
CMUcam2 Vision Sensor

User Guide

* Servos not included.

1

Contents

This Icon will link you to pages where more
detailed general information can be found.

Table of Contents

Introduction ... 2

General Information
 Typical Configuration and Use .. 3
 Operational Explanation ... 5
 Getting Started ... 10
 Testing .. 11
 Focusing with the CMUcam2 GUI .. 12
 Demo Mode ... 15
 Better Tracking .. 24
 About the CMOS Camera .. 26
 Troubleshooting ... 59
 3rd Party Software Information.. 62

Hardware
 Board Layout ... 16
 Ports ... 17
 Jumpers .. 21
 Components and Schematic .. 63
 Parts list ... 64

Communication
 Serial Command Set .. 27
 Data Packet Description .. 56

This icon will warn you about common
mistakes.

This icon will point you to pages where com-
mands used in the text are described.

This is the CMUcam2 Manual v1.06 for the CMUcam2 v1.0 firmware.
For more information go to http://www.cs.cmu.edu/~cmucam or contact us at cmucam@cs.cmu.edu
Copyright 2003 Anthony Rowe and Carnegie Mellon University. All Rights Reserved.
Edited by Charles Rosenberg and Illah Nourbakhsh

This icon will suggest a generic tip from
your friend the yellow dart.

2

Introduction

Introduction

The CMUcam2 consists of a SX52 microcontroller (http://www.ubicom.com/
products/sx/sx.html) interfaced with an OV6620 or OV7620 Omnivision
CMOS camera (http://www.ovt.com) on a chip that allows simple high level
data to be extracted from the camera’s streaming video. The board communi-
cates via a RS-232 or a TTL serial port and has the following functionality:

 • Track user defined color blobs at up to 50 Frames Per Second*
 • Track motion using frame differencing at 26 Frames Per Second
 • Find the centroid of any tracking data
 • Gather mean color and variance data
 • Gather a 28 bin histogram of each color channel
 • Manipulate Horizontally Pixel Differenced Images
 • Transfer a real-time binary bitmap of the tracked pixels in an image
 • Arbitrary image windowing
 • Adjust the camera’s image properties
 • Dump a raw image (single or multiple channels)
 • Up to 160 x 255 Resolution**
 • Supports Multiple Baudrates: 115,200 57,600 38,400 19,200 9,600
 4,800 2,400 1,200
 • Control 5 servo outputs
 • Slave parallel image processing mode off of a single camera bus
 • Automatically use servos to do two axis color tracking
 • B/W Analog video output (PAL or NTSC)**
 • Flexible output packet customization
 • Multiple pass image processing on a buffered image
 • Works with the OV7620 or OV6620 module

*Frame Rate Depends on Window Size
**Camera Properties Depend on Camera Module

3

Typical Configurations and Uses

Typical Configurations and Uses

Typical Uses

One of the primary uses of the CMUcam2 is to track or monitor color. The
best performance can be achieved when there are highly contrasting and in-
tense colors. For instance, it can easily track a red ball on a white background,
but it would be hard to differentiate between different shades of brown in
changing light. Tracking colorful objects can be used to localize landmarks,
follow lines, or chase a moving beacon. Using color statistics, it is possible
to monitor a scene, detect a specific color or do primitive motion detection. If
the camera detects a drastic color change, then chances are something in the
scene changed. Using “line mode,” the CMUcam2 can act as an easy way
to get low resolution binary images of colorful objects. This can be used to
do more sophisticated line following that includes branch detection, or even
simple shape recognition. These more advanced operations would require
custom algorithms that would post process the binary images sent from the
CMUcam2.

See line mode on
page 35.

Computer or uProcessor

CMUcam2
Vision Board

Buffer

CMOS Image Array

5 Servos

2 LEDs

i2c ctrl

data

data

RS-232

Push Button

Jumpers

4

Typical Configuration

The most common configuration for the CMUcam2 is to have it communicate
to a master processor via a standard RS232 serial port. This “master proces-
sor” could be a computer, PIC, Basic Stamp, Handy Board, Brainstem or
similar microcontroller setup. The CMUcam2 is small enough to add simple
vision to embedded systems that cannot afford the size or power of a standard
computer based vision system. Its communication protocol is designed to
accommodate even the slowest of processors. If your device does not have
a fully level shifted serial port, you can also communicate to the CMUcam2
over the TTL serial port. This is the same as a normal serial port except that
the data is transmitted using non-inverted 0 to 5 volt logic. The CMUcam2
supports various baud rates to accommodate slower processors. For even
slower processors, the camera can operate in “poll mode”. In this mode, the
host processor can ask the CMUcam2 for just a single packet of data. This
gives slower processors the ability to more easily stay synchronized with the
data. It is also possible to add a delay between individual serial data charac-
ters using the “delay mode” command. Due to the communication delays,
both poll mode and delay mode will lower the total frame rate that can be
processed. Frame resolutions are not affected by delay mode or baud rate as
they were in the original CMUcam.

Typical Configurations and Uses

See poll mode on
page 46.
See delay mode on
page 33.

5

Operational Explanation

The CMOS image sensor is the heart of what actually gathers the information.
It is a silicon chip that contains a grid of boxes, each of which are sensitive to
different colors of light. After light passes through the lens, it stimulates these
boxes, generating a different voltage proportional to the amount of light. This
voltage gets converted into a single numerical value for each channel. In the
case of the CMUcam2, this value is in the range of 16 to 240. There is a red
channel, a blue channel and two green channels, each of which are only sensi-
tive to that particular color of light. The extra green channel helps fill in the
grid so that each pixel can be evenly spaced across the sensor. The extra green
information also more closely approximates the human eye which is more
sensitive to the color green. For the purpose of simplification, the CMUcam2
ignores the second green value.

How does an image get converted into a series of pixels?

Camera Sensor Output Pixel Mapping
It is sometimes useful to understand more percisely how the data from the
camera sensor is translated into pixels. Here we explain it for the OV6620
sensor, but the same basic layout applies to the OV7620 sensor.

The sensor has 356 columns and 292 rows of light sensitive cells arranged on
a grid. Each location can detect a single color: red, green or blue. Here is the
sensor layout of the first four rows:

Row 1: B(1,1) G(1,2) B(1,3) G(1,4) B(1,5) G(1,6) ...B(1,355) G(1,356)
Row 2: G(2,1) R(2,2) G(2,3) R(2,4) G(2,5) R(2,6) ...G(2,355) R(2,356)
Row 3: B(3,1) G(3,2) B(3,3) G(3,4) B(3,5) G(3,6) ...B(3,355) G(3,356)
Row 4: G(4,1) R(4,2) G(4,3) R(4,4) G(4,5) R(4,6) ...G(4,355) R(4,356)

The camera module takes the data from two sensor rows at a time to generate
each line output from the camera module:

Row 1: B(1,1) G(2,1) R(2,2) G(1,2) B(1,3) G(2,3) R(2,4) G(1,4) ...
Row 2: B(3,1) G(2,1) R(2,2) G(3,2) B(3,3) G(2,3) R(2,4) G(3,4) ...

The CMUcam2 takes this data and outputs following pixel data:

Row 1: [R(2,2):G(1,2):B(1,1)] [R(2,4):G(1,4):B(1,3)] ...
Row 2: [R(2,2):G(3,2):B(3,1)] [R(2,4):G(3,4):B(3,3)] ...

Operational Explanation

6

In order to specify color, you need to define a minimum and maximum allow-
able value for each of those three color channels. Every unique color is repre-
sented by a red, green, and blue value that indicates how much of each chan-
nel is mixed into that final color. The tricky part about specifying a color is
that you need to define a range of allowable values for all three color channels.
Since light is not perfectly uniform and the color of an object is not perfectly
uniform, you need to accommodate for these variations. However, you don’t
want to relax these bounds too much, or many unwanted colors will be accept-
ed. Since, in the case of the CMUcam2, each color channel is converted into a
number between 16 and 240, you can bound each channel with two numbers,
an upper and lower limit. If you have two limits for each of the three chan-
nels, this means that six values can be used to constrain the entire color space
that you wish to track. If you imagine the colors being represented by a cube
where each side is a different color channel (red, green and blue) then the six
values used to select your color would draw a three dimensional box inside
that cube that defines your desired set of colors.

Color tracking is the ability to take an image, isolate a particular color and
extract information about the location of a region of that image that contains
just that color. As an example, assume that you are given a photograph that
contains a red ball sitting on a dirt road. If someone were to ask you to draw
a box around anything that was the color red in the image, you would quite
easily draw a rectangle around the ball. This is the basic idea behind color
tracking. You did not need to know that the object was a ball. You only needed
to have a concept of the color red in order to isolate the object in the picture.
In this section we will briefly address how the CMUcam2 actually uses the
information in a camera image to perform color tracking.

(Photograph Courtesy of Jim Reed)

What is tracking a color and how does the CMUcam2 do it?

Operational Explanation

7

Once you have a bound for the color you wish to track, the CMUcam2 takes
these bounds and processes the image. There are many ways to track colors in
an image that can be quite complex. The CMUcam2 uses a simple one pass al-
gorithm that processes each new image frame from the camera independently.
It starts at the top left of the image and sequentially examines every pixel row
by row. If the pixel it is inspecting falls inside the range of colors that the user
specified, it marks that pixel as being tracked. It also examines the position
of the current tracked pixel to see if it is the top most, bottom most, left most
or right most position of all the tracked pixel found thus far in the image. If
it finds that the pixel is outside of the current bounding box of the tracked
region, it grows the bounding box to contain this new pixel. Because the loca-
tion of even a single tracked pixel can change the bounding box, the bounding
box can sometimes fluctuate quite a bit from frame to frame. Noise filter-
ing (see next paragraph) can be used to reduce some of that fluctuation. The
only other major piece of information that is stored is a sum of the horizontal
and vertical coordinates of the tracked pixels. At the end the image you can
take the horizontal sum and the vertical sum of the tracked pixels and divide
each by the total number of tracked pixels, you get a value that shows where
the middle of the tracked object is located. Because each tracked pixel only
contributes a small part to the final horizontal and vertical sums the middle
(often called the centroid) of the tracked pixels is typically a much more stable
measurement than the bounding box. Once all of the pixels in the image have
been checked, the total number of tracked pixels can also be used in con-
junction with the area of the bounding box to calculate the confidence of the
tracked object.

Noise filtering allows us to make the color tracking ranges larger so we can
accommodate larger variations in the image pixel values without causing other
random variations in the image to be tracked. The idea behind noise filtering
is that we only want to consider a pixel to be of the tracked color if it is part
of a group of pixels that are within the color tracking bounds. Again in the
CMUcam2 we implement this in a way that only requires a single pass over
the image. While processing the pixels in an image the CMUcam2 maintains
a counter which keeps of track of how many sequential pixels in the cur-
rent row, before the current pixel were within the tracked color bounds. If
that value is above the noise filter value then the current pixel is marked as a
tracked pixel.

Operational Explanation

8

How does the CMUcam2 do Frame Differencing?

Frame differencing is a method of identifying changes in a series of images.
Given multiple images at different times from the same or similar view points,
it is possible to compare them in order to isolate objects that may have moved.
Using the CMUcam2’s frame differencing functionality is a good way to
detect and track such motion in a scene. Instead of storing an entire image, the
CMUcam2 stores an abstraction of the image. Using a similar process to color
tracking, the CMUcam2 will generate or compare the image on a line by line
basis as it receives the data.

The CMUcam2 internally represents a reference image as an array of 8 by 8
bytes. Each element of this array stores the average of a corresponding region
on the main camera image. The default setting uses the green or intensity
channel, but this can be changed for situations where one channel clearly
shows more variation than the others. When a new image is read in, it is also
converted into an array of 8x8 bytes. To look for a change, each block in the
8x8 grid is subtracted from the corresponding reference image block. If there
is more than a specified threshold, a change is flagged. The rest of the data,
such as middle mass, is calculated in an almost identical manner to the way it
is in color tracking.

Operational Explanation

9

What is a histogram and what is it good for?

A histogram is a type of chart that displays the frequency and distribution of
data. In the case of the CMUcam2, the histograms show the frequency and dis-
tribution of color values found in an image. Each bar represents a range of color
values for a specific channel. The CMUcam2 can divide the possible color val-
ues from 16 to 240 into up to 28 different bins. Each bin contains the number of
pixels found in the image that fall within those color bounds. So a large value
in one particular bin, means that many of those colors where found in the image.
Each histogram only represents one select channel of color. Using buffer mode
it is possible to quickly grab three histograms, one for each channel.

Histograms are a way of abstracting the contents of an image. They have many
uses such as primitive object recognition, thresholding or color balancing. They
are particularly useful for distinguishing between different textures. Try point-
ing the CMUcam2 with auto-gain turned off at two different textured surfaces
and notice the difference in their color distributions. This effect could be used
to distinguish floor surfaces or detect obstacles. When used in conjunction with
pixel differencing a histogram can tell you about the strength of the edges vis-
ible to the camera.

Bins

N
um

be
r o

f P
ix

el
s i

n
ea

ch
 B

in

Operational Explanation

10

Getting Started

Getting Started

In order to initially test your CMUcam2, you will need a serial cable, a power
adapter and a computer. The CMUcam2 can use a power supply which pro-
duces anywhere from 6 to 15 volts of DC power capable of supplying at least
200mA of current. This can be provided by either an AC adapter (possibly
included) or a battery supply. These should be available at any local electron-
ics store. The serial cable should have been provided with your CMUcam2.
Make sure that you have the CMOS sensor board connected to the CMUcam2
board so that it is in the same orientation as the picture shows on the cover of
this manual.

First, connect the power. Make sure
that the positive side of your power
plug is facing away from the main
components on the board. If the cam-
era came with an AC adapter, make
sure that the connector locks into the
socket correctly.

Now that the camera has power, con-
nect the serial link between the cam-
era and your computer. This link is
required initially so that you can test
and focus your camera. The serial
cable should be connected so that the
ribbon part of the cable faces away
from the board. You must also connect
the serial pass through jumper.

Check to make sure that the clock
jumper is connected. This allows the
clock to actively drive the processor.

Once everything is wired up, try turn-
ing the board on. The power LED
should illuminate green and only one
LED should remain on. Both LEDs
turn on upon startup, and one turns off
after the camera has been sucessfully
configured.

Power

Serial Cable and Jumper

Clock Jumper pwr LED

Setting Up the Hardware

Make Sure Clock and
Serial Jumper are in
place.

See page 59 for
startup troubleshoot-
ing.

- +

11

Testing the Firmware
Once you have set the board up and downloaded the firmware, a good way to
test the system is to connect it to the serial port of a computer.

 Step 1: If one does not already exist, build a serial and/or power cable

 Step 2: Plug both of them in.

 Step 3: Open the terminal emulator of your choice.

 Step 4: Inside the terminal emulator set the communication protocol
 to 115,200 Baud, 8 Data bits, 1 Stop bit, no parity, local echo
 on, no flow control and if possible turn on “add line feed” (add
 \n to a received \r). These setting should usually appear under
 “serial port” or some other similar menu option.

 Step 5: Turn on the CMUcam2 board; the Power LED should light
 up and only one of the two status LEDs should remain on.

 Step 6: You should see the following on your terminal emulator:

 CMUcam2 v1.0 c6
 :

 If you have seen this, the board was able to successfully
 configure the camera and start the firmware.

 Step 7: Type gv followed by the enter key. You should see the
 following:

 :gv
 ACK
 CMUcam2 v1.0 c6
 :

 This shows the current version of the firmware. If this is
 successful, your computer’s serial port is also configured
 correctly and both transmit and receive are working.

Getting Started

See page 62, for
more detailed termi-
nal software infor-
mation.

See get version on
page 37.

12Getting Started

Focusing with the CMUcam2 Graphical User Interface (GUI)

When you first run your CMUcam2, the lens will most likely not be in focus.
In order to focus the camera you need to look at some dumped images. The
easiest way to do this is using a graphical user interface that can display the
CMUcam2 frame dump packets. One option is to use the CMUcam2GUI, a
Java program that can be found on the CMUcam2 website.

Step 1: Testing if you have java installed

The first step is to determine if your computer already has java installed. The
easiest way to do this is go to the “start menu” in windows and select “run”.
Inside the run dialog, type “command” to get a dos prompt. (In unix or later
versions of the Mac OS, open up a shell.) Now try typing “Java -version” into
your command line. If a message that says “Java version “1.x.xx” appears
then java is installed. If instead you get “command not found” or some similar
message, then you need to go to java.sun.com and download a copy of Java
(J2SE, JDK, JRE are all valid things to install). Sun should have platform
specific instructions on how to install java. Also be sure that your version of
Java is 1.4.0 or newer. If it is not, then you will need to download a new copy
of Java.

Step 2: Running the CMUcam2GUI

Once you have Java installed, download a copy of the latest CMUcam2GUI
Java program. Unzip the CMUcam2GUI.zip file. Open up the stand_alone
folder. In Windows double click on the CMUcam2GUI jar file. In unix, navi-
gate to the CMUcam2GUI directory and type “java -jar CMUcam2GUI” to
execute the GUI.

The CMUcam2GUI
needs java version
1.4.0 or higher.

13

Step 3: Grabbing a Frame

You should now see a dialog box that asks you to
select the correct serial COM port. In windows, type
in the number of the COM port that the CMUcam is
connected to and press the “Ok” button. In unix,
make sure that the path to your com port is correct and then press “Ok”. The
CMUcamGUI should now open and display the message “CMUcam version
2 type X ready.” in the “Console” box. That means that the CMUcam2GUI
found and was able to communicate with the camera. Once this works, select
“Send Frame”. After a few seconds you should see an image appear in the
window.

This means that the
camera was found.

Getting Started
Push to Grab a Frame
from the Camera

14

Step 4: Focusing
Once you have the ability to grab frames from the camera, you should be able
to rotate the front part of the CMUcam lens and see the image change. Try to
get the picture to be as sharp as possible by dumping frames and changing the
position of the lens a small amount each time. Usually the camera is in focus
when the lens is a few rotations away from the base. (Once you have focused
the lens you may find it useful to use some electrical tape to keep it in place)

Rotate here to focus

CMUcam Lens Mount

Getting Started

Step 5: Other things to try once the camera is focused

Now take a quick look at the Config tab. When you change Color Space,
White Balance, etc. (except for Noise Filter), it will automatically get sent and
configured to the CMUcam.

Now go to the Color tab. This has the TrackWindow button. Place a uniform,
highly color-saturated object in front of the camera and click this button to
track. To stop it use the “STOP” button top right. Try it with line mode by set-
ting Config line mode on.

Go to Motion tab. Position the camera so it is looking at something static (non-
moving) and hit Load Frame. Then immediately hit Frame Diff and continu-
ous frame differencing to the loaded frame begins. Move a small object like a
pencil across the camera FOV(field of view) to test. When done hit Stop.

Now go to Histogram tab. In here you can do 1D histograms of each
color channel individually. Left to right, the histogram shows amount
of ‘0’ at the left extreme (no intensity in that color) and ‘255’ at the right
extreme (high intensity in that color). It’s continuous once you hit Get His-
togram. Try something black, homogenously colored, something with varied
color. Again, use STOP to finish.

On the Stats page, once you hit GetMean, there is a very nice continuous
update of the mean color seen across the camera’s window.

15

Demo Mode

Demo mode causes the camera to call track window and then drive two stan-
dard hobby servos towards the object being tracked. This can be initiated
autonomously at startup. First you need to plug a pan and/or tilt servo into
servo ports 0 and 1. Servo port 0 is for the pan, while 1 is for the tilt. Next,
make sure that the servos are being powered by either the internal servo power
jumper or by an external power source. While holding down the push button,
turn the camera on. The tracking LED should begin rapidly blinking. Imme-
diately release the push button and wait for the LED to stop blinking. Next,
point the camera at a colored object and press the push button again. This
should grab the color of the object and begin automatically servoing towards
it. If the servos appear to be driving in the reverse direction, add the appropri-
ate servo direction jumper. During the period when the LED is blinking, the
camera is adjusting to the light conditions in the room. Try not to hold the ob-
ject in front of the camera while this is occurring. Experiment with different
colors and lighting. You will notice that some work much better than others.

Servo Internal
Power Jumper

Main PowerServo Power

- + - +

Push Button

Pan Servo
Tilt Servo

The following steps are performed during power up in demo mode:
1. RS is sent to the camera
2. Pause 5 seconds while blinking the LED to allow the camera to stabilize
3. The Camera register string “CR 18 32 19 32” is sent.
4. Auto Servo Mode is enabled.
5. TW is called.

Demo Mode

See RS on page 49.
See CR on page 31.
See SM on page 51.
See TW on page 54.

See page 21, for pan
and tilt servo reverse
jumpers.

 Gnd + Sig

16

Board Layout

Board Components

PowerServo Power Power
Switch

Analog
Video Out

Power
LED

Servo Outputs

0
1
2
3
4

Button

Status LED 1
Status LED 2

Serial Port

SX52

MAX
232

AL422B

TTL Serial Serial Bypass
Jumper

Clock Jumper

Servo Power
Jumper

75Mhz
Oscillator

I/O PORT

Jumper Port

0 1 2 3 4 5

- +- +

17

Ports

Power
The input power to the board goes through a 5 volt regulator. It is ideal to
supply the board with between 6 and 15 volts of DC power that is capable of
supplying at least 200 milliamperes of current.

Servo Internal
Power Jumper

Main PowerServo Power

- + - +

Extra Servo
Capacitor

The servos can either be powered by internal power, or by the external servo
power connector. To run them off of internal power, connect a jumper across
the “servo internal power jumper”. To run them off of external power, leave
the jumper open, and connect another 5volt supply to the servo power connec-
tor. Do not connect an external servo supply while the servo power jumper is
in place. If the servos are drawing too much power or seem to be noisy, try
soldering a large valued capacitor across the “Extra Servo Capacitor” connec-
tions. The external servo power is not switched by the main power switch.

If the servos are jit-
tering or the camera
does not properly
power up, try solder-
ing a 100uF external
capacitor to the extra
servo cap pads.

Do not connect ex-
ternal servo power
while the servo
jumper is in place

Ports

- +

18

The CMUcam2 has a standard level shifted serial port to talk to a computer as
well as a TTL serial port for talking to a microcontroller.

The level shifted serial port only uses 3 of the 10 pins. It is in a 2x5 pin con-
figuration that fits a standard 9 pin ribbon cable clip-on serial sockets and 10
pin female clip on serial headers that can both attach to a 10 wire ribbon cable.
If this initially does not work, try flipping the direction that the ribbon cable
connects to the CMUcam2 board. Make sure the serial jumper is in place
when you use this mode.

The TTL connector can be used to talk to a micrcontroller without the use of
a level shifting chip. It operates between 0 and 5 volts. Remove the Serial
Jumper when you use this mode.

Serial Port

1 5

6 9

Ground

PC Send, CMUcam Recieve

PC Recieve CMUcam Send

The Trapezoidal serial connector shown is what the serial connector on your computer should look like if
drawn in an annoying line art drawing program.

Ground

+5 V

Serial Jumper

Logic Out (STX)
from CMUcam

Logic In (SRX)
to CMUcam

If the standard serial
port does not work,
try plugging in the
serial connector the
opposite way.

Ports

19

Camera Bus

This bus interfaces with the CMOS camera chip. The CMOS camera board is
mounted parallel to the processing part of the board and connects starting at
pin 1. The female camera header should be soldered on the back of the board.

See the picture on the
cover of the manual
to make sure that
you have the CMOS
sensor connected
correctly.

See page 25 for more
information on the
CMOS camera chips.

1

1-8 Y0-Y7 Digital Output
 Y Bus
9 PWDN Power Down
 Mode
10 RST Reset
11 SDA I2C Serial Data
12 FODD Odd Field Flag
13 SCL I2C Serial Clock
14 HREF Horizontal Ref
15 AGND Analog Ground
16 VSYNC Vertical Sync
17 AGND Analog Ground
18 PCLK Pixel Clock
19 EXCLK External Clock
20 VCC +5 VDC
21 AGND Analog Ground
22 VCC +5 VDC
23-30 UV0-UV7 Digital Output
 UV BUS
31 GND Common Ground
32 VTO Video Out
 (75Ohm)

2

Ports

20

Servo Port

See page 17 for more
information on servo
power.

Ports

0
1
2
3
4

Gnd +5 Sig

Servo Ports

The CMUcam2 has the ability to control 5 servos. This can be useful if you
do not wish to use a separate servo controller. The servo port can also be used
as a general purpose digital outputs.See SV servo com-

mand on page 53.

See SO servo com-
mand on page 51.

21

Configuration Jumpers

Ports

The jumpers can be used to set the camera’s baudrates or configure various
modes of operation.

115,200 Baud
57,600 Baud
38,400 Baud
19,200 Baud
9,600 Baud
4,800 Baud
2,400 Baud
1,200 Baud

_ _ _
_ _ X
_ X _
_ X X
X _ _
X _ X
X X _
X X X

 Pin
0 1 2

Baud RatePan Tilt SM 0 1 2

Jumpers 0 1 and 2 set the camera into the fol-
lowing baudrates:

X - jumper closed
_ - jumper open

During Auto Servo Mode, or demo mode it may be necessary to reverse the
direction of the pan or tilt servo. Connecting the pan and/or tilt jumper will
cause auto servo mode to send the opposite commands to each servo. Note,
this only works for auto servo mode, and not for normal servo operations.

Pan and Tilt Reverse Jumpers

22Ports

The CMUcam2 supports a mode of operation that allows multiple boards to
process data from the same camera. If a PC104 style pass-through header
is used instead of the standard double row female header, it is possible to
rack multiple boards along the same camera bus. Upon startup, if the “SM”
jumper is set, the camera becomes a slave. Slave mode stops the camera board
from being able to configure or interfere with the CMOS camera’s settings.
Instead it processes the format setup by the master vision board. When link-
ing the buses together you must only have one master; all other boards should
be setup to be in slave mode. In this current version of the system there is no
message passing between boards other than the image data from the camera
bus. This means you have to communicate to each slave board via a separate
serial link. This communication to the board should be identical to using a
single CMUcam2. For example, you could have the master board tracking
some color while the slave board could be told to get mean color data. Each
board runs independently of one another and only the master can control cam-
era registers.

Slave Mode Jumper

Axuliary I/O

GND +5 0 1 2 3

The CMUcam has 4 auxiliary Input Output ports that can be used for reading
data from external devices. Note, that pin 3 is used for the sleep deeply com-
mand.See GI command on

page 35.
See SD command on
page 49.

See CT command on
page 32.

23

Using the OV6620 camera module, you will be able to get a PAL video signal
from the analog port of the CMUcam2. This would sync up with any PAL
monitor, but will not work with a standard NTSC monitor.

The OV7620 camera module will output a standard black and white NTSC
video signal.

To use this output, it is necessary to keep the camera at its maximium frame
rate (the default) and switch it into YCrCb mode in order to see the image on a
monitor.

Analog Video Port

See CR command
on page 31 for info
on how to switch to
YCrCb mode.

Make Sure Camera
is operating at full
frame rate and in
YCrCb mode.

Analog Video Out Port

Signal

Ground

Ports

24

Notes on Better Tracking

Notes on Better Tracking

Auto-gain is an internal control that adjusts the brightness level of
the image to best suit the environment. It attempts to normalize the
lights and darks in the image so that they approximate the overall
brightness of a hand adjusted image. This process iterates over
many frames as the camera automatically adjusts its brightness
levels. If for example a light is turned on and the environment gets
brighter, the camera will try and adjust the brightness to dim the
overall image.

White balance on the other hand attempts to correct the camera’s
color gains. The ambient light in your image may not be pure
white. In this case, the camera will see colors differently. The
camera begins with an initial guess of how much gain to give each
color channel. If active, white balance will adjust these gains on a
frame-by-frame basis so that the average color in the image ap-
proaches a gray color. Empirically, this “gray world” method has
been found to work relatively well. The problem with gray world
white balance is that if a solid color fills the camera’s view, the
white balance will slowly set the gains so that the color appears to
be gray and not its true color. Then when the solid color is re-
moved, the image will have undesirable color gains until it re-es-
tablishes its gray average.

When tracking colors, like in demo mode, you may wish to allow
auto-gain and white balance to run for a short period and then shut
them off. While on for a period of about 5 seconds, the camera can
set its brightness gain and color gains to what it sees as fit. Then
turning them off will stop the camera from unnecessarily changing
its settings due to an object being held close to the lens or shadows
etc. If auto-gain and white balance where not disabled and the cam-
era changed its settings for the RGB values, then the new mea-
sured values may fall outside the originally selected color tracking
thresholds.

Auto-gain and White Balance

The camera module
requires Auto-gain to
be enabled to utilize
white balance.

25

YCrCb is a different color space definition from the more commonly known
RGB space. In YCrCb the pixel illumination data is stored in the Y channel.
Because of this property, in YCrCb mode the camera may be more resistant to
changes in illumination. Because it is a different color space, images in YCrCb
do not look like standard RGB images when directly mapped by a frame dump
program. The RGB channels map to CrYCb. So in YCrCb mode, the value
returned as the red parameter is actually Cr, the green parameter is Y and the
blue parameter is Cb. So if you wish to track a red object, you need to look at
a dumped frame to see what that object’s colors map to in YCrCb. It should
then be possible to find the Cr and Cb bounds while giving a very relaxed Y
bound showing that illumination is not very important. Below are the transfor-
mations used by the camera to convert RGB into YCrCb:

 RGB -> CrYCb
 Y=0.59G + 0.31R + 0.11B
 Cr=0.713x (R-Y)
 Cb=0.564x (B-Y)

When using YCrCb, make sure you take into account that in terms of all
CMUcam I/O, Red maps to Cr, Green to Y and Blue to Cb.

YCrCb Color Space

Notes on Better Tracking

Notice that the RGB
channels map to
give you CrYCb, not
YCrCb.

26

About the CMOS Camera Modules

From power up, the camera can take up to 5 seconds to automatically adjust
to the lighting conditions. Drastic changes in the environment, such as lights
being turned on and off, can induce a similar readjustment time. When using
the camera outside, due to the sun’s powerful IR emissions, even on relatively
cloudy days, it will probably be necessary to use either an IR filter or a neutral
density camera filter to decrease the ambient light level. The field of view
depends on the lens attached to the camera. It is possible to special order the
camera with wider or narrower lenses. Individual lenses can be purchased
separately.

The functions provided by the camera board are meant to give the user a
toolbox of color vision functions. Actual applications may greatly vary and
are left up to the imagination of the user. The ability to change the viewable
window, grab color / light statistics and track colors can be interwoven by the
host processor to create higher level functionality.

One notable property of the CMOS sensor array is that it returns values be-
tween 16 and 240 for each pixel. This effect is noticeable when the camera
is tracking colors, getting mean color data or dumping a frame. This limited
range on the data does not depend on the mode of the camera and still applies
in YCrCb mode.

About the CMOS Camera Module

27

Serial Commands

The serial communication parameters are as follows:

 • 1,200 to 115,200 Baud
 • 8 Data bits
 • 1 Stop bit
 • No Parity
 • No Flow Control (Not Xon/Xoff or Hardware)

All commands are sent using visible ASCII characters (123 is 3 bytes “123”).
Upon a successful transmission of a command, the ACK string should be re-
turned by the system. If there was a problem in the syntax of the transmission,
or if a detectable transfer error occurred, a NCK string is returned. After either
an ACK or a NCK, a \r is returned. When a prompt (’\r’ followed by a ‘:’) is
returned, it means that the camera is waiting for another command in the idle
state. White spaces do matter and are used to separate argument parameters.
The \r (ASCII 13 carriage return) is used to end each line and activate each-
command. If visible character transmission causes too much overhead, it is
possible to use varying degrees of raw data transfer.

See Raw Mode on
page 48 for informa-
tion on configuring
ascii vs raw text
packets.

Serial Commands

28

Functionally Grouped Command Listing

BM Buffer Mode 30

RF Read Frame 47

CR Camera Register 31

CP Camera Power 32

CT Camera Type 32

FD Frame Difference 34

DC Difference Channel 32

LF Load Frame 39

MD Mask Difference 44

UD Upload Difference 55

HD HiRes Difference 38

LM Line Mode 40

DM Delay Mode 33

PM Poll Mode 46

PS Packet Skip 47

RM Raw Mode 48

PF Packet Filter 46

OM Output Packet Mask 45

SF Send Frame 50

DS Down Sample 33

VW Virtual Window 55

FS Frame Stream 34

HR HiRes Mode 38

GW Get Window 38

PD Pixel Difference 46

TC Track Color 53

TI Track Inverted 53

TW Track Window 54

NF Noise Filter 44

LM Line Mode 40

GT Get Tracking Parameters 37

ST Set Tracking Parameters 52

GH Get Histogram 35

HC Histogram Config 38

HT Histogram Track 39

SV Servo Position 53

SP Servo Parameters 52

GS Get Servo Position 36

SM Servo Mask 51

SO Servo Output 51

Buffer Commands

Camera Module Commands

Data Rate Commands

Servo Commands

Image Windowing Commands

Color Tracking Commands

Histogram Commands

Frame Differencing Commands

Color Statistics Commands

GM Get Mean 36

LM Line Mode 40

GB Get Button 35

GI Get Auxiliary I/O 35

L0(1) LED control 39

Auxiliary I/O Commands

SD Sleep Deeply 49

SL Sleep 50

RS Reset 49

GV Get Version 37

System Level Commands

Serial Commands

29

BM Buffer Mode 30

CR Camera Register 31

CP Camera Power 32

CT Set Camera Type 32

DC Difference Channel 32

DM Delay Mode 33

DS Down Sample 33

FD Frame Difference 34

FS Frame Stream 34

GB Get Button 35

GH Get Histogram 35

GI Get Aux IO inputs 35

GM Get Mean 36

GS Get Servo Positions 36

GT Get Tracking Parameters 37

GV Get Version 37

GW Get Window 38

HC Historgram Configure 38

HD High Resolution Difference 38

HR HiRes Mode 38

HT Set Histogram Track 39

L0 (1) Led Control 39

LF Load Frame to Difference 39

LM Line Mode 40

MD Mask Difference 44

NF Noise Filter 44

OM Output Packet Mask 45

PD Pixel Difference 46

PF Packet Filter 46

PM Poll Mode 46

PS Packet Skip 47

RF Read Frame into Buffer 47

RM Raw Mode 48

RS Reset 49

SD Sleep Deeply 49

SF Send Frame 50

SL Sleep Command 50

SM Servo Mask 51

SO Servo Output 51

SP Servo Parameters 52

ST Set Track Command 52

SV Servo Position 53

TC Track Color 53

TI Track Inverted 53

TW Track Window 54

UD Upload Difference buffer 55

VW Virtual Window 55

Alphabetical Command Listing

Serial Commands

30Serial Commands

\r
This command is used to set the camera board into an idle state. Like all other
commands, you should receive the acknowledgment string “ACK” or the not
acknowledge string “NCK” on failure. After acknowledging the idle com-
mand the camera board waits for further commands, which is shown by the ‘:’
prompt. While in this idle state a \r by itself will return an “ACK” followed by
\r and : character prompt. This is how you stop the camera while in streaming
mode.

Example of how to check if the camera is alive while in the idle state:

:
ACK
:

BM active \r
This command sets the mode of the CMUcam’s frame buffer. A value of 0 (de-
fault) means that new frames are constantly being pushed into the frame buf-
fer. A value of 1, means that only a single frame remains in the frame buffer.
This allows multiple processing calls to be applied to the same frame. Instead
of grabbing a new frame, all commands are applied to the current frame in
memory. So you could get a histogram on all three channels of the same image
and then track a color or call get mean and have these process a single buff-
ered frame. Calling RF will then read a new frame into the buffer from the
camera. When BM is off, RF is not required to get new frames.

Example of how to track multiple colors using buffer mode:

See RF on page 47
to read a new frame
when buffer mode is
enabled.

:BM 1
ACK
:PM 1
ACK
:TC 200 240 0 30 0 30
ACK
T 20 40 10 30 30 50 20 30
:RF
ACK
:TC 0 30 200 240 0 30
ACK
T 30 50 20 40 40 60 22 31

Processing on an al-
ready buffered image
is much faster than
processing a new
image.

31

CR [reg1 value1 [reg2 value2 ... reg16 value16]]\r

This command sets the Camera’s internal Register values directly. The register locations and
possible settings can be found in the Omnivision CMOS camera documentation. All the
data sent to this command should be in decimal visible character form unless the camera has
previously been set into raw mode. It is possible to send up to 16 register-value combinations.
Previous register settings are not reset between CR calls; however, you may overwrite
previous settings. Calling this command with no arguments resets the camera and restores the
camera registers to their default state. This command can be used to hard code gain values or
manipulate other low level image properties.

5 Contrast 0-255
6 Brightness 0-255
18 Color Mode

36 YCrCb Auto White Balance On
32 YCrCb Auto White Balance Off
44 RGB Auto White Balance On
40 *RGB Auto White Balance Off

17 Clock Speed
0 *50 fps
1 26 fps
2 17 fps
3 13 fps
4 11 fps
5 9 fps
6 8 fps
7 7 fps
8 6 fps
10 5 fps

19 Auto Exposure
32 Auto gain off
33 *Auto gain on

Register Value Effect

Example of switching into YCrCb mode with White Balance off

:CR 18 32
ACK
:

See page 25 for
more information on
YCrCb color space.

Serial Commands

* indicates the default state

32

CP boolean \r

This command toggles the Camera module’s Power. A value of 0, puts the
camera module into a power down mode. A value of 1 turns the camera back
on while maintaining the current camera register values. This should be used
in situations where battery life needs to be extended, while the camera is not
actively processing image data. Images in the frame buffer may become cor-
rupt when the camera is powered down.

Serial Commands

See SL and SD on
pages 49 and 50 to
decrease camera
power consumption
even more.

CT boolean \r

This command toggles the Camera Type while the camera is in slave mode.
Since the CMUcam2 can not determine the type of the camera without com-
municating with the module, it is not possible for it to auto-detect the camera
type in slave mode. A value of 0, sets the CMUcam2 into ov6620 mode. A
value of 1 sets it into ov7620 mode. The default slave mode startup value as-
sumes the ov6620.

See slave mode on
page 22.

DC value \r

This command sets the Channel that is used for frame Differencing com-
mands. A value of 0, sets the frame differencing commands LF and FD to
use the red (Cr) channel. A value of 1 (default) sets them to use the green (Y)
channel, and 2 sets them to use the blue (Cb) channel.See LF and FD on

page 39 and page 34.

33

DM value \r

This command sets the Delay Mode which controls the delay between char-
acters that are transmitted over the serial port. This can give slower processors
the time they need to handle serial data. The value should be set between 0
and 255. A value of 0 (default) has no delay and 255 sets the maximum delay.
Each delay unit is equal to the transfer time of one bit at the current baud rate.

Serial Commands

DS x_factor y_factor \r

This command allows Down Sampling of the image being processed. An
x_factor of 1 (default) means that there is no change in horizontal resolution.
An x_factor of 2, means that the horizontal resolution is effectively halved.
So all commands, like send frame and track color, will operate at this lower
down sampled resolution. This gives you some speed increase and reduces the
amount of data sent in the send frame and bitmap linemodes without clipping
the image like virtual windowing would. Similarly, the y_factor independently
controls the vertical resolution. (Increasing the y_factor downsampling gives
more of a speed increase than changing the x_factor.) The virtual window is
reset to the full size whenever this command is called.

Example of down sampling the resolution by a factor of 2 on both the horizon-
tal and vertical dimension.

:DS 2 2
ACK
:GM
ACK
S 89 90 67 5 6 3
S 89 91 67 5 6 2

34

FD threshold \r

This command calls Frame Differencing against the last loaded frame us-
ing the LF command. It returns a type T packet containing the middle mass,
bounding box, pixel count and confidence of any change since the previously
loaded frame. It does this by calculating the average color intensity of an 8x8
grid of 64 regions on the image and comparing those plus or minus the user as-
signed threshold. So the larger the threshold, the less sensitive the camera will
be towards differences in the image. Usually values between 5 and 20 yield
good results. (In high resolution mode a 16x16 grid is used with 256 regions.)

See LF on page 39 to
load a new baseline
frame to difference
off of.

Serial Commands

FS boolean \r

This command sets the Frame Streaming mode of the camera. A value of 1,
enables frame streaming, while a 0 (default) disables it. When frame stream-
ing is active, a send frame command will continuously send frames back to
back out the serial connection.See SF on page 50.

See MD on page 44
to see how to reduce
motion noise.

35Serial Commands

GH <channel> \r

This command Gets a Histogram of the channel specified by the user. The
histogram contains 28 bins each holding the number of pixels that occurred
within that bin’s range of color values. So bin 0 on channel 0 would contain
the number of red pixels that were between 16 and 23 in value. If no argu-
ments are given, get histogram uses the last channel passed to get histogram.
If get histogram is first called with no arguments, the green channel is used.
The value returned in each bin is the number of pixels in that bin divided by
the total number of pixels times 256 and capped at 255.

GB \r

This command Gets a Button press if one has been detected. This command
returns either a 1 or a 0. If a 1 is returned, this means that the button was
pressed sometime since the last call to Get Button. If a 0 is returned, then no
button press was detected.

See Demo Mode on
page 15.

GI \r

This command Gets the auxiliary I/O Input values. When get inputs is called,
a byte is returned containing the values of the auxiliary IO pins. This can be
used to read digital inputs connected to the auxiliary I/O port. The aux I/O
pins are internally lightly pulled high. See page 22 for pin numbering. Note
that the pins are pulled up internally by the processor.

Example of how to read the auxiliary I/O pins. (in this case, pins 0 and 1 are
high, while pins 2 and 3 are low).

:GI
3
ACK
:

See HC and HT com-
mands on pages 38
and 39.

36

GM \r

This command will Get the Mean color value in the current image. If, option-
ally, a subregion of the image is selected via virtual windowing, this function
will only operate on the selected region. The mean values will be between 16
and 240 due to the limits of each color channel on the CMOS camera. It will
also return a measure of the average absolute deviation of color found in that
region. The mean together with the deviation can be a useful tool for auto-
mated tracking or detecting change in a scene. In YCrCb mode RGB maps to
CrYCb.

This command returns a Type S data packet that by default has the following
parameters:

S Rmean Gmean Bmean Rdeviation Gdeviation Bdeviation\r

Example of how to grab the mean color of the entire window:

See page 45 to see
how the OM com-
mand can create a
custom S Packet.

:SW 1 1 40 143
ACK
:GM
ACK
S 89 90 67 5 6 3
S 89 91 67 5 6 2

GS servo \r
This command will Get the last position that was sent to the Servos.

Example of how to use get servo:

:GS 1
ACK
128
:

Serial Commands

See SV command on
page 53.

37

GT \r

This command Gets the current Track color values. This is a useful way to see
what color values track window is using.

This example shows how to get the current tracking values:

GW \r

This command Gets the current virtual Windowing values. This command al-
lows you to confirm your current window configuration. It returns the x1, y1,
x2 and y2 values that bound the current window.

GV \r

This command Gets the current Version of the firmware and camera module
version from the camera. It returns an ACK followed by the firmware version
string. c6 means that it detects an OV6620, while c7 means that it detected an
OV7620.

Example of how to ask for the firmware version and camera type:

:GV
ACK
CMUcam2 v1.00 c6

:TW
ACK
T 12 34
:GT
ACK
200 16 16 240 20 20
:

Serial Commands

38

HR state \r

This sets the camera into HiRes mode. This is only available using the
OV6620 camera module. A state value of 0 (default) gives you the standard
88x143, while 1 gives you 176x287. HiRes mode truncates the image to
176x255 for tracking so that the value does not overflow 8 bits.

Serial Commands

HC #_of_bins scale \r
This command lets you Configure the Histogram settings. The first param-
eter takes one of three possible values. A value of 0 (default) will cause GH to
output 28 bins. A value of 1 will generate 14 bins and a value of 2 will gener-
ate 7 bins. The scale parameter (default 0) allows you to better examine bins
with smaller counts. Bin values are scaled by 2scale where scale is the second
parameter of the command.

See GH on page 35
to see how to get
histograms.

Input Bins
0 28
1 14
2 7

#_of_bins

HD boolean \r
This command enables or disables HiRes frame Differencing. A value of 0
(default) disables the high resolution frame differencing mode, while a value
of 1 enables it. When enabled, frame differencing will operate at 16x16
instead of 8x8. The captured image is still stored internally at 8x8. The extra
resolution is achieved by doing 4 smaller comparisons against each internally
stored pixel. This will only yield good results when the background image is
relatively smooth, or has a uniform color.

See LF and FD on
pages 39 and 34 to
see how to use the
more basic frame dif-
ferencing commands.

39

HT boolean \r

This command enables or disables Histogram Tracking. When histogram
tracking is enabled, only values that are within the color tracking bounds will
be displayed in the histograms. This allows you to select exact color ranges
giving you more detail, and ignoring any other background influences. A
value of 0 (default) will disable histogram tracking, while a value of 1 will en-
able it. Note that the tracking noise filter applies just like it does with the TC
and TW commands.

See GH on page 35
to see how to get a
histogram.

L0 boolean \r

These commands enable and disable the two tracking LEDs. A value of 0
will turn the LED off, while a value of 1 will turn it on. A value of 2 (default)
will leave the LED in automatic mode. In this mode, LED 1 turns on when
the camera confidently detects an object while tracking and provides feedback
during a send frame. In automatic mode, LED 0 does nothing, so it can be
manually set.

L1 boolean \r

LF \r
This command Loads a new Frame into the processor’s memory to be differ-
enced from. This does not have anything to do with the camera’s frame buffer.
It simply loads a baseline image for motion differencing and motion tracking.

See FD on page 34.

Serial Commands

40

LM type mode \r

Serial Commands

This command enables Line Mode which transmits more detailed data about
the image. It adds prefix data onto either T or S packets. This mode is intend-
ed for users who wish to do more complex image processing on less reduced
data. Due to the higher rate of data, this may not be suitable for many slower
microcontrollers. These are the different types and modes that line mode ap-
plies to different processing functions:

Type Mode Effected
Command

Description

0 0 TC TW Default where line mode is disabled
0 1 TC TW Sends a binary image of the pixels being tracked
0 2 TC TW Sends the Mean, Min, Max, confidence and count for every

horizontal line of the tracked image.
1 0 GM Default where line mode is disabled
1 1 GM Sends the mean values for every line in the image
1 2 GM Sends the mean values and the deviations for every line being

tracked in the image
2 0 FD Default where line mode is disabled
2 1 FD Returns a bitmap of tracked pixels much like type 0 mode 0

of track color
2 2 FD Sends the difference between the current image pixel value

and the stored image. This gives you delta frame differenced
images.

2 3 LF FD This gives you the actual averaged value for each element in
a differenced frame. It also returns these values when you
load in a new frame. This can be used to give a very high
speed gray scale low resolution stream of images.

Note, that the “mode” of each “type” of linemode can be controlled independently.

41

Mode 1: Bitmap of tracked region

 When the linemode type is 0 and the mode is set to 1, TC or TW will
send a binary bitmap of the image as it is being processed. It will start this
bitmap with an 0xAA flag value (hex value AA not in human readable form)
followed by the Xsize and Ysize of the binary image. The value 0xAA will not
occur in the data stream. This is followed by bytes each of which contains the
binary value of 8 pixels being streamed from the top-left to the bottom-right
of the image. The bits for each row are padded with zeros to fill an integral
number of bytes. The binary bitmap is terminated by two 0xAA’s. This is then
followed by the normally expected standard T data packet.

Example of TC with line mode on:

:LM 0 1
ACK
:TC
ACK
(raw data: AA Xsize Ysize XX XX …. XX XX XX AA AA) T 55 90 45 72 65 106 18 51
(raw data: AA Xsize Ysize XX XX …. XX XX XX AA AA) T 55 90 46 72 65 106 18 52

See TC on page 53.

Line Mode Type 0: Track Color

Mode 2: Per row statistics in the tracked region

 When the linemode type is 0 and the mode is set to 2, TC or TW will
send various statistics about each row that is being tracked. It sends the mini-
mium x value, the maximium x value, the average x value, the count of tracked
pixels on that line and the confidence. This can be especially useful for line
following applications since you can essentially get a trace of the middle
of the line. Like other linemode options, this new data is sent as a prefixed
packet. The packet starts with an 0xFE, followed by the number of rows (the
y-size) that it will send. The packet will then contain, the xLineMean, xLine-
Min, xLineMax, line pixel count, and line confidence for each row. These will
all be sent as raw values. The packet terminates with a 0xFD followed by a
normal T packet.

 0xFE y-size xLineMean xLineMin xLineMax LineCount Conf ... 0xFD Tpacket

See OM on page 45
to see how to mask
these line mode data
packets.

Serial Commands

42

Mode 1: Per line statistics

When the linemode type is 1 and the mode is set to 1, GM will send a raw (not
human readable) mean value of every line being processed. These packets start
with an 0xFE. The data is sent in the following raw format rLineMean, gLine-
Mean, bLineMean, and terminate with an 0xFD.

 0xFE Rmean Gmean Bmean ... 0xFD Mpacket

Example of GM with line mode on

:LM 1 1
ACK
:GM
ACK
(raw data: FE XX XX XX … XX XX XX FD) M 45 56 34 10 15 8
(raw data: FE XX XX XX … XX XX XX FD) M 45 56 34 10 15 8

See GM on page 36.

Line Mode Type 1: Get Mean

Mode 2: More per line statistics

When the linemode type is 1 and the mode is set to 2, GM will send a raw (not
human readable) mean value and deviation for every line being processed.
These packets are started with an 0xFE. The data is sent in the following raw
format rLineMean, gLineMean, bLineMean, rDeviation, gDeviation, bDevia-
tion and terminate with an 0xFD.

 0xFE Rmean Gmean Bmean Rdev Gdev Bdev ... 0xFD Mpacket

See OM on page 45
to see how to mask
these line mode data
packets.

Serial Commands

43

Mode 1: Bitmap for tracked pixels

 When the linemode type is 2 and the mode is set to 1, FD will send a
binary bitmap of the image as it is being processed. It will start this bitmap
with an 0xAA flag value (hex value AA not in human readable form) followed
by the Xsize and Ysize of the binary image. The value 0xAA will not occur in
the data stream. This is followed by bytes each of which contains the binary
value of 8 (or 16) pixels being streamed from the top-left to the bottom-right
of the image. The binary bitmap is terminated by two 0xAA’s. This is then fol-
lowed by the normally expected standard T data packet.

Example of TC with line mode on:

:LM 2 1
ACK
:FD 10
ACK
(raw data: AA XX XX XX … XX XX XX AA AA) T 5 10 4 9 8 100
(raw data: AA XX XX XX … XX XX XX AA AA) T 5 10 4 9 8 100

See FD on page 34.

Line Mode Type 2: Frame Differencing

Mode 2: Deltas between reference frame

 When the linemode type is 2 and the mode is set to 2, FD will send
the values of the differences between the current image and the original saved
frame. The packet starts with 0xFC followed by the xSize and ySize of the
image buffer that is to be sent. A single value for each pixel is transmitted and
the packet ends with an 0xFD. The delta values are capped at +/- 112 with
128 added to the delta, so 128 means zero difference. This forces the values to
remain in the 16-240 range.

Mode 3: Deltas between reference frame

 When the linemode type is 2 and the mode is set to 3, LF and FD will
send a binary bitmap of the internally stored image that they are operating on.
This image is stored in the same format as mode 2 of frame differencing.

:LM 2 2
ACK
:FD 10
ACK
(raw data: FC xSize ySize XX XX XX … XX XX XX FD)
(raw data: FC xSize ySize XX XX XX … XX XX XX FD)

Serial Commands

44

MD threshold \r

This command is almost identical to FD except that it Masks the first frame
it Differences on. Any motion detected on the first frame is masked out, so
that areas with high amounts of noise are ignored. Basically, if you call frame
differencing and there is always an area of the frame that is moving, then MD
will mask out that portion of the image so subsequent calls to FD will ignore
that portion of the image. Calling the LF command will clear any masked
pixels.

NF threshold \r

This command controls the Noise Filter setting. It accepts a value that deter-
mines how many consecutive active pixels before the current pixel are required
before the pixel should be detected (default 2). The range is between 0 and
255.

Example of how to turn off noise filtering:

:NF 0
ACK
:

See FD on page 34.

Serial Commands

45

OM packet mask \r
This command sets the Output Mask for various packets. The first argument
sets the type of packet:

The mask should be a single byte that represents the bitwise mask of the track-
ing packet. So a value 255 would allow all the parameters to be printed, while
a value of 3 would only allow the first two parameters to be printed. Each
mask for each paket type is stored separately and remains set until the camera
is reset.

*Non-Tracked packets are packets that are printed when the object being
tracked is not detected. If this is set to 0, then no packet is printed when the
object is not found. If this is set to 1, then just a “T 0” is sent when no object
is found. If this is set to 2 (default) then the packet is identical to a tracked
packet of that type.

**The additional count information flag lets you get access to the full 16 bit
count values for color tracking or histogramming. A value of 0 (default) dis-
ables the 16 bit values. A value of 1, adds the 16 bit count of tracked pixels in
2 separate bytes, the first for the LSB and the second for the MSB. A value of
2 will add a 16 bit count of all pixels used to generate a histogram as the first
two bytes following the H in the histogram packet. A value of 3, enables both
modes simultaneously.

Example of how to only show Mx and My in a T packet:

:OM 0 3
ACK
:TC 200 230 0 30 0 30
T 23 45

Tracking Type Packet
0 Track Color T
1 Get Mean S
2 Frame Difference T
3 Non-tracked packets* T
4 Additional Count Information** T, H
5 Track Color Line Mode 2 T
6 Get Mean Line Modes 1 and 2 S

Serial Commands

46

PM mode \r
This command puts the board into Poll Mode. Setting the mode parameter to
1 engages poll mode while 0 (default) turns it off. When poll mode is set to 0,
a continous stream of packets is returned from a processing function. When
poll mode is set to a value of 1, only one packet is returned when an image
processing function is called. If mode is set to a value of 2, then poll mode
will wait until an object is tracked and then return. This could be useful if you
would like to rapidly change parameters or if you have a slow processor that
can’t keep up with a given frame rate.

Example of how to get one packet at a time:
:PM 1
ACK
:TC 50 20 90 130 70 255
ACK
C 38 82 53 128 35 98
:

Serial Commands

PD boolean \r
This command enables the Pixel Difference mode. By default, the mode is
off. A value of 1 causes the difference between the current pixel and the
previous pixel to be used by all processing commands instead of the original
pixel value. This essentially does a horizontal edge detecting convolution on
the image. So the intensity of the remaining lines in each channel is pro-
portional to the sharpness of an edge found in that channel. The best way to
understand this command is to try enabling pixel differencing and try sending
a frame. Notice what types of lines appear stronger than others. You can then
track these edges based on their intensity using track color etc. The difference
values are capped at +/- 112 with 128 added to each delta so a value of 128
indicates a 0 difference. This forces the values to remain between 16 and 240.
This command applies to all commands.

See TI on page 53 to
find out how to use
inverse tracking for
better edge follow-
ing.

PF boolean \r

This command enables the Packet Filtering mode. By default, the mode is
off. A value of 1 makes it so that only the first empty packet when a tracked
object disappears from the screen is displayed. No packets will be transmitted
until the object returns into view. This command can help in situations where
empty packets may unnecessarily tax the host processor.

47

RF \r

This command Reads a new Frame into the buffer. This should only be used
to get new data when using buffer mode (BM). The frame buffer is what al-
lows multiple pass image processing on a single frame. While in buffer mode,
you are constantly reprocessing the same frame until read frame is called.
Under normal non-buffer mode operation, a new frame is loaded right before a
processing function is called.

See BM on page 30.

PS number \r

This command controls if Packets should be Skipped or not. The default value
is 0, which means that all packets will be transmitted. A value of 1 means that
every other packet will be skipped. A value of 2 means that only every second
packet will be displayed etc. This is useful if you need to slow down the data
rate so that your processor can keep up with the data stream when poll mode is
enabled.

Serial Commands

48

RM bit_flags \r

This command is used to engage the Raw serial transfer Mode. It reads the
bit values of the first 3 (lsb) bits to configure settings. All bits cleared sets the
default visible ASCII mode. If bit 0 is set, then all output from the camera is in
raw byte packets. The format of the data packets will be changed so as not to
include spaces or be formatted as readable ASCII text. Instead you will
receive a 255 valued byte at the beginning of each packet, the packet identify-
ing character (i.e. C for a color packet) and finally the packet data.There is no
\r sent after each packet, so you must use the 255 to synchronize the incoming
data. Any 255 valued bytes that may be sent as part of the packet are set to 254
to avoid confusion. If bit 1 is set, the “ACK\r” and “NCK\r” confirmations
are not sent. If bit 2 is set, input will be read as raw byte values, too. In this
mode, after the two command byte values are sent, send 1 byte telling how
many arguments are to follow. (i.e. DF followed by the raw byte value 0 for no
arguments) No \r character is required.

bit_flags = B2 B1 B0

B0 Output from the camera is in raw bytes
B1 “ACK\r” and “NCK\r” confirmations are suppressed
B2 Input to the camera is in raw bytes

Example of the new packet for Track Color with Raw Mode output only:

:RM 1
ACK
:TC 50 100 30 90 0 30
ACK
T>#$%KFDSAG@#$

Serial Commands

49

RS \r

This command ReSets the vision board. Note, on reset the first character is a
\r. Also keep in mind that all register values are reset to their default state.

Example of how to reset the camera:

:RS
ACK

CMUcam2 v1.0 c6
:

Serial Commands

SD \r

This command Sleeps the camera Deeply to save power. This command puts
the processor to sleep just as the SL command does and aditionally uses one
of the auxilary I/O pins to sleep the oscillator. Wakeup from this mode is
achieved by sending any character to the module, typically ‘\r’. The oscillator
needs to shut off slightly later than the processor to ensure that that processor
powers down correctly. To achieve this delay, it is neccessary to add a pullup
resistor on the enable line of the oscillator and then have a resistor and capaci-
tor in series with each other before being connected to auxiliary I/O pin 3.
You will need to connect 1K series resistor between the oscillator’s enable pin
and the aux IO pin 3. You then need to connect a 10K resistor in parallel with
a 0.1uF capacitor between the enable pin on the oscillator and +5 volts. See
diagram below.

See SL on page 50,
for a faster, more ba-
sic sleep command.

+5 V

0.1uF 10Kohm

Aux I/O Pin 3 Shutdown Pin (1) on Occillator

1Kohm

50

SF [channel] \r

This command will Send a Frame out the serial port to a computer. This is the
only command that will by default only return a non-visible ASCII character
packet. It dumps a type F packet that consists of the raw video data row by row
with a frame synchronize byte and a column synchronize byte. (This data can
be read and displayed by the CMUcam2GUI java application.) To get the cor-
rect aspect ratio, double each column of pixels. Since the image is being read
from a buffer, the image resolution is not dependent on baud rate. The baud
rate just controls how fast the image will be transmitted. Optionally, a channel
(0-2) can be added to the command which causes send frame to only send that
channel. This will effectively transmit one third of the data.

 Type F data packet format flags:
 1 - new frame followed by X size and Y size
 2- new col
 3 - end of frame
 RGB (CrYCb) ranges from 16-240
 1 xSize ySize 2 r g b r g b ... r g b r g b 2 r g b r g b ... r g b r g b 3

SL active \r

This command enables SLeep mode by putting the processor to sleep. Sleep
mode can be used when the camera is not needed in order to save power.
Sending any character wakes the camera back up after a delay of up to 10ms.
It is best to use ‘\r’ to wake the camera up since this will ensure that no un-
foreseen command gets executed. Sleeping will disable the servo outputs.

See FS on page 34,
to find out how to
stream frames.

Serial Commands

See DS on page 33,
to find out how to
reduce data sent by
send frame.

For greater power
saving see the SD
and CP commands
on pages 49 and 32.

51

SM bit_flags \r

Serial Commands

This command sets the Servo Mask on the CMUcam. The servo mask con-
trols which automatic servo axes are active and which ones should report their
values at the end of tracking packets. Pan and Tilt enable / disable turn off
the respective automatic servo function while tracking. The servo reporting
is added after all of the normal outputs in the Tracking packet, but before the
final “\r”. Note that automatic control only operates with ‘T’ packets returned
by TC and TW commands.

bit_flags = B3 B2 B1 B0

:SM 15
ACK
:TC
ACK
T 0 0 0 0 0 0 0 0 128 128

B0 Pan Control Enable
B1 Tilt Control Enable
B2 Pan Report Enable
B3 Tilt Report Enable

Example of how to enable both pan and tilt automatic servoing and both pan
and tilt reporting. In this case, since it doesn’t see the object, the servos stay
at position 128:

SO servo_number level \r
This command sets a Servo Output on the CMUcam to be either a constant
high or low value. This essentially converts the servo outputs to be standard
TTL digital outputs. The servo number (0-4) selects which servo you want to
control, and a level value of either 1 or 0 switches between 5 and 0 volts. If a
servo is connected and the output is set to 0, the servo is effectively turned off.

52

SP [pan_range_far pan_range_near pan_step
 tilt_range_far tilt_range_near tilt_step] \r

This command sets the Servo Parameters that are used by the automatic track-
ing control law. Changing these values can help you tune your tracking for a
particular servo setup. The automatic servoing uses a two stage “bang-bang”
control law. When the pixel value is greater than the “far” range, the related
servo will move by the step amount. When the pixel value is between the near
and far range, the servo will move by half of the step amount. Any value
smaller than the near value is part of the dead zone and will not trigger any
servo motion.

Variable Description Default
pan_range_far Pixel distance needed to do a large pan step 16
pan_range_near Pixel distance needed to do a small pan step 8
pan_step Servo position change of a long pan step 5
tilt_range_far Pixel distance needed to do a large tilt step 30
tilt_range_near Pixel distance needed to do a small tilt step 15
tilt_step Servo position change of a long tilt step 5

ST Rmin Rmax Gmin Gmax Bmin Bmax \r

This command allows you to Set Tracking parameters without actually calling
track color. These values can then be stored until you might call TC with no
arguments later.

Example of how to use ST:

:ST 200 0 0 250 20 20
ACK
:TC
ACK
T 6 55 2 40 12 60 10 70
T 6 55 2 41 12 61 11 70

See page 21 for pan
tilt direction jumpers.

See the SM com-
mand on page 51.

Serial Commands

53Serial Commands

TC [Rmin Rmax Gmin Gmax Bmin Bmax] \r

This command begins to Track a Color . It takes in the minimum and maxi-
mum RGB (CrYCb) values and outputs a type T packet. This packet by default
returns the middle mass x and y coordinates, the bounding box, the number
of pixels tracked, and a confidence value. The packet can be masked using the
OM output mask function. Remember that the color values from the CMOS
camera will range from between 16 and 240. If TC is called with no argu-
ments it will track with the precious set of tracking parameters.

Default Type T packet
T mx my x1 y1 x2 y2 pixels confidence\r

Example of how to Track a Color with the default mode parameters:

:TC 130 255 0 0 30 30
ACK
T 50 80 38 82 53 128 35 98
T 52 81 38 82 53 128 35 98

See page 45 to see
how the OM com-
mand can create a
custom S Packet.

TI boolean \r

This command activates Track Inverted mode. When track inverted mode is
enabled, the camera will track colors that are outside of the user defined color
range instead of inside. This is good for either tracking edges, or tracking any
object that shows up against a homogenous background.

SV servo position \r

This command lets you set the position of one of five SerVos. The servos
have an active region of between 46 and 210. A value of 128 is the center and
generates a 1500 us pulse. The pulse increments by 8.68us and covers a range
from 400 us to 1820 us.

Example to set servo 1 to position 200:
:SV 1 200
ACK
:

See SO on page 51 to
learn how to disable
the servos.

Using VW on page
55 to decrease the
vertical resolution
will allow 50 fps
tracking.

54

TW \r
This command will Track the color found in the central region of the current
Window. After the color in the current window is grabbed, the track color
function is called with those parameters and on the full image window. This
can be useful for locking onto and tracking an object held in front of the cam-
era. Since it actually calls track color, it returns the same type T track packet.
Note, the current virtual window setting will only be used for grabbing the
color to track and then the window will return to its maximum size.

The following internal steps are performed when “TW” is called:

1. Shrink the window to 1/2 the size (in each dimension) of the current window
 centered on the current window. (sw 30 54 50 90)

2. Call the get mean command but do not display the output. (gm)

3. Restore the window to the full image size. (sw 1 1 88 143)

4. Set the min and max value for each color channel to be the mean for that
 channel +/- 30.

Example of how to use Track Window:

:TW
ACK
T 6 55 2 40 12 60 10 70
T 6 55 2 41 12 61 11 70

Serial Commands

55

VW [x y x2 y2] \r
This command sets the Virtual Window size of the camera. It accepts the
x and y Cartesian coordinates of the upper left corner (1,1) followed by the
lower right of the window you wish to set. The origin is located at the upper
left of the field of view. VW can be called before an image processing com-
mand to constrain the field of view. Without arguments it returns to the default
full window size of for the current combination of camera type, downsampling
and resolution mode. Note that reducing the vertical window size can be used
to speed up processing time to achieve higher frame rates with the track color
command. 50 fps can be achieved with a vertical dimension of 65 or less.

Example of setting the camera to select the mid portion of the view:

Do not try VW 0
0 88 144, this is
outside of the 1 1 88
143 bounds.

:VW 35 65 45 75
ACK

UD <64 raw bytes> \r

This command allows you to Upload a Difference frame buffer. The command
waits for 64 raw byte values that fill up the 8 by 8 internal frame difference
buffer. A ‘\r’ cancels the transfer. A value of 0 indicates that the region should
be masked and not detect motion. With this command in combination with
line mode type 2, it is possible to download and upload different reference
frames for frame differencing.

See LM on page 40
for instructions on
downloading a differ-
ence buffer.

See GW on page 37
to find out how to
check your window
configuration.

Serial Commands

56

Data Packet Description

When raw mode is disabled all output data packets are in ASCII viewable
format except for the F frame and prefix packets.

ACK
 This is the standard acknowledge string that indicates that the
 command was received and fits a known format.

NCK
 This is the failure string that is sent when an error occurred. The only
 time this should be sent when an error has not occurred is during
 binary data packets.

Type F data packet format:

 1 - new frame 2 - new row 3 - end of frame
 RGB (CrYCb) ranges from 16 - 240
 RGB (CrYCb) represents two pixels color values. Each pixel shares the red and
 blue.
 176 cols of R G B (Cr Y Cb) packets (forms 352 pixels)
 144 rows
 To display the correct aspect ratio, double each column so that your final image
 is 352x144

Type H packet:
 H bin0 bin1 bin2 bin3 … bin26 bin27 \r
 This is the return packet from calling get histogram (GH). Each bin is
 an 8 bit value that represents the number of pixels that fell within a set
 range of values on a user selected channel of the image.

 Bin0 – number of pixels between 16 and 23
 Bin1 – number of pixels between 24 and 31
 .
 .
 .
 Bin27 – number of pixels between 232 and 240

This packet does
NOT begin with an
“F” and it only con-
tains raw data.

Data Packet Description

1 Xsize Ysize 2 r g b r g b ... r g b r g b 2 r g b r g b ... r g b r g b 3

57Data Packet Description

Type T packet:

This is the return packet from a color tracking or frame differencing command.

 mx - The middle of mass x value
 my - The middle of mass y value
 x1 - The left most corner’s x value
 y1 - The left most corner’s y value
 x2 - The right most corner’s x value
 y2 -The right most corner’s y value
 pixels –Number of Pixels in the tracked region, scaled and capped at
 255: (pixels+4)/8
 confidence -The (# of pixels / area)*256 of the bounded rectangle and
 capped at 255

T mx my x1 y1 x2 y2 pixels confidence\r

58Data Packet Description

Type S data packet format:

This is a statistic packet that gives information about the camera’s view

 Rmean - the mean Red or Cr (approximates r-g) value in the current
 window
 Gmean - the mean Green or Y (approximates intensity) value found in
 the current window
 Bmean - the mean Blue or Cb (approximates b-g) found in the current
 window
 Rdeviation - the *deviation of red or Cr found in the current window
 Gdeviation- the *deviation of green or Y found in the current window
 Bdeviation- the *deviation of blue or Cb found in the current window

*deviation: The mean of the absolute difference between the pixels and the
region mean.

S Rmean Gmean Bmean Rdeviation Gdeviation Bdeviation \r

59

Troubleshooting

Troubleshooting

Diagnostic Fault Tree

Switch on Power

No LEDPower LED on

Check Power Supply
Check Status LEDs

Both LEDs onOne LED on No LEDs

Processor and CMOS
sensor OKAY

Processor DEAD Processor OKAY
CMOS board not

 responding

Flip Serial Cable and
Check COM port

Check Oscillator and
Clock Jumper

Try Turning on Board
with Slave Mode Jumper

Check 4.7K (R1) resistor
near LEDs for 5 volts

Contact your
distributor

No LEDs

Check CMOS board
connections. Check if R5

and R6 are 5 volts

One LED on

Probe serial TTL pins
on power up

No Waveforms

MAX232 chip or
capacitors C4-6, C11, C12

damaged. Or bad serial cable /
connections

Waveforms

The diagram below shows a few quick steps to help you diagnose a hardware
problem with the CMUcam2.

60

General

In Demo Mode, the light turns on for a second and then everything stops:
 When both the camera and servo are active, the power required is greater. Try using
 a battery or voltage source rated at a higher current.

The power LED does not glow:
 The board either has a fault, or your power supply is not generating enough power.
 Check the power supply and look over all of the soldier connections. Try
 unplugging all of the cables except power and turn it on again.

I get garbage output from the camera:
 Try turning the camera off and unplugging it for 10 seconds. Then plug it back in
 and try again. Also, make sure that the baud rate is set correctly.

I get wavy lines or a distorted black and white image when I call dumpframe:
 This is most likely due to power. Make sure that you have a high enough voltage and
 that you are getting a clean signal. Running the camera off of fresh batteries (not an
 AC adaptor) is a good way to test if this is the problem.

My processor can not keep up with the serial data stream:
 Try running the camera in poll mode and setting a delay mode value.

I don’t seem to get any serial data:
 Make sure that the serial cable is connected on the CMUcam side correctly. If in
 doubt, try reversing it.

Why does VW keep giving me a NCK?
 Make sure you are within the VW 1 1 88 143 bounds.

I see the CMUcam startup message, but then nothing happens:
 Check to make sure the transmit line on your serial cable is connected correctly.

See page 46 for
poll mode and
page 33 for delay
mode.

Troubleshooting

61

When I run java I get: Exception in thread “main” java.lang.NoClassDefFoundError CMUcam2GUI:
 Chances are you are not in the CMUcam2GUI directory. Type “dir” at the command
 line prompt and make sure that you see the CMUcam2GUI.class file. Also check to make
 sure an old version of Quicktime did not set your CLASSPATH variable (there should be no
 CLASSPATH variable in new versions of java).

I see CMUcam2GUI.java but I don’t see the CMUcam2GUI.class file:
 You should download a new copy of the GUI, because the .class files should be
 included. If you really need to recompile them, type “javac *.java” .

I get: ‘java’ is not recognized as an internal or external command, operable program or batch file:
 This means that java is not correctly installed in your path. Try re-installing java and
 reading Sun’s installation documentation.

CMUcam2 GUI

Troubleshooting

62

3rd Party Software Information

Java
The CMUcam2 GUI requires java’s JRE version 1.4.0 or newer. The latest
version of java can be downloaded for free at http://java.sun.com. JRE stands
for java runtime environment and contains all that is needed to run a java pro-
gram. JDK stants for java development kit and does everything that the JRE
does, plus it allows you to compile java programs into byte code. Since the
CMUcam2 GUI is given to you already compiled, you should be able to run it
on any type of computer without having to recompile.

The CMUcam2 GUI
should not need to be
recompiled!

Terminal Emulation Programs
The following are free terminal emulation programs that can be found as
shareware on the internet:

 Windows:
 HyperTerm - built into windows, but tends to be confusing
 TeraTerm - Fast and easy to use

 Macintosh OS 7,8,9:
 Zterm - fast, free, easy to use

 Mac OS X
 Port Term

 Unix / Linux:
 Minicom - standard easy to use com program
 - alt-a adds line feeds to \r
 - alt-e turns on local echo
 - alt-s lets you configure the serial port

3rd Party Software

63

Components and Schematic

Top Components

Bottom Components

Components and Schematic

This image is a bot-
tom view of the com-
ponents. Note that
the camera connector
is on the left side.

3.3 Volt
Regulator

NAND gate

Camera Bus
Connector

Status LEDs

1uF
1uF
1uF
1uF
1uF

MAX
232

AL422B

SX52

33uF
33uF 33uF

Green LEDLM2940Sliding Switch

Push Button

820

820

75 MHz
Oscillator

.1uF

4.7K

820

.1uF
4.7uF

1.0 uF4.7K

4.7K

.1uF

.1uF

820

green
red

64

Parts List

Components and Schematic

Part Digikey Part Number Qty. Schematic
High Brightness Red Led 160-1405-1-ND 1 U$2

High Brightness Green Led 160-1404-1-ND 2 U$3,U$1

820 Ohm Resistor 311-820ACT-ND 4 R2-4, R7

4.7 K resistor 311-4.7KATR-ND 3 R1,R5-6

NAND Gate 296-1087-1-ND 1 SINGLE_NANDG$2

Max 232 chip 296-13095-1-ND 1 IC3

MAX232CWE-ND alternate

75 Mhz Oscillator SG-8002DC-SHC-ND 1 QG1

5v Regulator LM2940CT-5.0-ND 1 IC2

3.3v Regulator LP2985IM5-3.3CT-ND 1 IC4

Averlogic AL422B 1 AL422B

Ubicom SX52 1 IC1

Slide Switch EG1847-ND 1 S2

Push Switch SW400-ND 1 S1

0.1uF Cap 311-1141-1-ND 4 C7-9,C13

33uF Cap 399-1634-1-ND 2 C1,C3

33uF Cap
or 10uF 25V Cap

399-1634-1-ND
399-1599-1-ND

1 C10

1.0uF Cap PCC2249CT-ND 5 C4-6,C11,C12

2.2uF Cap PCC1923CT-ND 1 C2

Heatsink HS333-ND optional

Double Female Header 929852-01-36-ND 1 CAMERA_BUS

Single Male Header 929647-09-36-ND 3 CLK, SX-KEY, RS232,
PWR_PLUG, TTL_

PORT, RS232_BYPASS,
JP1-2, JP4-5

Polarized 2 pin Terminal Housing WM2700-ND 2

Crimp Terminals WM2200-ND 4

Polarized 2 pin terminal header WM2000-ND 2 PWR_PLUG, JP3

Female serial ribbon cable head AFS09G-ND 1

Serial Ribbon Cable Socket Connector ASC10G-ND 1

65Components and Schematic

Schematic - Main Body

C9

C8

R1

R3

R2

C3
C14

C13

C2

Unregulated

IC4

S1

66Components and Schematic

Schematic - Peripheral

C10

R7

C1

R4

Unregulated

C6

C11
C12

C4

C5

R5

 R6
C7

IC3

67

Disclaimer

No warranties, either expressed or implied, are made regarding the operation, use or results of this
hardware. This product is meant for educational purposes only. Any resemblance to real persons, living
or dead is purely coincidental. CMUcam2 void where prohibited with some assembly required. Batteries
and servos not included. Contents may settle during shipment so only use as directed. No other warranty
expressed or implied. Do not use while operating a motor vehicle or heavy equipment. Apply CMUcam2
only to affected area. If condition persists, consult your physician. May be too intense for some viewers
and for recreational use only. Do not disturb CMUcam2 during boot process. All models over eighteen
years of age. No user-serviceable parts inside. Freshest if used before date on carton. Subject to change
without notice. Many CMUcam2 times approximate and many pictures simulated. Breaking seal
constitutes acceptance of agreement. This product is known to the state of California to cause birth
defects. As seen on TV one size fits all. My man the yellow darts comments not actually generated by
the yellow dart. Contains a substantial amount of non-tobacco ingredients. Colors may, in time, fade.
Slippery when wet. If CMUcam2 acts up; keep cool; process promptly. Not responsible for direct,
indirect, incidental or consequential damages resulting from any defect, error or failure to perform.
Substantial penalty for early withdrawal. Keep away from fire or flame. Replace with same type. Some
of the trademarks mentioned in this product appear for identification purposes only. No animals were
hurt in the production of this device. This supersedes all previous notices.

	Text3:
	Text1:

