3.1 Case Studies

A Smart Resolver for Make We developed a resolver for make based on the source code
of the CMU Mach make to demonstrate that our application-specific resolver paradigm can
indeed work for practical and sophisticated Unix applications. The main objective of this
exercise is to investigate how application semantics can be employed to resolve conflicts more
efficiently.

When a make transaction fails to certify, it means that some of the objects accessed by
the transaction have been updated on the servers. As discussed in Chapter 3, an automatic
re-execution of the same transaction under the original environment is guaranteed to restore
data consistency as required by the semantics of make. But, re-execution is often wasteful,
because it throws away local results even when most of them can be reused. For example,

180 CHAPTER 9. EVALUATION

The window image in this figure is taken from the console of elgar, a desktop Coda client. The
Login window displays the main actions on elgar: disconnecting it from the servers, executing
a make transaction that compiles a cfs.o file and links it with a library libutil.a and other
libraries to create the cfs binary file. Before elgar reconnects to the servers, another connected
client COPLAND installs a new version of library libutil.a, as shown by the COPLAND telnet
window. Upon reconnection, the transaction system on elgar fails to certify the make transaction
and automatically invokes the smart-make resolver. The IOT Monitor window shows the
resolution actions where the local result of cfs.o is reused and the new version of libutil.a
is linked to create an up-to-date version of cfs.

Figure 9.13: An Example of a Resolver for Make

9.4. A PRELIMINARY USABILITY ASSESSMENT 181

suppose a disconnected make transaction compiles dozens of object files and builds a Venus
binary. However, one of the libraries linked in was updated on the servers during the discon-
nection. Upon reconnection, we can reuse those locally compiled object files and re-link them
with the new version of the library to produce an up-to-date Venus binary. This can avoid
the unnecessary recompilations of the objects that would have been performed by automatic
re-execution.

We developed a resolver for make called smart-make. Its first part is programmed
based on both the original make source code and the resolution object view provided by IOT’s
dual-replica conflict representation. It extends the basic make dependency checking with the
inspection of the local and global replicas for objects that are in conflict. This enables it to
identify those local objects that were updated by the original make transaction and are still
compatible (as required by the make dependency semantics) with the current global state. For
each make target, the resolver first obtains its local replica, and then tracks the dependencies
defined in the corresponding makefile(s) to find out all the objects that the target depends
on. If any of them has different local and global replicas, the target is re-made. Otherwise, the
local replica of the target can be reused and is copied onto the corresponding global replica.

The second part of smart-make uses the ASR programming library routines to set the
global object view so that only the global state is visible to the resolver. Note that the visible
global state after the first part may contain the reusable local results that just have been copied
into the relevant global replicas. The resolver simply calls internal make functions to re-make
the remaining targets and restore the original object view. When the resolver exits, the IOT
system will take over and automatically commit the new results to the servers and discard all
the previous local results. A complete example that illustrates how the smart-make program
can efficiently resolve a make transaction is shown in Figure 9.13.

An Interactive Resolver for RCS Checkout For some Unix applications, there are often
different alternatives to resolve a read/write conflict and the best strategy for an application-
specific resolver is to interact with the user. Because such interactive resolvers need to display
messages to the users and read input from them, they have to manage input/output as explained
in Chapter 6. Figure 9.14 illustrates an interactive resolver we have developed for the RCS
checkout command (rcsco). The resolver was developed using tcl/tk and written as a
wish script.

9.4.3.2 General Observations

Programming a resolver can be quite difficult, particularly for complicated applications. Work-
ing knowledge of the source code of the original application is a must. We spent a significant
amount of time in studying the make source code during the development of the smart-make

182 CHAPTER 9. EVALUATION

The window image in this figure demonstrates an interactive resolver for rcsco. The target
transaction being resolved is an rcsco command that checked out an old version of iot.h during
disconnection, which was later updated on the servers. The resolver is automatically invoked after
the read/write conflict is detected. It displays the content of both the local and global versions
of iot.h and the difference between them. It also provides the user three resolution options by
simply clicking the corresponding button.

Figure 9.14: An Example of A Resolver for RCS Checkout

resolver. In general, the original author(s) or the site maintainer(s) of an application are the
best candidates for writing the corresponding resolver.

The IOT resolution model is not easily understood at first sight. It usually requires some
concrete examples for a novice IOT programmer to grasp the essence of the model and be
able to code resolvers. The difficulty usually lies in figuring out what is detected by the
IOT mechanism and what the file level conflict means to the application at a semantic level.
However, once the user is able to code a simple resolver, it is not as difficult to apply the same
principles to more complicated cases.

IOT’s incremental resolution model indeed simplifies the programming of resolvers. It

9.5. FURTHER EVALUATION 183

localizes the effect of conflicts and allows the resolver-writers to concentrate only on two sides,
the current global state and the local actions of the transaction being resolved. The multiple
view capability is also a plus, enabling the resolver to take advantage of the original application
capabilities as demonstrated in the smart-make example.

Support for resolver programming could be further improved. Among other things, finding
out what has been accessed (and updated) by the transaction being resolved can be difficult for
some resolvers. A better facility such as iterators capable of enumerating all the elements in
the transaction’s readset and writeset will be helpful. More support is needed to help resolvers
to find and compare local and global replicas of a given object.

9.5 Further Evaluation

So far, we have evaluated the performance overhead, resource cost and some usability issues
of the IOT mechanism based on controlled experiments and case studies. Many other system
usability issues are still unaddressed pending further accumulation of usage experience. More-
over, some of the previous quantitative measurement results need to be further strengthened or
adjusted with more usage data. Here we describe the ongoing work and a brief plan of collecting
IOT usage data and further evaluating the system when sufficient experience is obtained.

9.5.1 Data Collection

We have implemented a data collection mechanism for IOT usage that has been operational
in the production release of Coda for half a year. It is based on the data collection machinery
called mond implemented by Brian Noble [49]. Each running IOT-Venus sends two kinds of
data to a mond server which puts the data into a log file. The mond server periodically ships
the log file to a distributed relational database so that the collected data can be post-processed
using SQL.

The first kind of IOT data is about a particular transaction: its application name, conflict
resolution option, resource usage, and state transition history, etc. When a transaction completes
its lifecycle, such a record is sent from the IOT-Venus to the mond server. The second kind
of data is periodically transmitted from the IOT-Venus to the mond server. This data contains
statistics such as maximum and average readset/writeset size and various information about
localized subtrees and transaction repair sessions.

Other IOT usage data is also collected and persistently stored at the client. This includes in-
formation such as the high-water mark of shadow space cost and statistics about the serialization
and wait-from graphs.

184 CHAPTER 9. EVALUATION

9.5.2 User Survey

Many usability issues are highly subjective. A reliable evaluation requires a scientific survey
of IOT users with substantial experience. Such a survey will have to await the emergence of
a sizable IOT user community. The survey will be used to examine those aspects of the IOT
model and implementation with which users or programmers directly interact. It will need
to ask the users to grade, characterize and comment on their perceptions about issues such as
the effectiveness of the IOT support for resolver programming and manual conflict resolution.
Combined with automatically collected data, this will enable a comprehensive usability study
and shed more light on IOT.

Chapter 10

Related Work

To the best our knowledge, IOT is the first transaction model that is designed for the sole
purpose of providing consistency support for partitioned file access operations, and specifically
addresses the unique constraints and needs of mobile computing such as the resource limitation
on a mobile client. Although the design and implementation of IOT builds upon existing
techniques from areas such as transaction processing and optimistic replication, no other system
offers the combination of properties that IOT possesses.

The first section of this chapter surveys important transaction systems and models that have
had strong impact on the IOT model. The second section compares the conflict detection and
resolution mechanisms between IOT and a few other optimistically replicated systems. Finally,
several commercial products employing optimistic replication techniques are reviewed.

10.1 Transaction Models and Systems

10.1.1 General Purpose Transaction Systems

The basic transaction processing techniques were originally developed in the database com-
munity and have been successfully applied in commercial systems. Because of its ability to
relieve programmers from complicated tasks of handling concurrent accesses to shared data
and various failures in distributed systems, a number of research systems have been developed
to explore transactions as a basic system construct as well as a general programming paradigm
for building reliable distributed applications.

The Camelot system [13] provides a set of libraries for managing key aspects of transaction
processing such as locking and logging so that applications can use them to construct dis-
tributed applications that have the ACID properties. While systems such as Argus [37, 36] and

185

186 CHAPTER 10. RELATED WORK

Avalon [23] emphasize programming language support for transaction operations, the TABS
system [66] supported transactional accesses to user defined abstract data types. A common
objective behind these general purpose transaction systems was to facilitate the management
of system resources and services that possess some or all of the ACID properties. The IOT
model inherits this spirit, except that it specializes in isolation enforcement for partitioned file
services.

10.1.2 Transaction Support for File Systems

QuickSilver QuickSilver [69, 64] is a distributed operating system that uses transactions
as the basic tool to organize all system resource management tasks. Its distributed Unix file
system provides failure atomicity, durability and a relaxed isolation guarantee. It shares IOT’s
pursuit of upward compatibility through an easy-to-use transaction interface that allow existing
Unix applications to be executed as transactions without change. In addition, both consistency
models fine tuned their guarantees for read-only transactions to minimize their performance
impact. However, QuickSilver’s transaction service does not support partitioned file access
operations.

Locus The Locus distributed operating system [74] provides a general purpose nested trans-
action facility. Its main purpose is to support the construction of reliable distributed applications
that are able to deal with complex system failures in a multi-machine environment. Locus uses
a shadow page technique to support atomic file updates on all files and guarantees global atom-
icity via a two-phase commit protocol across all sites involved in a transaction. It employs both
implicit and explicit record-level locking to perform concurrency control. Although Locus is
one of the first to adopt optimistic replication, its transaction service is not intended to guard
against data inconsistencies resulted from partitioned sharing.

10.1.3 Optimistic Concurrency Control

An important transaction processing model that has significant impact on IOT is Kung and
Robinson’s optimistic concurrency control model [33]. The OCC model and disconnected
operation share the basic design philosophy of performing computations in a local scope and
verifying their global validity later. The entire IOT execution model is designed based on OCC.
OCC is directly adopted for cross-client concurrency control for connected transactions. The
optimistic isolation enforcement for disconnected transactions is also OCC-like: consisting
two main steps of local execution and global validation. The major differences are that the
validation is delayed until the client is reconnected to the corresponding servers, and that there
are more options to deal with an invalidated transaction than OCC’s designated choice of

10.2. OPTIMISTICALLY REPLICATED SYSTEMS 187

automatic re-execution. In addition, the original goal of OCC was to reduce the performance
overhead of concurrency control instead of optimistic replication.

10.1.4 Special Transaction Models

In the voluminous research literature about transaction processing techniques, there are a few
specialized transaction models that share important common ground with IOT.

Saga: A Model of Long-Lived Transactions The Saga model [16] is an attempt to apply
transaction models to long running applications. The key idea is to circumvent the strict
serializability requirements by exposing the result of long running transactions and employing
compensating actions to bring the database system into a consistent state. The strong similarity
between Sagas and IOTs is their common belief that it is usually acceptable to expose tentative
transaction results to other transactions as long as their validity can be established later. They
also assume that data consistency can be effectively restored by using application provided
compensating actions. However, Saga and IOT use different transaction execution models and
consistency validation schemes. In addition, the Saga model does not deal with mobility issues
and has not been implemented in an actual system.

Utilizing Transaction Semantics Garcia-Molina proposed to utilize application semantic
knowledge for transaction processing in distributed database systems [15]. This approach
shares IOT’s design philosophy of integrating application semantics to serve useful purposes.
However, it aims to obtain performance gains in concurrency control rather than better con-
sistency maintenance. The model in [15] divides each individual transaction into steps and
acquires application semantic information in the form of transaction types, compatibility sets
and countersteps. Using such information, the transaction manager can produce more efficient
schedules that are not necessarily serializable but still preserve data consistency.

10.2 Optimistically Replicated Systems

10.2.1 The Coda File System

In addition to disconnected operation, the Coda file system also employs optimistic server
replication to enhance data availability. It uses the version vector technique to automatically
detect partitioned write/write conflicts among server replicas, and separate mechanisms to
resolve conflicts for directories and files. Note that Coda’s earlier focus was on write/write
conflicts and IOT is the first attempt to address the issue of partitioned read/write conflicts.

188 CHAPTER 10. RELATED WORK

Log-Based Directory Resolution Coda uses logging to record partitioned directory mutation
operations performed on server replicas [29]. Because directories are used as meta data for
organizing file system structures, the semantics of directory mutation operations are known to
the file system. Such semantics can be employed to automatically resolve many write/write
conflicts such as a partitioned pair of mkdir foo and mkdir bar, as long as the names
foo and bar are not used in the parent directory. The resolution protocol gathers all the
mutation logs from the diverged replicas of a directory; deduces a compensation mutation log
for each replica; replays compensation mutations at the corresponding replicas so that they
become identical again. Actual experience has shown that most conflicts on directories can be
automatically resolved and the log-based approach is very effective because it usually consumes
only a small amount of server space.

Application-Specific File Resolution For write/write conflicts on the server replicas of file
objects, Coda employs a rule-based framework for the users to supply application-specific
resolvers to be automatically invoked [32]. Each resolver is associated with an individual
file and the object/resolver binding is specified in a special rule file. The automatic resolver
invocation is performed lazily, i.e., it is triggered by an attempt to access an inconsistent object.

This object-based ASR differs from IOT’s ASR mechanism in resolver binding and re-
solver’s knowledge of the relevant conflicts. Either approach has its pros and cons. The
object-based ASR is more suitable for applications involving files whose consistency can be
decided by its content alone without knowing the relevant partitioned computations that caused
the conflict (e.g., the calendar program). IOT’s ASR knows more information about the conflict
and can be applied to more common applications.

Representation of Server/Server Conflicts IOT’s dual-replicaconflict representation scheme
is based on Coda’s original representation for write/write conflicts among server replicas. It
uses the same in-place approach and each inconsistent object is dynamically converted into a
directory containing all the accessible server replicas. In addition, dangling symbolic links are
also used to prevent an inconsistent object from being accessed [29].

Original Representation of Local/Global Conflicts Coda’s original representation for lo-
cal/global conflicts adopted a different strategy than the one used for conflicts among server
replicas. The local replica of an inconsistent object was represented outside of the Coda name-
space. All the data in the local replicas were contained in a closure file stored on the client’s
local disk [26]. The global replica of the inconsistent object was visible at its original location.
This approach has the advantage of simple implementation, but it is very difficult for automatic
resolvers to access the local replica. The closure file is still retained in the current system to
serve as a backup copy for local transaction results.

10.2. OPTIMISTICALLY REPLICATED SYSTEMS 189

10.2.2 The Ficus File System

The Ficus distributed file system is a descendant of Locus and performs optimistic replication
within a peer-to-peer system architecture [22, 21].

Conflict Resolution Ficus only detects and resolves partitioned write/write conflicts. There
is no support for detecting and resolving read/write conflicts. In contrast to Coda’s log-based
approach, Ficus employs an inferential method to deduce and resolve conflicts on directories.
Although it avoids the space cost for logging partitioned mutations, the resolution process
becomes much more complicated and a two phase distributed protocol is needed to garbage
collect removed objects, which negatively affects the overall system scalability. Similar to
Coda, Ficus transparently invokes an application specific resolver when a file is detected to be
in conflict [56]. It adopts a slightly different method for binding files with their corresponding
resolvers. Resolvers are executed on the servers, making it more susceptible for security
attacks. In addition, there is no transaction encapsulation for resolver execution.

Conflict Representation Ficus uses a different strategy for conflict representation. It puts
the diverged replicas of an inconsistent object into a special per-volume directory called an
orphanage and notifies the users about the conflict by sending an email. The limitations of this
approach have already been discussed in Chapter 5.

10.2.3 The Bayou System

Bayou is a recent optimistically replicated storage system designed for a mobile computing
environment that includes portable computers with less than ideal network connectivity [68].

Application-Specific Consistency Validation A unique feature of Bayou is its reliance on
application-specific semantics for detecting and resolving write/write conflicts. For every
update operation, the user must supply a routine called dependency check and it will be
automatically executed on the servers so that application-specific knowledge can be employed
to validate whether the current update is in conflict with the previous server state or not. Recall
that IOT’s ASR mechanism can also be employed to perform application-specific consistency
validation. However, Bayou carries the design philosophy of utilizing application semantics to
the extreme. Application-specific consistency validation is performed for every single update
operation. In contrast, Coda’s approach is to rely on the inexpensive version comparison for
the common cases and to use the more expensive application-specific consistency validation
only when the first approach fails.

190 CHAPTER 10. RELATED WORK

Application-Specific Conflict Resolution In Bayou, the user must also provide a merge
procedure for every update operation so that it can be automatically invoked to resolve conflict
when the dependency check fails. This is similar to IOT’s ASR mechanism because the
application provided resolvers are associated with actions instead of objects. However, an
action in Bayou is only one individual update operation, while it is the entire execution of
an application in IOT. Because the current Bayou design requires full replication of an entire
database on each host of the system in order to maintain full consistency, it is impractical for
applications involving large or multiple databases.

10.2.4 Davidson’s Optimistic Transaction Model

The optimistic transaction model proposed by Davidson established the theoretical foundation
for transaction processing in optimistically replicated database systems [9]. The main purpose
of the model is to guarantee that the effect of partitioned transaction executions is equivalent
to a serial execution of the same set of transactions in a connected environment. The key
technique is to establish a global data structure called the precedence graph based on recorded
transaction histories. If the graph has cycles, it means that the partitioned transactions are not
globally serializable and some of them must be backed out to restore data consistency.

This model provides the basis on which the IOT consistency model is built, although
the current implementation only supports the more restrictive serialization criterion of global
certification. However, there are some important differences between Davidson’s model and
IOT. First, the base semantics that Davidson’s model is trying to protect from partitioned
sharing is the traditional serializability-based isolation model instead of the shared memory
Unix model. Second, Davidson’s model is designed for a distributed database environment
and pays no attention to constraints of mobility. Third, its only way of restoring consistency is
through transaction back-out. Finally, there has been actual implementation of this model so
far.

10.3 Commercial Products

Optimistic replication techniques have already found their way into several existing commercial
software products to improve data availability.

10.3.1 Lotus Notes

Lotus Notes [25] is one of the first commercial products to embrace optimistic replication.
Notes is based on a shared document database system that is designed to support a group

10.3. COMMERCIAL PRODUCTS 191

of people working on shared documents in a personal computer network where the database
servers are rarely connected. Group communication is accomplished primarily through adding
documents to a shared database. Optimistic replication is valuable because typical notes
databases such as an address book and software project bug reports are not heavily updated
once the documents are placed in the database. In addition, group members sharing the
documents do not need to see up-to-date data all the times. The replication algorithm of
notes uses a one-way pull model [11] and guarantees eventual consistency of the documents
in all replicas (i.e., changes made to one copy eventually migrate to all). Because of its intended
purposes and operating environment, notes only promises to detect partitioned write/write
conflicts and provides no support for dealing with partitioned read/write conflicts.

10.3.2 Oracle Server Replication

A recent release of Oracle database servers employs optimistic read-only and symmetric (read-
write) replication to improve data availability [51]. A complete copy or a snapshot (partial copy)
of a database table can be replicated at different sites. Read-only replicas are automatically
refreshed to reflect the new updates based on the intervals specified by the users. Updates
to read-write replicas are first performed at the local site and then propagated to the other
sites via the deferred transaction mechanism either periodically (at the intervals specified by
the users) or at specific points in time when connectivity is available or the communication
costs are cheap. Similar to the incremental propagation scheme of the IOT model, deferred
transactions are re-applied one-by-one at the remote site. The difference is that the consistency
validation for deferred transactions relies on value certification and it is only performed for
objects in the transaction’s writeset. If a partitioned write/write conflict is detected, either a
pre-defined conflict resolution procedure or a user specified resolver is automatically executed,
with manual resolution as the last resort. Although Oracle’s optimistic replication mechanisms
adopt many measures similar to Coda, it does not have the capability to detect and resolve
partitioned read/write conflicts, which could be quite important for database applications. In
addition, the design and implementation do not pay attention to the constraints of mobility.

192 CHAPTER 10. RELATED WORK

Chapter 11

Conclusion

This dissertation has described IOT, an explicit transactional extension to the Unix file sys-
tem for safeguarding data consistency in mobile file access. The central idea is optimistic
enforcement of serializability-based isolation requirements for partitioned transaction execu-
tion, aided by flexible conflict resolution mechanisms and integration of application-specific
semantics in not only conflict resolution but also consistency validation. Adopting OCC as
the underlying implementation framework is critical to the successful realization of the IOT
model, where the key insight is recognizing that the disk cache of a mobile client can serve
as the private workspace for optimistic transaction processing under unpredictably changing
system connectivities.

The design, implementation, experimentation and evaluation of a working IOT extension
to the Coda file systems enables us to reach the following conclusions.

� The IOT model is a feasible way of addressing the data inconsistency problems caused
by partitioned read/write conflicts in mobile file access.

� Its practicality is demonstrated by its ability to maintain upward Unix compatibility and
the ample evidence indicating that the support of IOT only incurs modest performance
overhead and low resource costs.

� Initial evidence from controlled experiments shows the effectiveness of IOT’s conflict
resolution mechanisms and the conflict representation scheme in supporting application-
specific resolvers for common Unix applications. It also demonstrates the ease of use of
the IOT interfaces for transaction programming, specification and invocation.

� Due to the lack of usage experience, definitive conclusion on the usability of IOT needs
to be deferred until substantial usage data is accumulated.

193

194 CHAPTER 11. CONCLUSION

The actual realization of the IOT model is much more complicated than anticipated. This
can be attributed to the inherent difficulty of maintaining and propagating tentative transaction
results under unpredictable connectivities in a mobile environment. The design of incremental
transaction propagation and in-place conflict representation strives to simplify the process of
connectivity transitions and transaction resolutions. But it overloads the client with multiple
duties of maintaining the results of uncommitted local transactions, reflecting the changing
global server state, and representing resolution object views to resolvers. Therefore, the design
trade-off for a clean model of client/server state synchronization and transaction resolution is not
only additional computation and resource costs but also significantly increased complexity and
its associated system development and maintenance costs. Such design knowledge could not
have been obtained without the complete process of engineering an actual IOT implementation
in the Coda file system, and is one of the most important findings of this research.

11.1 Contributions

To the best of our knowledge, this research is the first attempt to develop a practical file system
facility to address the data inconsistency problems caused by partitioned read/write conflicts;
and IOT is the first transaction model designed solely for the purpose of improving data
consistency in mobile file access. Centered around those two aspects: the specific contributions
of this thesis research can be classified into the following four areas:

1. Conceptual Analysis

� A study of data inconsistencies caused by partitioned read/write conflicts within the
context of a shared-memory consistency model.

� An analysis of the role of a serializability-based consistency model in detecting data
inconsistencies resulting from partitioned read/write sharing.

2. System Design

� The design of a new abstraction, the IOT model, that balances three distinct criteria:
guarding against data inconsistencies in partitioned file access, maintaining upward
Unix compatibility, and incurring only modest performance and resource costs.

� The smooth integration of application-specific knowledge into the IOT model for
both purposes of conflict resolution and consistency validation.

� A concise conflict representation scheme that provides resolvers with convenient
access to information relevant to resolving an invalidated transaction.

11.2. FUTURE WORK 195

� An incremental transaction propagation model that simplifies the tasks of resolver
programming and manual conflict resolution.

3. Implementation

� A successful combination of optimistic concurrency control across clients with
strict local two phase locking for transaction processing under various system
connectivities.

� A safe and robust resolver invocation mechanism that supports both automatic
transaction re-execution and automatic execution of application-specific resolvers.

� An interactive transaction interface in the form of a special C-Shell that enables
convenient transaction specification and invocation.

� A model of identifying and cancelling redundant transactions during disconnected
operation.

4. Experiment and Evaluation

� Empirical measurements based on controlled experiments, trace simulation and
trace analysis that confirm IOT’s modest performance and resource costs.

� The development of application-specific resolvers for commonly used Unix appli-
cations.

� The demonstration of the effectiveness of transaction cancellation in reducing client
space cost for long-lasting disconnected operation sessions.

11.2 Future Work

For implementation expedience, a few minor features logically belonging to the current IOT
model have not yet been fully supported. A number of implementation enhancements have
been suggested in previous chapters. For example, Chapter 8 outlined a strategy for achieving
full atomicity for transaction validation and commitment. This section describes additional
implementation extensions that will make the current IOT service in Coda more complete. In
addition, two areas worth further investigation are discussed: generalizing the IOT model to
other system environments and providing support for the development of application-specific
resolvers.

196 CHAPTER 11. CONCLUSION

11.2.1 Implementation Extensions

Providing the G1SR Consistency Guarantee Recall that the IOT consistency model de-
scribed in Chapter 3 contains two basic consistency criteria for validating disconnected trans-
actions, namely G1SR and GC. The current IOT implementation in Coda only provides the
GC consistency guarantee. However, for tasks involving tight sharing and frequent concurrent
accesses to shared data from different clients such as the traditional database applications, the
G1SR consistency guarantee may be more suitable for safeguarding their data integrity.

The specific design issues of implementing G1SR have been presented in an earlier doc-
ument [39]. The key is using Davidson’s optimistic database transaction model [9] where
the servers maintain a transaction history and build a global precedence graph when pending
transactions need to be propagated. Theoretically, the testing of G1SR can be achieved by
simply checking whether the precedence graph is acyclic or not. In practice, however, there
are many challenging design issues that require further investigation. These include reducing
server space cost for maintaining a global transaction history, performing automatic resolution
actions, and handling server and partition failures during the G1SR validation process.

Supporting Resolver I/O The resolution of transactions containing interactive I/O operations
often requires communicating with the users through interactive I/O. The current IOT imple-
mentation requires the resolvers to manage their own standard I/O environment. Providing a
library of window-based I/O operations would significantly simplify the writing of interactive
resolvers.

11.2.2 Model Generalization

The current IOT model is designed to support mobile file access in a networked Unix workstation
environment. It also does not deal with server replication for the sake of simplicity. However,
the basic principles behind IOT can be applied to a more general setting.

Server Replication As currently designed, the IOT model only supports disconnected oper-
ation (i.e., optimistic second class replication). However, the IOT model can be generalized
to provide consistency support for optimistic server replication (i.e., first class replication).
There are two alternatives to extending the current transaction propagation model to deal with
multiple servers that are potentially partitioned. The first approach is to superimpose a pes-
simistic replication scheme on server replicas before transaction propagation. In other words,
the transaction system will propagate the result of a tentative transaction to the servers only
when a majority of the replicas of the involved objects are accessible. This method inherits
much of the original IOT model and greatly simplifies the process of transaction validation and

11.2. FUTURE WORK 197

resolution. The second approach is to aggressively propagate transactions to any replicas that
are currently accessible. This would require a complicated transaction propagation protocol
such as the anti-entropy model used in the Bayou system [68] to guarantee eventual mutual
consistency among replicas. Although this approach offers better data availability, it adds
considerable complexity to the transaction model and makes automatic conflict resolution more
difficult.

Database Environment The IOT model can be applied to guard against data inconsistencies
caused by partitioned sharing in optimistically replicated database systems. The basic principle
of imposing serializability-based requirements for partitioned transaction executions naturally
addresses the consistency needs of mobile access in database systems for the following reasons.
First, transactions are already an inherent part of the data access model of typical database
systems. Therefore, there is no need for API extension and maintaining upward compatibility.
Second, serializability-based requirements are commonly adopted as the consistency model
for interleaved transaction executions in database systems. Therefore, they can be uniformly
employed for both executing connected transactions and validating disconnected transactions.

Many important aspects of the IOT model are likely to remain effective in a database
environment, such as the conflict resolution options of automatic transaction re-execution and
automatic invocation of application-specific resolvers. However, some design decisions and
implementation strategies need to be adapted in order to apply the IOT model to database
systems. For example, the consistency validation criterion for disconnected transactions needs
to be changed from GC to G1SR because most database systems use 1SR as their consistency
model. In addition, typical database applications involve frequent data sharing among different
users performing concurrent accesses to shared data, making G1SR more suitable than GC.
As another example, OCC may no longer be an appropriate concurrency control algorithm for
connected transaction executions because heavy cross-client data sharing will result in frequent
transaction re-executions required by OCC, which leads to excessive performance overhead.

Non-Unix File Systems The basic IOT model should be applicable to other non-Unix file
systems such as those used in Windows 95, Windows NT and DOS. Due to the differences in
system usage environments and application paradigms, important aspects of the IOT model such
as consistency validation criterion and conflict resolution options may need to be changed ac-
cordingly. In addition, specific mechanisms such as OCC and 2PL used for concurrency control
may also need to be modified to adjust to the new environment. However, the basic principle of
optimistic enforcement of serializability-based isolation requirements for partitioned file access
operations can remain intact. In addition, the hierarchical file system structure would allow the
current conflict representation scheme to be largely retained.

198 CHAPTER 11. CONCLUSION

11.2.3 Resolver Development

Application-specific resolution plays a key role in the IOT model. However, there is a lack of
support for the programming of application-specific resolvers. Although we have successfully
developed experimental resolvers for commonly used Unix applications such as make, our
approach has been ad-hoc. Generally speaking, the research on how to best support resolver
development is still in its infancy. Fundamental issues such as the semantic model and logical
framework of resolvers are yet to be understood. Basic mechanisms such as secure and reliable
resolver invocation and supporting resolver I/O require further investigation. We discuss the
following two specific areas of future research on resolver development.

Programming Methodology There is a need to gain considerably more experience in de-
veloping resolvers for a large number of applications spanning a wide variety of application
domains. Only when sufficient empirical experience is accumulated, will we be able to classify
common resolver architectures and relate them to application characteristics. A programming
methodology for resolvers will contain a set of basic guidelines for writing a resolver based
on application characteristics. Because conflict resolution requirements for applications in
different domains can be very different, it is likely that such a programming methodology
will be domain-dependent. This means that applications need to be classified into domains
and resolver development for a particular application needs to follow a set of domain-specific
guidelines.

Development Tool Resolver programming is fundamentally different from normal applica-
tion programming. First, a resolver is invoked only under special conditions. Second, the
specific missions of a resolver depend very much on the dynamic system state on the client
and accessible servers. Third, a resolver must be able to handle a wide range of situations
involving partitioned data sharing. As a result, testing resolvers is much more difficult than
testing applications. To facilitate resolver development, it would help to provide a development
tool that assists the users to test resolvers. For example, the tool could allow developers to
supply specifications about the target application and its resolver, and automatically generate
test cases for the resolver. Of course, the development tool must also establish the proper
system environment for invoking the resolver, and present the resolver execution outcome for
inspection.

11.3 Final Remarks

This dissertation has shown that it is practical to use a transactional extension to the Unix file
system for improving the consistency of accessing shared data on a disconnected client in a

11.3. FINAL REMARKS 199

mobile environment. Two basic ideas made it possible: imposing serializability-based isola-
tion requirements for partitioned transaction execution and adopting OCC as the underlying
transaction processing framework under changing system connectivities. In addition, the inte-
gration of application-specific semantics via pre-programmed resolvers proves to be invaluable
in consistency maintenance for mobile file access.

Enabling isolated components of a distributed computing system to operate autonomously
will become increasingly desirable due to growing system size and component mobility. The
successful introduction of disconnected file service four years ago was a milestone in this trend.
This dissertation represents another significant step because it addresses a major limitation of
disconnected file service.

200 CHAPTER 11. CONCLUSION

Bibliography

[1] 4.3 BERKELEY SOFTWARE DISTRIBUTION. UNIX Programmer’s Reference Manual, 1986.

[2] AGRAWAL, D. The performance of protocols based on locks with ordered sharing. IEEE
Transactions on Knowledge and Data Engineering 6, 5 (1994).

[3] ALSBERG, P., AND DAY, J. A principle for resilient sharing of distributed resources. In
Proceedings 2nd International Conference on Software Engineering (October 1976).

[4] BARGHOUTI, N., AND KAISER, G. Concurrency control in advanced database applications.
ACM Computing Surveys 23, 3 (1991).

[5] BERNSTEIN, P., HADZILACOS, V., AND GOODMAN, N. Concurrency Control and Recovery
in Database Systems. Addison-Wesley, 1987.

[6] DAN, A., TOWSLEY, D., AND KOHLER, W. Modeling the effects of data and resource
contention on the performance of optimistic concurrency control protocols. In Proceedings
of the 4th International Conference on Data Engineering (1988).

[7] DAVIDSON, S. An Optimistic Protocol for Partitioned Distributed Database Systems. PhD
thesis, Princeton University, October 1982.

[8] DAVIDSON, S. Optimism and consistency in partitioned distributed database systems.
ACM Transactions on Database Systems 9, 3 (September 1984).

[9] DAVIDSON, S., GARCIA-MOLINA, H., AND SKEEN, D. Consistency in partitioned networks.
ACM Computing Surveys 17, 3 (September 1985).

[10] DELLAFERA, A., EICHIN, M., FRENCH, R., JEDLINSKY, D., KOHL, J., AND SOMMERFELD, W.
The Zephyr notification service. In Proceedings of the 1988 USENIX Winter Conference
(1988).

[11] DEMERS, A., GREENE, D., HAUSE, C., IRISH, W., LARSON, J., SHENKER, S., STURGIS, H.,
SWINEHART, D., AND TERRY, D. Epidemic algorithms for replicated database maintenance.
ACM Operating Systems Review (January 1988).

201

202 BIBLIOGRAPHY

[12] EBLING, M. R., AND SATYANARAYANAN, M. SynRGen: An Extensible File Reference
Generator. In Proceedings of the 1994 ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems (Nashville, TN, May 1994).

[13] EPPINGER, J., MUMMERT, L., AND SPECTOR, A. Guide to the Camelot Distributed Trans-
action Facility including the Avalon Language. Prentice-Hall, Englewood Cliffs, NJ,
1989.

[14] ESWARAN, K., GRAY, J., LORIE, R., AND TRAIGER, I. The notions of consistency and
predicate locks in a distributed database system. Communications of the ACM 19, 11
(1976).

[15] GARCIA-MOLINA, H. Using semantic knowledge for transaction processing in a distributed
database. ACM Transactions on Database Systems 8, 2 (1983).

[16] GARCIA-MOLINA, H., AND SALEM, K. Sagas. In Proceedings of ACM SIGMOD Confer-
ence (May 1987).

[17] GARCIA-MOLINA, H., AND WIEDERHOLD, G. Read-only transactions in a distributed
database. ACM Transactions on Database Systems 7, 2 (June 1982).

[18] GIFFORD, D. Weighted voting for replicated data. In Proceedings of the Seventh ACM
Symposium on Operating Systems Principles (August 1979).

[19] GRAY, J. Notes on database operating systems. In Operating Systems: An Advanced
Course, Lecture Notes in Computer Science. Springer-Verlag, 1978.

[20] GRAY, J., AND REUTER, A. Transaction Processing: Concepts and Techniques. Morgan
Kaufman, 1993.

[21] GUY, R. Ficus: A Very Large Scale Reliable Distributed File System. PhD thesis,
University of California, Los Angeles, June 1991.

[22] GUY, R., HEIDEMANN, J., MAK, W., PAGE, T., POPEK, G., AND ROTHMEIER, D. Im-
plementation of the Ficus replicated file system. In Proceedings of the Summer Usenix
Conference (June 1990).

[23] HERLIHY, M. A quorum-consensus replication method for abstract data types. ACM
Transactions on Computer Systems 4, 1 (February 1986).

[24] HOWARD, J., KAZAR, M., MENEES, S., NICHOLS, D., SATYANARAYANAN, M., SIDE-
BOTHAM, R., AND WEST, M. Scale and performance in a distributed file system. ACM
Transactions on Computer Systems 6, 1 (February 1988).

BIBLIOGRAPHY 203

[25] KAWELL, L., BECKHARDT, S., HALVORSEN, T., AND OZZIE, R. Replicated document
management in a group communication system. In Groupware: Software for Computer-
Supported Cooperative Work. IEEE Computer Society Press, 1992.

[26] KISTLER, J. Disconnected Operation in a Distributed File System. PhD thesis, Carnegie
Mellon University, Pittsburgh, May 1993.

[27] KISTLER, J., AND SATYANARAYANAN, M. Disconnected operation in the Coda file system.
ACM Transactions on Computer Systems 10, 1 (February 1992).

[28] KLEIMAN, S. Vnodes: An architecture for multiple file system types in Sun UNIX. In
Summer Usenix Conference Proceedings (June 1986).

[29] KUMAR, P. Mitigating the Effects of Optimistic Replication in a Distributed File System.
PhD thesis, Carnegie Mellon University, Pittsburgh, December 1994.

[30] KUMAR, P., AND SATYANARAYANAN, M. Log-based directory resolution in the Coda
file system. In Proceedings of the Second International Conference on Parallel and
Distributed Information Systems (January 1993).

[31] KUMAR, P., AND SATYANARAYANAN, M. Supporting application-specific resolution in
an optimistically replicated file system. In Proceedings of the 4th IEEE Workshop on
Workstation Operating Systems (Napa, CA, October 1993).

[32] KUMAR, P., AND SATYANARAYANAN, M. Flexible and safe resolution of file conflicts. In
Proceedings of the Winter Usenix Conference (New Orlean, LA, January 1995).

[33] KUNG, H., AND ROBINSON, J. On optimistic methods for concurrency control. ACM
Transactions on Database Systems 6, 2 (1981).

[34] LAMPORT, L. Time, clocks, and the ordering of events in a distributed system. Commu-
nications of ACM 21, 7 (July 1978).

[35] LEVY, E., AND SILBERSCHATZ, A. Distributed file systems: Concepts and examples. ACM
Computing Surveys 22, 4 (1990).

[36] LISKOV, B., DAY, M., HERLIHY, M., JOHNSON, P., LEAVENS, G., SCHEIFLER, R., AND

WEIHL, W. Argus reference manual. Tech. Rep. Technical Report-400, MIT Laboratory
for Computer Science, November 1987.

[37] LISKOV, B., AND SCHEIFLER, R. Guardians and actions: Linguistic support for robust,
distributed programs. ACM Transactions on Programming Languages and Systems 5
(July 1983).

204 BIBLIOGRAPHY

[38] LORIE, R. Physical integrity in a large segmented database. ACM Transactions on
Database Systems 2, 2 (1977).

[39] LU, Q. Isolation-only transactions in distributed Unix file systems. Thesis proposal,
Carnegie Mellon University School of Computer Science, May 1993.

[40] LU, Q., AND SATYANARAYANAN, M. Isolation-only transactions for mobile computing.
ACM Operating Systems Review (April 1994).

[41] LU, Q., AND SATYANARAYANAN, M. Improving data consistency in mobile computing
using isolation-only transactions. In Proceedings of the 5th Hot Topics in Operating
Systems (Orcas Island, WA, May 1995).

[42] MARTIN, B., AND PEDERSEN, C. Long-lived concurrent activities. Tech. Rep. HPL-90-178,
HP Laboratories, 1990.

[43] MINOURA, T., AND WIEDERHOLD, G. Resilient extended true-copy token scheme for a
distributed database system. In IEEE Transactions on Software Engineering (May 1982).

[44] MORRIS, J. H., SATYANARAYANAN, M., CONNER, M., HOWARD, J., ROSENTHAL, D., AND

SMITH, F. Andrew: A distributed personal computing environment. Communications of
the ACM 29, 3 (March 1986).

[45] MUMMERT, L., EBLING, M., AND SATYANARAYANAN, M. Exploiting weak connectivity
in mobile file access. In Proceedings of the Fifteenth ACM Symposium on Operating
Systems Principles (Copper Mountain, CO, December 1995).

[46] MUMMERT, L., AND SATYANARAYANAN, M. Long term distributed file reference trac-
ing : Implementation and experience. Tech. Rep. CMU-CS-94-213, Carnegie Mellon
University School of Computer Science, 1994.

[47] MURANAGA, T., LU, Q., AND SATYANARAYANAN, M. Supporting cooperative work in a
mobile distributed file system using isolation-only transactions. Carnegie Mellon Univer-
sity School of Computer Science, manuscript in preparation, 1996.

[48] NELSON, M., WELCH, B., AND OUSTERHOUT, J. Caching in the Sprite network file system.
ACM Transactions on Computer Systems 6, 1 (1987).

[49] NOBLE, B., AND SATYANARAYANAN, M. An empirical study of a highly available file
system. In Proceedings for the 1994 ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems (Nashville, TN, May 1994).

[50] NOVELL CORPORATION. NetWare User Manual, 1993.

BIBLIOGRAPHY 205

[51] ORACLE CORPORATION. Oracle7 Server Distributed Systems, 1995.

[52] OUSTERHOUT, J. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

[53] PARKER JR., D., POPEK, G., RUDISIN, G., STOUGHTON, A., WALKER, B., WALTON, E.,
CHOW, J., EDWARDS, D., KISER, S., AND KLINE, C. Detection of mutual inconsistency in
distributed systems. IEEE Transactions on Software Engineering SE-9, 3 (May 1983).

[54] PAUSCH, R. Adding Input and Output to the Transaction Model. PhD thesis, Carnegie
Mellon University School of Computer Science, 1988.

[55] RAHM, E., AND THOMASIAN, A. Distributed optimistic concurrency control for high per-
formance transaction processing. In PARBASE-90 International Conference on Database,
Parallel Architectures and Their Applications (1990).

[56] REIHER, P., HEIDEMANN, J., RATNER, D., SKINNER, G., AND POPEK, G. Resolving file
conflicts in the Ficus file system. In USENIX Summer Conference Proceedings (Boston,
MA, June 1994).

[57] ROSENTHAL, D. Evolving the Vnode interface. In Proceedings of the Summer Usenix
Conference (June 1990).

[58] SANDBERG, R., GOLDBERG, D., KLEIMAN, S., WALSH, D., AND LYON, B. Design and im-
plementation of the Sun network file system. In Summer Usenix Conference Proceedings
(June 1985).

[59] SATYANARAYANAN, M. Scalable, secure, and highly available distributed file access.
Computer 23, 5 (May 1990).

[60] SATYANARAYANAN, M., EBLING, M., AND RAIFF, J. Coda File System: User and Sys-
tem Administrator’s Manual. Carnegie Mellon University School of Computer Science,
December 1995.

[61] SATYANARAYANAN, M., KISTLER, J., KUMAR, P., OKASAKI, M., SIEGEL, E., AND STEERE,
D. Coda: A highly available file system for a distributed workstation environment. IEEE
Transactions on Computers 39, 4 (April 1990).

[62] SATYANARAYANAN, M., KISTLER, J., MUMMERT, L., EBLING, M., KUMAR, P., AND LU,
Q. Experience with disconnected operation in a mobile environment. In Proceedings
of USENIX Symposium on Mobile Location-Independent Computing (Cambridge, Mas-
sachusetts, August 1993).

[63] SATYANARAYANAN, M., MASHBURN, H. H., KUMAR, P., STEERE, D. C., AND KISTLER,
J. J. Lightweight recoverable virtual memory. In Proceedings of the Fourteenth ACM
Symposium on Operating Systems Principles (Asheville, NC, December 1993).

206 BIBLIOGRAPHY

[64] SCHMUCK, F., AND WYLLIE, J. Experience with transactions in QuickSilver. In Pro-
ceedings of the 13th ACM Symposium on Operating Systems Principles (Monterey, CA,
October 1991).

[65] SHAFER, S. The SUP Software Upgrade Protocol User Manual. Carnegie Mellon Uni-
versity School of Computer Science, August 1990.

[66] SPECTOR, A., DANIELS, D., DUCHAMP, D., EPPINGER, J., AND PAUSCH, R. Distributed
transactions for reliable systems. In Proceedings of the 10th ACM Symposium on Oper-
ating Systems Principles (Orcas Island, WA, Decemeber 1985).

[67] STEERE, D., KISTLER, J., AND SATYANARAYANAN, M. Efficient user-level file cache man-
agement on the Sun Vnode interface. In Proceedings of the Summer Usenix Conference
(June 1990).

[68] TERRY, D., THEIMER, M., PETERSEN, K., DEMERS, A., SPREITZER, M., AND HAUSER,
C. Managing update conflicts in a weakly connected replicated storage system. In
Proceedings of the Fifteenth ACM Symposium on Operating Systems Principles (Copper
Mountain, Colorado, December 1995).

[69] THEIMER, M., CABRERA, F., AND WYLLIE, J. Quicksilver: Support for access to data in
large, geographically dispersed systems. In 9th International Conference on Distributed
Computing Systems (1989).

[70] THOMASIAN, A., AND RAHM, E. A new distributed optimistic concurrency control method
and a comparison of its performance with two-phase locking. Tech. Rep. IBMC 15073,
IBM Watson Research Center, 1989.

[71] THOMASIAN, A., AND RYU, I. Analysis of some optimistic concurrency control schemes
based on certification. In Proceedings of the 1985 SIGMETRICS Conference on Measure-
ment and Modeling of Computer Systems (1985).

[72] TRAGER, I., GRAY, J., GALTIERI, C., AND LINDSAY, B. Transactions and consistency in
distributed database systems. ACM Transactions on Database Systems 7, 3 (1982).

[73] TYGAR, D., AND YEE, B. Strongbox: A system for self securing programs. In CMU
Computer Science: 25th Anniversary Commemorative. Addison-Wesley, 1991.

[74] WALKER, B., POPEK, G., ENGLISH, R., KLINE, C., AND THIEL, G. The LOCUS distributed
operating system. In Proceedings of the Ninth ACM Symposium on Operating Systems
Principles (October 1983).

[75] YU, P., AND DIAS, D. Notes on modeling optimistic concurrency control schemes. Tech.
Rep. IBMC 14825, IBM Watson Research Center, 1989.

