
Volunteer Computing Using Casual Games

Charles Cusack
Department of Computer Science

Hope College
cusack@hope.edu

Chris Martens
Department of Computer Science

Carnegie Mellon University
cmartens@andrew.cmu.edu

Priyanshu Mutreja
Department of Electrical and Computer Engineering

Valparaiso University
priyanshu.mutreja@gmail.com

Abstract

We introduce the idea of volunteer computing games–
that is, casual games which are implementations of
distributed algorithms. Volunteer computing (VC) is a
form of distributed computing which seeks to harness
the computational power of individuals from around
the world for free. Although the numbers and types
of VC projects has grown significantly over the past
decade, the majority of participants in these projects
are still from a limited demographic, and there are still
many people who know nothing about these projects.
On the other hand, most people know about casual
games, and a majority of people play them. We
propose that the use of casual gaming in volunteer
computing projects can significantly increase partic-
ipation, and therefore success, and we describe a pro-
totype of a game that solves the maximum clique prob-
lem.

1 Introduction

Teams of scientists, engineers, and mathematicians
around the world are trying to solve many difficult
problems through the use of computation. For some
of these problems, the computational power of a sin-
gle processor is inadequate for the task. Distributed
computing permits researchers to spread their compu-
tation across multiple processors, allowing much more
computation in a shorter period of time. However,
even when access to a distributed computing environ-
ment is available, there is a limit to the number of
processors available.

In light of this, there have been many efforts over the
past decade to encourage users around the world to

volunteer their spare computing cycles to solve these
problems. Although the exact form of the distrib-
ution and the terms used to describe it have var-
ied (volunteer computing, global computing, internet
computing, web-based metacomputing, etc.), the con-
cept is the same: get others to help do the work.
Some notable examples of volunteer computing in-
clude GIMPS (the Great Internet Mersenne Prime
Search) [8], Distributed.net [6], SETI@Home [22],
and, more recently, Berkeley Open Infrastructure for
Network Computing (BOINC) [3].

Another class of problems of interest is problems
which computers are either unable to or are very poor
at solving. For instance, computers are not currently
very good at labeling images. More recently, the con-
cept of distributed human computing has become pop-
ular as a solution to this problem. Here the inter-
est is in getting the volunteers themselves, and not
their computers, to help in computations. Some of
the most notable examples of this are Luis von Ahn’s
web-based games that seek to label images [7, 19, 20],
Wikipedia [31] and other Wikis, and Amazon Mechan-
ical Turk [2, 24].

For an extensive list of distributed computing projects
on the web, see [5], and for a thorough introduction
to VC, see [21].

2 Motivation

2.1 Barriers to Volunteer Computing

Obviously there are many projects which seek to use
the computational power of computers and their users
across the world. What is surprising is how many



projects there currently are, and how (relatively) few
people actually know about them. Further, of those
who know about the projects, few actually partici-
pate. An open problem seems to be how to get more
people to participate. There are several barriers to
user participation in VC.

The first barrier is lack of awareness. It does not
matter how much computing power people have, or
how interested in a project they might be, if they
do not know the project exists. Many of the current
projects suffer simply because the majority of people
have never heard of them.

The second barrier is lack of broad appeal. According
to a recent survey, the top two reasons for partic-
ipation are “contributing to scientific research” and
“contributing to statistics/friendly competition.” In
fact, it seems that the concept of VC itself, especially
the co-opetition (cooperative competition) involved,
appeals to participants more than the particulars of
the projects. Participants are more interested in in-
creasing their ranking than furthering science, and
the most significant contributions to most projects are
from individuals and teams whose goal is to top the
leader board. [9]

The third barrier is limited demographic. According
to an ongoing survey on the BOINC website [4] with
over 7400 responses currently, 96.5% of participants
in BOINC projects are male, 5% are under the age of
19, 50% are between the ages of 20 and 39, 38% are
between the ages of 40 and 59, and 7% are over 60. In
terms of computer expertise, 63% consider themselves
advanced, 35% intermediate, and only 2% beginners.
Another recent survey has similar findings [9], making
it reasonable to assume that these statistics are sim-
ilar for most VC projects. What this tells us is that
most participants are middle aged males with a signif-
icant amount of computer expertise. Almost entirely
absent from participation are women, children, the
elderly, and those with limited computer expertise.

The fourth barrier is lack of technical savvy. Many
projects require users to download and install special
software, something that can be difficult for a large
segment of the population. We have already seen that
people who consider themselves “beginners” in using
computers do not generally participate in VC, and this
may be one of several reasons. Some users think that
the more applications that are installed (but not nec-
essarily running) on their computer, the slower their
computer is. Others are afraid that these programs

might contain spyware or other malicious software.

2.2 Casual Gaming

Casual games are those games that are designed to be
played with a minimal amount of instruction and/or
skill and in a small amount of time (like during lunch
or before the boss walks by). The forms of the games
vary, and include card games (various versions of
Solitaire and Poker, etc.), puzzle games (Bejeweled,
Luxor), action games (Diner Dash, Mother Load), and
strategy games (Oasis, Tribal Trouble).

The casual gaming industry, particularly casual gam-
ing on the web, is booming [11, 13], and there is every
indication that it will continue to grow. At any given
time there are millions of users playing games on one
of dozens of online gaming sites like Yahoo! Games,
RealArcade, and MiniClip, to name just a few (See
pages 16-19 of [12] for a more complete list). It is
believed that in the US alone, over 100 million people
will play a video game this year [12]. There are com-
panies that specialize in developing, publishing, and
distributing casual games. Given the amount of ad-
vertising found on these gaming sites and within the
games themselves, it is clear that many companies be-
lieve these game get sufficient exposure to warrant the
expenditure of funds.

Earlier this year, Macrovision released results from a
survey of 789 participants who play casual games on
trygames.com [14]. The study revealed that 71% of
players are female, 37% of players are between the
ages of 35 and 49, and 28% are between 50 and 60.
The typical casual gamer is a woman in her forties [12].
37% play 9 or more game ‘sessions’ per week, with
66% saying their sessions last at least one hour, and
31% saying their sessions last at least two hours. 67%
play puzzle games, 44% play card games, 35% play
strategy games, and 34% play action games.

2.3 Breaking Barriers

We believe that all of the barriers that hinder VC can
be broken through the use of casual games.

Most people are totally unaware of the concept of VC,
let alone specific projects. However, almost everybody
knows what casual games are, and many people play
them. Thus, if VC projects could be implemented
as games and either published on established gaming
sites, or if a new volunteer computing games site were
developed and promoted, the awareness barrier could
be broken.

2



If a project is implemented as an interesting game, it
will attract not only people who are interested in the
project itself, but also those who enjoy playing the
game, regardless of whether or not they care about
the project. Thus, the appeal barrier can be broken.

Since it has been widely established that men and
women of almost all ages play casual games, the demo-
graphic barrier can be broken. Further, since casual
games require no special skills to play, and often do
not require installation, the fourth barrier is broken.

In addition to breaking these barriers, a melding of
participation can occur–a volunteer game will attract
both those users who are interested in VC or the
project itself, and those who are interested in the
game. It will attract those who want to climb up the
leaderboard of the game, and those who want to climb
up the leaderboard of the computation. It will attract
those who want a temporary diversion from the world,
and those who want to help save the world. In fact,
the proper game design can allow the user to save the
world in the game as they help save the real world.

Finally, unlikely as it may seem, it may be possible
to get users to pay to perform computations, since if
a game is good enough, they might be willing to pay
to play it, generating revenue to continue and expand
the project.

2.4 Previous Work

This approach has already been successfully used in
distributed human computing projects, with the most
notable examples being the ESP Game [7, 27], Peek-
aboom [19, 30], and Phetch [20, 28], all games where
players work together to accomplish what computers
cannot do well: labeling and describing images. This
is done in the context of games so that the users do
not feel like they are simply “labeling images.” The
game Verbosity [26, 29] seeks to collect common-sense
facts, which is another task that is easier for humans
to do than computers.

2.5 Moving Forward

To our knowledge, the use of casual games to solve
problems that are more computational in nature has
not been attempted. We outline four possible ap-
proaches of implementing a VC problem as a casual
game, and discuss their relative merits.

The first approach is to find a way to turn traditional
distributed algorithms into games, and let lots of peo-

ple play the games so that eventually they will have
run the algorithm on all of the data. The weakness
of this approach is that for most computational prob-
lems, humans are thousands, if not millions, of times
slower than a computer. Thus, it takes the effort of
thousands of participants and their computers to do
what just one computer can do. Clearly this approach
is not practical.

The second approach is to supplement the first ap-
proach with an option for the user to also run the
“game” in the background1. This has the advantage
that we get the computational power of the user’s
computer, and as long as the game is enjoyable, they
will continue to allow the algorithm to run in the back-
ground as well. In fact, the user does not even need
to be playing the whole time–the background process
can be run for as long as the user is willing to let it.

The third approach is like the second, except that an
attempt is made to develop games which not only al-
low the user to run our algorithm, but also allow the
user to import their insight into the problem. In this
way we could have many users thinking about how to
make better choices, and a solution might be found be-
cause one user had some insight that we did not. This
has all of the advantages of the previous approaches,
with the added possibility of an extra boost of human
insight.

The fourth approach is to implement any game, and
require the user to run the algorithm in order to play
the game. In other words, the user is paying to play
the game with their CPU time. This has the advan-
tage that the game design and algorithm design can
be separated, allowing for the use of different sorts of
games to attract different sorts of users.

2.6 Game Design

It is obvious that the success of any of these ap-
proaches depends heavily on the design of the games.
If the games are not fun, people will not play them.
If they do not have a wide appeal, the demographic
barrier will remain.

As an example, the game MudCraft [16] is a real-
time strategy game that was specifically designed for
the “casual, mixed-gender audience” [32] by utilizing
research into gender issues in game design. According
to results from their playtesting, they succeeded in

1This is an option because if the algorithm was just au-
tomatically run in the background, we would really be doing
stealth computing, and there might be strong objection to this.

3



their goals. In order for volunteer computing games to
succeed, the same care must be taken in game design.

Three key components in the design of a game are
mechanics, dynamics, and aesthetics [10]. The me-
chanics refer to the rules of the game. In the context
of VC games, the mechanics are very restricted. That
is, we will generally not be able to make up whatever
rules we want. Given a problem and perhaps one or
more algorithms to solve the problem, there will be
specific rules that must be followed in order for the
game to correctly solve the problem and/or execute
the algorithm.

The dynamics of a game refer to the run-time behavior
of the game, and are a direct result of the mechanics.
Two different games might have the same mechanics
but very different dynamics, making them appear to
be different. This can be exploited to attract different
sorts of users to solve the same problem.

Finally the aesthetics of the game are its “look and
feel.” This includes things like the theme (ancient
Egypt, outer space, the old West, etc.), story (sav-
ing the world, rescuing the damsel in distress, etc.),
graphics (based on the theme), and sound. Again,
this is an area that can be tweaked to attract a larger
and more diverse audience.

2.7 Applicability

There are a range of problems that are being solved
using volunteer computing. On the one extreme there
are number-crunching projects that are best solved by
computers (like SETI@Home and GIMPS). On the
other extreme there are problems, like image label-
ing and common-sense fact gathering, that are easily
done by humans, but either impossible or extremely
difficult for computers.

Although volunteer computing games have been suc-
cessfully used for the latter group of problems, it may
not be as easily applicable to the former group2. For
instance, we highly doubt that a game can be imple-
mented to assist in the SETI@Home or the GIMPS
projects. However, we believe that there are a large
number of problems that lie in between these extremes
that can be successfully solved using games.

Next we will demonstrate that it is possible to solve
certain types of searching problems using a simple
game of choice.

2Unless the fourth approach, using unrelated games, is used.

3 A Volunteer Computing Game

We now present our implementation of a simple
“game” that acts as a distributed algorithm to solve
the maximum clique problem. We focus our dis-
cussion on the maximum clique problem for sev-
eral reasons. First, a recent parallel algorithm to solve
this problem was the basis of our volunteer algorithm.
Second, as one of the better-known examples of an
NP-Complete problem, instances of it are often used
as benchmarks for parallel algorithms. Finally, by re-
stricting to this specific problem, we can more clearly
describe how the algorithm is turned into a game.

It is important to realize that our game can be
adapted to solve many problems for which backtrack-
ing algorithms are known.

3.1 Maximum Clique Problem

A graph is a pair (V,E), where V is a set of vertices,
and E is a set of unordered pairs of vertices, called
edges. A complete graph is a graph in which every
pair of vertices is connected by an edge. Figure 1
shows a complete graph with 5 vertices.

Figure 1: A complete graph with 5 vertices

A subgraph of a graph is a pair (V ′, E′) such that
V ′ ⊆ V and E′ ⊆ E. A clique is a subgraph of
a graph G that is a complete graph, and maximum
clique is a clique of largest size in G. The maximum
clique problem, as the name suggests, is to find the
maximum clique in a graph.

Figure 2a shows a sample graph on 6 vertices, and
Figure 2b shows the maximum clique in the graph.
In this case, the maximum clique has size 4, and it is
unique. In general, it is possible for a graph to have
multiple maximum cliques.

3.2 Solving Maximum Clique

The maximum clique problem is known to be NP-
complete, so there is no known polynomial-time algo-
rithm to solve it. However, there has been much effort
to find algorithms that are fast enough for problems of

4



a) b)

Figure 2: a) A sample graph. b) The same
graph with the maximum clique in bold.

reasonable size [1, 17]. In recent years, several parallel
algorithms for solving the maximum clique problem
have been suggested [18, 23].

In recent months, Thimm, et. al. [23] proposed a par-
allel algorithm for the maximum clique problem that
uses stealstacks to assist in load balancing. It turns
out that by replacing the stealstack idea with a cen-
tralized database, the algorithm can be adapted for
use in a volunteer computing setting. We will briefly
describe the serial version of the algorithm, how to
parallelize it, and how it can be turned into a game.

The first step of the serial algorithm is to order the
vertices. Although there may be advantages to cer-
tain orderings, we will assume an arbitrary ordering.
Next, for each vertex x, x.Adj() denotes the list of
vertices adjacent to x, and x.Larger() denotes the set
of vertices that come after x in the ordering.

The algorithm traverses a search tree based on the
value in each node of the tree. A node (C, X) consists
of two piece of information– the current clique (C),
and the extension set (X). C is the ordered list of
nodes which form a clique that we are currently trying
to extend to a maximum clique. X is the ordered list
of all vertices which are larger than all of the vertices
in C, and are connected to all vertices in C. In other
words, X is the set of vertices such that any one can
be added to C to extend it to a larger clique.

We start with an empty stack S, an empty list of ver-
tices, M , which will store the vertices of the maximum
clique, C = {}, and X = V . So there is no confusion,
when we perform the operation S.Push(C, X), we as-
sume that copies of C and X are stored on the stack.
The algorithm is given in Figure 3.

Figure 4 shows the search tree that is traversed for
the graph from Figure 2a. Each node is labeled with
the current clique C and extension set X in the for-

MaximumClique(C,X)
while(X.notEmpty())

x = X.getFirst()
X.remove(x)
if (X.notEmpty())

S.Push(C,X)
C.insert(x)
if (C.Size() > M.Size())

M=C
X = intersect(X, x.Adj(), x.Larger())
if (X.empty())

(C,X) = S.Pop()
return M

Figure 3: The Maximum Clique Algorithm

mat “[C|X],” except leaf nodes, which are drawn in
gray without extension sets (since the extension set is
empty).

Let us demonstrate a few steps of the algorithm for
this example. We start by setting x = 0, and we set
X = {1, 2, 3, 4, 5}, and push ({}, {1, 2, 3, 4, 5}) onto
the stack. Next, we set C = {0}, and since it is larger
than M = {}, we set M = {0}. Next, we set X =
{1, 2, 3, 4, 5}∩{1, 2, 3, 4, 5}∩{1, 3, 4} = {1, 3, 4}. Since
X is not empty, we continue at step 1.

We set x = 1, X = {3, 4}, and push ({0}, {3, 4}) onto
the stack. We then set C = {0, 1}, M = {0, 1}, and
X = {3, 4} ∩ {2, 3, 4, 5} ∩ {0, 2, 3, 4, 5} = {3, 4}. The
stack now has ({}, {1, 2, 3, 4, 5}) and ({0}, {3, 4}) on
it.

Again we continue at step 1, where we set x = 3, X =
{4}, and push ({0, 1}, {4}) onto the stack, and set

Figure 4: The search tree for the graph from
Figure 2a

5



C = {0, 1, 3}, M = {0, 1, 3}, and X = {4}∩{4, 5, 6}∩
{1, 2, 5} = {}. Since X is now empty, we pop the
stack, so C = {0, 1}, and X = {4} (that is, we take
off what we just pushed on), and we continue to step 1.
The stack now has ({}, {1, 2, 3, 4, 5}) and ({0}, {3, 4})
on it.

Again at step one we set x = 4, and X = {}. Since X
is empty, we do not push anything onto the stack. We
set C = {0, 1, 4}, do not modify M since it also has
size 3, and set X = {} ∩ {5} ∩ {1, 2, 3} = {}. Since X
is empty, we pop, setting C = {0}, and X = {3, 4}.
The stack now has ({}, {1, 2, 3, 4, 5}).
This continues until we exhaust all nodes on the stack,
and eventually get the answer {1, 2, 3, 5}.

3.3 Volunteer Algorithm

It is actually pretty easy to implement this algorithm
in a volunteer computing environment. We start by
assuming we have a database on the server which con-
tains the root node of the search tree (That is, the
empty solution). When the first client wants an in-
stance of a problem to solve, it receives that node
(being the only node available). The first thing the
client needs to do is determine if the problem is too
large for them to tackle. There are a few ways of do-
ing this. The method used by Thimm et. al. is to use
some bound on the number of nodes in the extension
set, since generally the more nodes in the extension
set, the larger the subtree will be. We use a Monte
Carlo algorithm to estimate the size of the subtree.

If the client estimates that the size of the problem
they received is too large, the client must split the
node. To split a node, the client simply creates all of
the children nodes of the current node in the search
tree, and sends them back to the server so other clients
can request them, keeping one to solve itself. This
process continues until the client has a node which is
small enough. Notice that the tree is split in such a
way that once all of the nodes have been solved, the
entire tree has been searched, although generally in a
different order than if it had been searched with the
serial algorithm.

In our previous example, the client would split
the root node ({}, {0, 1, 2, 3, 4, 5}) into the 6 nodes
({0}, {1, 3, 4}), ({1}, {2, 3, 4, 5}), ({2}, {3, 4, 5}),
({3}, {5}), ({4}, {}), and ({5}, {}), returning all but
one to the server for other clients to solve. If the
client kept node ({2}, {3, 4, 5}) and decided it was
too large, it would split into the 3 nodes ({2, 3}, {5}),

({2, 4}, {}), and ({2, 5}, {}), sending two to the
server, and keeping one to solve.3

3.4 A Simple Game

Since the algorithm is essentially a backtracking algo-
rithm, it can be turned into a game quite easily. The
regular algorithm proceeds by always picking the first
available node to add to the current clique, backtrack-
ing if there is nothing in the extension set. In the game
version, the user is allowed to pick whichever node
they want, and the algorithm proceeds from there.
Thus, the only change that takes place is that we re-
place the first step of the algorithm with a different
selection method. This results in only changing the
order in which the tree is traversed. When all choices
are exhausted, it backtracks automatically, taking the
user back to another node where there are still choices
to be made.

Once a subtree (rooted at the node they received
from the database) has been exhausted, the user re-
ceives points based on how many nodes they tra-
versed. Thus, their ranking in the game and in the
project can be one in the same. Our implementa-
tion includes both the game version and the tradi-
tional version of the algorithm, which they may run
in the background if they wish (on a different set of
data). They receive points whether or not they play
the game or run the background process (or both).
The high scores show users how they rank against
others in their contributions.

Since the background process will generate points at a
significantly higher rate, we are exploring how to score
in such a way that we encourage participants to keep
playing and to keep the background process running.
We may score the game separately from the back-
ground process, so that participants can be ranked
on two lists. This may encourage them to play the
game more, which may encourage them to also run
the algorithm more. In other words, ranking high in
one category may encourage them to try to rank high
in the other, which will result in them running the
algorithm even more.

Clearly this does not sound like a very exciting game.
However, at their core, many popular casual games
are not that exciting, either. Although the mechanics
sound boring, with the proper dynamics and aesthet-
ics, we may be able to make this into a more interest-

3Obviously no reasonable client would actually split any of
these nodes, since the problem is very small already.

6



ing game.

3.5 Implementation Details

The goal of this paper is simply to demonstrate the
feasibility of using a game to implement an algorithm.
Therefore we have not gone into some important de-
tails, including methods of pruning the search tree to
speed up the search, security measures, technical de-
tails, etc. We finish this section with just a few details
for the interested reader.

The design and implementation of our game was
driven by three important requirements:

1. No technical knowledge is required of players.
2. Deploying the game requires minimal effort.
3. Extending the game to solve other problems is

straightforward.

There are three parts of the game–the client, the
server, and the database. The client, a Java applet,
communicates with the server, a PHP script, which
communicates with a MySQL database. All of these
are freely available technologies. Java was chosen for
the client because almost everybody has the Java Plu-
gin installed on their computer, so playing the game
is as easy as going to a webpage, which fulfills the first
requirement.

PHP was chosen on the server side because it does
not require a special server application to be running.
Because of this, the game can be deployed simply by
copying some files onto a machine which has PHP and
a web server installed, fulfilling the second require-
ment. PHP was also chosen because other technolo-
gies, like Flash or Shockwave, be be used for clients
without modifying the server.

The algorithm upon which the game is based is actu-
ally a generic backtracking algorithm. Virtually any
problem for which there exists a backtracking algo-
rithm can be implemented by supplying implementa-
tion details for a few methods, so the third require-
ment is met.

4 Future Work

Although we have succeeded in implementing one vol-
unteer computing game for one class of problems,
there is still much work to be done before we can
judge the validity of volunteer computing games. For
one thing, we have not tested our game in terms
of efficiency. We know that it is less efficient than

traditional volunteer computing algorithms would be
(since humans are involved), but we also know that if
we could recruit a higher number of volunteers, this
would be offset. Unfortunately, we also do not know
how many users would play this or similar games. We
intend to continue developing our game to the point
where we can test and deploy it, hopefully generating
some useful data.

As we have stated, our game is not that interesting.
Since this project is still in its infancy, we have not yet
spent much time thinking about the dynamics or aes-
thetics of games. It is our belief that even the simplest
mechanics can yield an interesting, and hopefully pop-
ular, game, if the dynamics and aesthetics are done
properly. We hope to partner with individuals in the
gaming industry to draw on their expertise in these
areas.

There are many other problems and algorithms to
consider as candidates for games. We need to ex-
plore some of these and figure out a sound approach
to converting an algorithm into a game. Perhaps the
definition of a problem is enough to develop a game,
allowing players to use their own algorithms to play
the game.

Finally, the concept of Massively Multi-Player (MMP)
gaming has been used to implement a physics class-
room [15], and the MMP web-based Urban Dead [25]
has turned out to be an interesting social experiment.
We have a few thoughts about how we might imple-
ment a MMP game that would allow users to interact
with each other to solve certain types of problems.
For instance, it may be possible to create a scenario
where the users are vertices in a graph, and they in-
teract in certain ways to solve graph problems. We
hope to explore this idea more in the future.

5 Acknowledgments

This work was funded by the National Science Foun-
dation (NSF) grant CNS-0353566.

References

[1] J. Abello, P. Pardalos, and M. Resende. On max-
imum clique problems in very large graphs. In
J. Abello and J. Vitter, editors, External Mem-
ory Algorithms, DIMACS Series, AMS, 1999.

[2] J. Barr and L. Cabrera. AI gets a brain. ACM
Queue, 4(4), 2006.

7



[3] Berkeley open infrastructure for network com-
puting (boinc). http://boinc.berkeley.edu.

[4] Boinc survey results. http://boinc.berkeley.
edu/poll results.php, as of July 27, 2006.

[5] distributedcomputing.info. http://www.
distributedcomputing.info.

[6] distributed.net. http://www.distributed.net.

[7] The esp game. http://www.espgame.org.

[8] The great internet mersenne prime search. http:
//www.mersenne.org.

[9] A. Holohan and A. Garg. Collaboration online:
The example of distributed cmputing. Journal
of Computer-Mediated Communication, 10(4),
2005.

[10] R. Hunicke, M. LeBlanc, and R. Zubek. MDA:
A formal approach to game design and game
research. In Proceedings of the Challenges
in Games AI Workshop, Nineteenth National
Conference of Artificial Intelligence. The AAAI
Press, 2004.

[11] P. Hyman. ‘casual’ video games are serious busi-
ness. The Hollywood Reporter, June 17, 2004.

[12] IDGA casual games sig. 2006 casual games
white paper, July 2006.

[13] A. Linn. Firms seek to cash in on ‘casual games’.
USA Today, July 9, 2006.

[14] Macrovision. Survey reveals casual gamers are
not so casual. Macrovision Press Release, June
28, 2006.

[15] R. J. R. Mena. Using massively multi player tech-
nology for science education: P.A.S.T. history.
In Proceedings of International Conference on the
Future of Game Design and Technology 2005, Oc-
tober 13, 2005.

[16] Mudcraft. http://www.mudcraft.com.

[17] P. R. J. Österg̊ard. A fast algorithm for the
maximum clique problem. Discrete Appl. Math.,
120(1-3):197–207, 2002.

[18] P. Pardalos, J. Rappe, and M. Resende. An ex-
act parallel algorithm for the maximum clique
problem. In P. P. R. De Leone, A. Murl’i
and G. Toraldo, editors, High Performance Algo-
rithms and Software in Nonlinear Optimization,
pages 279–300. Kluwer, 1998.

[19] Peekaboom. http://peekaboom.org.

[20] Phetch. http://peekaboom.org/phetch.

[21] L. F. G. Sarmenta. Volunteer Computing. PhD
thesis, Massachusetts Institute of Technology,
2001.

[22] SETI@home. http://setiathome.berkeley.
edu.

[23] L. Thimm, D. Kreher, and P. Merkey. A paral-
lel implementation for the maximum clique prob-
lem. Journal of Combinatorial Mathematics and
Combinatorial Computing. to appear.

[24] Amazon mechanical turk. http://www.mturk.
com/mturk/welcome.

[25] Urban dead. http://urbandead.com.

[26] Verbosity. http://peekaboom.org/verbosity.

[27] L. von Ahn and L. Dabbish. Labeling images
with a computer game. In CHI ’04: Proceed-
ings of the SIGCHI conference on Human factors
in computing systems, pages 319–326, New York,
NY, USA, 2004. ACM Press.

[28] L. von Ahn, S. Ginosar, M. Kedia, R. Liu, and
M. Blum. Improving accessibility of the web
with a computer game. In CHI ’06: Proceedings
of the SIGCHI conference on Human Factors in
computing systems, pages 79–82, New York, NY,
USA, 2006. ACM Press.

[29] L. von Ahn, M. Kedia, and M. Blum. Verbosity:
a game for collecting common-sense facts. In CHI
’06: Proceedings of the SIGCHI conference on
Human Factors in computing systems, pages 75–
78, New York, NY, USA, 2006. ACM Press.

[30] L. von Ahn, R. Liu, and M. Blum. Peekaboom: a
game for locating objects in images. In CHI ’06:
Proceedings of the SIGCHI conference on Human
Factors in computing systems, pages 55–64, New
York, NY, USA, 2006. ACM Press.

[31] Wikipedia. http://wikipedia.org.

[32] B. Winn and J. Tye. Crafting a web-based, non-
violent, real-time strategy game. In Proceed-
ings of International Conference on the Future
of Game Design and Technology 2005, October
13, 2005.

8


