Chapter 6

Reasoning About Linear Logic Programs

6.1 Introduction

Specifications in linear logic involve complex, interdependent state transformations that
are not always easy to reason about, especially as programs grow. Many programs im-
plicitly encode invariants that the programmer holds in their head while adding com-
plexity. For instance, in the interactive fiction example described Section 4.6.3, the pro-
grammer must take great care not to write any rules that discard an atom of the form
at player Room. The whole program’s correctness hinges on the implict assumption
that the player is always at some location in the world, and we can very easily create
programs that break such assumptions. When the language permits writing such fragile
code, we cannot make a strong claim about its usability, due to the potential for novices
to make errors like these without the ability to know what they did wrong.

On the other end of a spectrum of expressive power for constraints, we can also
consider full verification of high-level properties of a game such as solvability. Such
constraints have been used in generative methods [SM11], including the automatic gen-
eration of playable games. Extending invariant checking to these domains would mean
not only producing well-formed starting configurations (such as level configuration)
but also proving that everything the player can do in a generated game or level does not
break its well-formedness.

To these ends, we propose constructing automated reasoning tools for linear logic
programs that enable the explicit statement and automatic checking of program invari-
ants. In this chapter, we present partial progress toward this goal and discuss challenges
to solving it in full generality. We present three candidate logics for stating invariants,
several manual proofs illustrating each approach, and a decidability result for automat-
ically verifying a fragment of the language.

6.1.1 Example: Blocks World

Consider the following specification of the “blocks world” domain from Al planning [Nil14]:
the domain includes blocks stacked on a table and a robotic arm that can pick up blocks

157



and set them down on top of one another or on the table.

block : type.

on block block : pred. % one block on top of another.
on_table block : pred. % the block is on the table.
clear block : pred. % the block has nothing on it.
arm_holding block : pred. % robot arm holds the block.
arm_free : pred. % robot arm holds nothing.

% pick up a block from the table.
pickup_from_table : on_table B * clear B * arm_free -o arm_holding B.

% put down a block on the table.
putdown_on_table : arm_holding B -o on_table B * clear B * arm_free.

% pick up a block from atop another block.
pickup_from_block : on BHi BLow * clear BHi * arm_free
-0 clear BLow * arm_holding BHi.

% put down a block on top of another block.
putdown_on_block : clear BLow * arm_holding BHi
-o on BHi BLow * clear BHi * arm_free.

To fully specify the domain, we state some assumptions about well-formed states
and interactions. For instance, we assume that blocks are arranged in linear stacks with
the table at the bottom, we assume that the arm always holds at most one block, and we
assume that there is a unique top block of every stack that is marked as “clear.” In order
for us to verify all of these assumptions, we need to know that they hold of any initial
configuration of blocks, and we need to know that the rules in the program preserve the
same assumptions. If this were a terminating program rather than a potentially-infinite
simulation, we might also want to state and prove properties of its execution in terms
of what final configurations look like, possibly as a function of initial configurations.

The hardest problem in the collection of problems just described seems to be invari-
ant preservation, i.e. a property of a program that says its rules preserve some constraint
on the shape of the context. The problem bears some similarity to that of specifying
well-formedness constraints on LF contexts, which are expressed with regular worlds in
the Twelf implementation [PS98], in that we want to specify general patterns or schema
for predicates that must appear alongside one another pertaining to specific terms. Ide-
ally, checking invariant preservation should not depend on a domain instance. An exam-
ple of a domain instance for blocks world is a specification of the particular blocks and
starting configuration in a given simulation, such as the following:

a : block.
b : block.
c : block.

context init =
{ on_table a, clear a,

158



on_table b, on ¢ b, clear c,
arm_free}.

This part of the program can be thought of as input to the rule set, in the sense that
the rules should make sense for any well-formed set of blocks and initial configuration.
Thus a checking algorithm for invariant preservation ought not to depend on this part
of the specification. !

To check initial states, final states, and invariants, we need a way of describing con-
text schema (sets of configurations representing a property of interest) and a framework
in which to express and prove the program’s relationship to those schema. This chap-
ter describes three candidate logics for stating and proving these properties: meta-linear
logic, generative signatures, and consumptive signatures. We show examples of proofs car-
ried out in each of these logics for domains and properties of interest to this thesis.
We describe the limitations and potential for each approach’s automatability, and for
the case of generative signatures, we describe a decidability result for the propositional
case of Ceptre. We conclude by suggesting avenues for further investigation of this
still-open problem.

6.2 Meta-Linear Logic

The well-formedness conditions of the Blocks World domain can be decomposed into
two constraints on blocks and one on the robot arm, which may be informally stated as
follows:

1. The first constraint says a block must have a well-formed base: either it is on the
table, it is on top of another block, or it is held by the robot arm.

2. The second constraint says a block must have a well-formed top: either it is clear,
there is another block on top of it, or it is held by the robot arm.

3. The third constraint says that the robot arm must either be free or holding a block.

Note that each of these descriptions independently seem to describe some mutual
exclusion between resources, which could be described through linear logic’s additive
disjunction operator ¢. These properties do not partition the context, however. For
instance, the robot arm holding a block can satisfy all three of them, but we do not
want to suggest that there should be three robot arm-related resources, when in fact we
intend there to be exactly one.

We can describe these possibly-overlapping properties independently in terms of
restrictions of the context A to certain predicate sets related to certain entities (usually
predicate indices) over which properties are described, written Ay, . 1 where p; are
predicate patterns (predicates where each index either refers to a variable bound by
a quantifier or a wildcard _ satisfied by any index). We can also quantify over these
entities in the formula, universally at the outside and existentially on the inside. For
instance, the three properties above map onto the following formal statements defining

"However, see Section 6.6.1 for an example of a specification that might break this assumption.

159



what it means for an argument context A to satisfy the invariant (abbreviating on_table
to ot, arm_holding to ah, arm_free to af, and clear to cl):

¢ Invariant BW; (block bottom well-formedness):

Vb : block. Al ot b, on b, ah b} F (0t D) & (Fb'.on bb') & (ah b)

¢ Invariant BW, (block top well-formedness):

Vb : block.Alfci b, on v, ah 5} F (cI b) @ (Fb".on b’ b) & (ah b)

¢ Invariant BW; (arm well-formedness):

AL{ah _, af} E (Elbah b) © af

Once a specific ground term index is plugged into this formula and the restriction
is calculated, satisfiability F is determined simply by producing a derivation in linear
logic.

To check a program rule, we must parameterize over frame contexts in which the rule
might apply. For example, consider the “pick up from table” rule, which has the form

ontable B * clear B * arm_free -o arm_holding B

In order for this rule to apply to a context A, that context must have the form

A, ontable b, clear b, arm_free

(where b is a ground term), and the state after application of the rule will be

A', arm_holding b

We quantify universally over the context A’, which must be reasoned about para-
metrically. The invariant itself quantifies over block terms B, and to show that it holds
of the resulting state, we must reason parametrically over those as well. The locality
or frame property of linear logic transitions means that whichever ones might appear
in A’ but not in the rule will remain unchanged and easy to reason about. That leaves
reasoning about the indices that do appear in the rule with respect to the invariant.

An invariant [ is preserved by a given rule taking a state A to a state A’ exactly
when /(A) implies I(A’). We can show that each of the three parts of the blocks world
invariant described above apply to the pickup_from_table rule as follows.
Proposition 6.2.1 (Rule preserves blocks world invariants). Given any A’,
let A = A’, ontable b, clear b, arm_free .

Foreach I € {BWy, BW,y, BW3}, if I(A) then 1(A’, arm_holding b).

2 This convenience depends crucially on the “well-moded” nature of rules: any variables mentioned
in the consequent of the rule must relate somehow to variables in the antecedent. This means that even
with infinite term domains, we never need to reason inductively over all inhabitants.

160



Proof. Invariant BW;: pickup_from_table preserves block bottom well-formedness
Intuitively, this property holds because the only block affected is the one manipulated
by the rule, and its bottom’s initial ontable property is simply replaced by an equally
satisfactory arm_holding property. The proof follows.

By assumption (BW; holds of the input context),

Vb':block.(A’, ontable b, clear b, arm_free )| (ot i .on & _ah &} F (0t 0') & (F".0on 1" V") & (ah b')

Let S be the restriction set given above, {ot ¥’,on ' _,ah b'}.
What we need to show is that for all blocks ¢,

(A', arm_holding b) | tot con ¢ _ah ¢} F (ot ¢) & (Fb".0n ¢ b") & (ah ¢)

Assume an arbitrary block ¢ for which to prove this fact.

There are two cases: ¢ = b (the block referred to in the particular transition) or ¢ # b.
In the case where b and c are distinct, A|s = A’|5, and also (A’, arm_holding b)|s = A’|s.
Then, what we know and need to show are the same, so the case is satisfied.

In the case where b = ¢, then we know A|g = A’|g, on_table b.

By inversion, the proof that A’|g, on_table b = ontable b - (ot b) & (Fb'.on b V') & (ah b)
can only take the following form (according to the semantic interpretation of satisfiabil-
ity given in 6.2.2, which essentially reduces to linear sequent provability):

ontable b I ontable b ™"
ontable b (ot b) @ (Fb'.on b V') @ (ah b)

SR

Thus, A’| ¢ must be empty.
Now we need to show

(A’ arm_holding b)|s E (ot b) & (Fb'.on b ') & (ah b)
Since A’ |g is empty,

(A') arm_holding b)|s = A’|g,arm_holding b
= arm_holding b

So we equivalently need to show arm_holding b = (ot b) © (30'.on b V') & (ah b)

which holds by derivation from @© R rules. O

Invariant BW5: The rule pickup_from_table preserves block top well-formedness

Intutitively, this property holds because the only block affected is the one manipu-
lated by the rule (B), and its bottom’s initial ontable property is simply replaced by an
equally satisfactory arm_holding property. The proof follows.

By assumption and expansion of BWj, for all b : block, and in particular for the
block b specified by the transition, A| (ot onb _ an sy F (0t d) @ (I'.onb b)) & (ah b). In-
tuitively, this property holds because the only block affected is the one manipulated by
the rule, and its top’s initial clear property is simply replaced by an equally satisfactory
arm_holding property. The proof follows.

161



Let bbe the block index chosen by the transition. Let the restriction set S be {cl b, ah b, on _b}.
We know by assumption that

Als E (clb) @ (ah b) & (3b".on V' 1)

and since clear b satisfies the disjunction, A’|s is empty by the same inversion rea-
soning as previously.

We need to show (A’;ah b)|s E (cl b) @ (ah b) @ (F0'.on V' b).

Since A'|g is empty, it suffices to show ah b - (cl b) & (ah b) @ (3 .on b’ b), which is
derivable by rules. O

Proof for BW; (pickup_from_table preserves arm well-formedness):
Intuitively, this property holds because the arm’s initial arm_free property is replaced by
an equally satisfactory arm_holding property. The proof follows.

Let S be the restriction set {af, ah _}.

We know by assumption that

Alg E (Tb.ah b) & af

and since arm_free satisfies the disjunction, A’|s is empty by the same inversion
reasoning as previously.

We need to show (A’ ah )|s F (Jb.ah b) @ af

Since A'|g is empty, it suffices to show ah b = (3b.ah b) @ af , which is derivable by
rules. [

So far we have only proven the invariant for one rule, intentionally chosen as one
of the simpler ones in the program. In order to give a representative sample of this
method, we now show consider a rule manipulating the interaction between two blocks,
which we also want to preserve the invariants. Below, we give the intuition for the proof
of invariant preservation for the putdown_on_block rule. There is one case that differs
in format from the cases in the previous proof: in particular, invariant BW; for block ¥/,
the preservation of the bottom block’s bottom well-formedness.

Proposition 6.2.2. For any A, let A = A’, ahb, clV/. For each I € {BW,, BW,, BWs}, if
I(A) then I(A', on bV, clb, af ).

Proof Sketch: We need to reason about each of the two blocks mentioned in this rule, b
and ¥, and ensure that B, and BW, holds for each of them.

Invariant BV, (bottom well-formedness) for block b:

This property holds because ah b is replaced by on b V'

Invariant BW, (top well-formedness) for block b:
This property holds because ah b is replaced by clear b.

Invariant BT, (bottom well-formedness) for block ¥':

This property holds because the rule does not manipulate this property, i.e. predicates
concerning it are not mentioned to the right nor the left of the rule.

Invariant BW, (top well-formedness) for block b':

This property holds because clear b’ is replaced by on b 1.

Invariant B3 (arm well-formedness)

This property holds because ah b is replaced by af .

162



6.2.1 Example: Tower of Hanoi

We continue to illustrate this meta-logical approach by example, this time with a varia-
tion on the blocks world domain that is closer to a games application: Tower of Hanoi.
This example also involves the persistent, backward-chaining component of the lan-
guage and allows us to illustrate our treatment of such constructs in program rules.

Define the Tower of Hanoi domain as follows: there is a finite number of posts on
which rings can be placed. A robot arm may either be holding a ring or free. A ring
R may only be placed on top of another ring R’ if R is smaller than R'. To make our
encoding more concise, we introduce a general place type to represent either an empty
post or the top of a ring. The code follows:

ring : type.

smaller ring ring : bwd.

place : type.
post : type.
top_of ring : place.
bottom post : place.

on ring place : pred.
clear place : pred.
arm_free : pred.
arm_holding ring : pred.

pickup : clear (top_of R) * on R P * arm_free
-0 arm_holding R * clear P.

putdown_on_ring : arm_holding R * clear (top_of R’) * smaller R R’
-0 arm_free * on R (top_of R’) * clear (top_of R).

putdown_on_post : arm_holding R * clear (bottom P)
-0 arm_free * on R (bottom P) * clear (top_of R).

An example instantiation of this domain is:
pl : post. p2 : post. p3 : post.

rl : ring. r2 : ring. r3 : ring.

smaller rl1 r2.
smaller r1 r3.
smaller r2 r3.

context init =

{clear (bottom p2), clear (bottom p3),
on r3 (bottom pl), on r2 (top_of r3), on rl (top_of r2),
clear (top_of rl), arm_free}.

Runnable Ceptre code for this example can be found in Appendix C.3.

163



The invariant we want to show preserved is that whenever a ring is on another ring,
the top ring is smaller. Here is a candidate statement of this invariant in the meta-logic:

Irom+(A) = Vr, " Al fon r (top.of 1y} F ((on 7 (top_of 7)) ®!smaller r ') & 1

This invariant says that any two rings in the program are either in the on relation,
in which case they are accompanied by a provable smaller relation between them, or
there is no such relationship between them.?

In order to make our proofs go through, however, we will need to strengthen the
invariant to include one of the original properties of the blocks world program: in par-
ticular, the fact that rings have mutually exclusive predicates referring to what is under
them and what is atop them. It suffices to supply just one of these properties, e.g.:

Iron(A) =
Vr.Aljon s anry E (3. (on 7 (top-of 7'))®!smaller r 1)
@ (Ip.(on r (bottom p)))
@ (arm_holding )

The proof that this invariant holds of the program is given rule-by-rule. For rule
pickup:
Proposition 6.2.3 (Rule preserves Tower of Hanoi invariant). For all A', r : ring, and
p : place, if Irou (A, clear (top-of ), on r p, arm_free ), then I,y (A’, arm_holding r, clear p).

Proof. Let A = A, clear (top_of r), onr p, arm_free. For most instantiations of the re-
striction set, the proof will be trivial, since the rule does not manipulate any instances
of the restriction set unless the argument is . In that case, let S be the restriction set
{onr _,ah r}, and let A be the formula

(Fr'.(on r (top-of r'))@!smaller r r')
@ (Fp'.(on r (bottom p')))
@ (arm_holding 7)

By assumption, A|g F A. The restriction A|g computes to A’|g,on r p, and since on r p
suffices to prove the disjunction (either the first or second disjunct), A’|g = -.
Need to show: (A’;ah r,cl p)|s E A. (A’,ah r,cl p)|s = ah r by reduction. ah r - A by
rules (the single assumption satisfies the right disjunct).
O

3 This invariant may seem awkward compared to a similar implication-flavored statement:
on r (top-of r') Dlsmaller r 7. However, this implication sits at the meta-logical level, and we do not wish
to include such a connective in our restricted metalogic for the sake of potential automation. On the
other hand, in classical logic we have the equivalence AD> B = (—A) V B, which gives us a positive (in
the focusing sense; see Chapter 2) characterization of implication more suitable to automatic search. This
invariant statement is essentially a reflection of this equivalence, which is valid in this logic because we
consider the presence or absence of an atom in the context to be decidable—i.e. in a context restricted to
the set {a}, the proposition a* & 1 will always hold for some k, which is analogous to the law of excluded
middle in classical logic.

164



For rule putdown_on_ring:*
Proposition 6.2.4. For all A’ and r : ring, if I7,u(A’, arm_holding r, clear (top_of ’)) and
Y F smaller r v/, then I, (A', arm_free , on r (top_of 1), clear (top_of 7)).

Proof. Let A = A’, arm_holding r, clear (top_of r’). The proof is trivial for all instantiations
of the invariant except in cases where the restriction set mentions r, so let us consider
the instantiation of the invariant at r for which the proof is nontrivial. Let S be the
restriction set {on r _, ah r}. Let A be the formula

(Fr'.(on 1 (top-of r'))@!smaller r ')
@ (Fp'.(on r (bottom p')))
@ (arm_holding )

We know Als F A, and in particular the premise ah r satisfies the third disjunct, so
A'|s is constrained to be empty. We need to show

(A',af ,on 1 (top_of 1), clear (top_of 1)) |sF A

The context restriction computes to on 7 (top_of ') which together with the assump-
tion Ismaller r 7’ satifies the first disjunct. O

For rule putdown_on_post:
Proposition 6.2.5. Forall A', r : ring, and p : post, if I7,u (A, clear (bottom p), arm_holding r),
then I,y (A', arm_free , on r (bottom p), clear (top_of 7)).

Proof. Let A = A’, arm_holding r, clear (bottom p). The invariant holds of A instantiated
at 7 because of the arm_holding r premise, which is straightforwardly replaced by the
onr (bottom p) consequent. This proof follows the same pattern we have now seen
several times. O

6.2.2 Potential for Automation

In order to discuss potential algorithms for deciding a fragment of this meta-logic, we
need to define that fragment. To do so, we constrain the grammar of the meta-logic to
formulas ¢ of the following form:

¢ = Ay
v ou= Vory | Als EY
b o= al Y@ |vey| e |1
S = -|pat,S
pat = atpat,...tpat,
tpat = _|t|ctpat,...tpat,

*Note: since this rule involves a persistent premise, we must explicitly mention the signature ¥ sup-
plying the backward-chaining rules defining persistent propositions, which we had previously been leav-
ing silent. This treatment emerges from what it means for a transition to apply; see Chapter 3 for details.

165



The grammar for terms ¢, term constants ¢, and atomic predicates a is borrowed from
Ceptre’s grammar, given in Chapter 4.

Then we give an interpretation of each component when a formula ¢ is applied to a
context A (with respect to some type header ¥):

| Y Ft:7implies A E [t/z]y

] = A={d)

]] = A:Al,AgandAlhiblandAglzwg
[AEY1 o] = AFEYrorAF gy

] = thereexiststs.t. X Ft:7and AFE [t/z]y

] = A=

Pattern restriction A|s computes another context A’, defined approximately as the
intersection of A and S where any wildcard patterns _in S are considered equivalent to
any term. We write that an atom p matches a pattern pat with the notation p > pat, which
is defined next.

Pattern restriction:

A Ls, p if p S}
Alg otherwise
pe* S iff dpat € S.prpat

s

=

2
|

Pattern matching;:

t >t

t > -
cty...t, > ctpaty...tpat, iff ¢; >tpat; and ... and ¢, > tpat,
aty...t, > atpat,...tpat,iff {; >tpat; and ... and ¢, > tpat,,

Checking that a given context matches a formula in this fragment of the logic for
a given context has a straightforward correspondence to the positive fragment of first-
order linear logic, which is a subset of MALL and thus decidable. Including the expo-
nential operator ! in the limited fashion demonstrated by the Tower of Hanoi example,
i.e. to express constraints on indices whose provability can be fully extricated from the
linear components, does not seem to affect this decidability in any obvious way, but we
currently leave its decidability as conjecture.

For invariant checking, i.e. checking that a given transition A — A’ enabled by the
program under scrutiny preserves a property given in this language, we would need to
codify the proof technique embodied by the manual proofs given above in such a way
that were guaranteed to terminate, including inversion of assumed derivations.

Here is a sketch of the algorithm, generalized from the previous examples:

To check an invariant ¢ = \J.Va:7.6| s F v of a transition A — A’

166



1. Expand ¢(A). Generate fresh symbols for each V-quantified variable x; in ¢(A").
2. Enumerate cases for terms in A being equal or not equal to those symbols.

3. For each case, compute the restriction set S and determine possible inversions
based on the rules for decomposing the inner formula ¢ (analogous to linear se-
quent calculus right rules). These introduce equality constraints on the restriction
set of the input context A and on the part it shares with A’.

4. Using those constraints and, again, decomposition rules for the invariant formula,
determine satisfiability of A’ F 4.

This process does not straightforwardly correspond to a known-decidable proce-
dure, but since the satisfiability semantics obey a subformula property in the same sense
as their corresponding linear logic rules, we expect that inversion is a computable pro-
cess. We also have not yet encountered examples in this fragment that require induc-
tive lemmas. Thus, we conjecture that checking preservation of invariants described
in this meta-logic is decidable. It remains to prove that this is the case, as well as to
prove soundness and completeness with the logical derivability-based notion of invari-
ant preservation. We leave further formalization and proof to future work.

6.2.3 Limitation: Recursive Predicates

Working in a restricted meta-logic to specify program invariants has some drawbacks.
For instance, some specifications of well-formed states are simply inaccessible. Con-
sider an encoding of linked lists in linear logic wherein memory areas are encoded
as abstract destinations (terminology borrowed from the idea of “destination-passing
style” [CPWWO03]) used as indices to a predicate describing data at a location as well as
a reference to the next location:

data : type.
location : type.
node location data location : pred.

The list [a,b, c] would be encoded as the domain instance:

a : data. b : data. c : data.

11 : location. 12 : location. 13 : location.

end : location.

context list_abc = {node 11 a 12, node 12 b 13, node 13 c end}.

We can write programs over this data that, for instance, delete a node from the list
(atlocation L?):

delete : at L VL’ *x at L’ _ L’ -oat L V L’’.

A common verification problem for reasoning about programs at a memory layout
level is shape analysis [SRW02, DOY06]: can we reason that a given segment of memory
has a particular shape (for instance binary tree or linked list) and that a program that
manipulates it, possibly dynamically allocating memory, preserves that shape? Pre-
viously, linear logic has been investigated as a candidate for expressing these program

167



constraints in terms more abstract than memory locations [JW06], and it seems that such
analyses should also extend to linear logic programs themselves.

In particular, for this example, we might like to state that the linear, non-circular,
linked list structure of our memory layout encoding is preserved by the deletion rule.
But such a property cannot be given by local characterization of a single index; it must
refer to the structure of how indices are shared between predicates in the context. We
also cannot give it as a persistent property defined outside the state evolution rules,
since it refers to facts (like the way nodes are linked) that fundamentally change during
execution.

Instead, such a property is more naturally given recursively, by saying either the list
is empty, or contains a node pointing to another well-formed linked list. One candidate
approach for stating this kind of invariant is to extend the meta-logic with a notion
of recursive predicate. Such extensions to first-order linear logic have been explored
and proven sound [Bae08]. However, this extension may complicate decidability of
the approach, and does not offer clear means for automation. We describe a related
approach more fully as part of a different technique in Section 6.3.

6.3 Consumptive Invariants

Aside from automation concerns, we also hope to extend the expressiveness of the meta-
logic by allowing the description of recursive invariants, such as those described in
the shape analysis literature. We describe a technique that can dynamically check such
invariants next.

This technique hinges on the observation that descriptors of context properties re-
semble grammars that themselves can be expressed in linear logic. And we can write
recursive linear logic programs to express those properties via backward-chaining.

6.3.1 Backward-Chaining Linear Logic Programs

Linear logic programs may be given a backward-chaining interpretation so long as each
clause only has a single, atomic consequent, i.e. takes the form A —o p. In concrete syn-

tax, instead of p1 * ... * pn -o p for such a rule we will write the backwards, curried
formp o- pl o- ... pn, mimicking the syntax for persistent backward chaining pro-
grams.

We refer to p as the head of such a clause, and proof search may be carried out on
a particular atom by matching it against the heads of all logic program clauses, then
matching their premises as new goals, backtracking when search along a particular
branch fails, just like persistent backward chaining. But linear rules still have a resource-
based meaning, i.e. forarulep o- pl o- p2 to succeed at establishing p in a context A
means that A must be partitionable into A, A, such that p1 consumes all of A; and p2
consumes all of A,.

168



6.3.2 Example: Linked List Shape Analysis

Consider the linked list example given in Section 6.2.3. We can write a simple recursive
predicate defining a well-formed linked list segment with two arguments, s for the be-
ginning location of the list and e for the ending location. The linked list segment is well
formed if either s = e (the segment is empty) or there is some node at s with “next” field
[ such that [ and e define a well-formed segment.

This definition can be represented by the following backward-chaining linear logic
program:

11 location location : bwd.

11 X X.

11 SEo-at SVL

o- 11 L E.

Simmons [Sim12] refers to this kind of specification as a consumptive signature, be-
cause to use it as a verification tool, we would supply a context A and attempt to prove
A F 3s,ell s e, which works operationally by using the rules defining 11 to consume
elements of A until none are left.

6.3.3 Potential for Automation

By combining the restriction mechanism from the meta-linear logic approach with pred-
icates defined recursively in linear logic, we can straightforwardly extract a dynamic
checking algorithm: after every rule application, check that the resultant context A (or
whatever restriction of it) satisfies the formula by simply running linear logic proof
search. We have not determined to what extent such invariants can be checked of a pro-
gram statically, nor to what extent the dynamic process described can be optimized not
to re-compute full provability between every transition in the program.

6.3.4 Limitation: Apartness Constraints

Apart from a lack of a known static decision procedure for preservation, consumptive
invariants have the following limitation: they cannot enforce that a given predicate
holds only for distinct term indices. For instance, consider this candidate representation
of the blocks world well-formedness property.

wf_bw
o- wf_arm
o- wf_stacks.

wf_arm o- arm_free.
wf_arm o- arm_holding X.

wf_stacks o- 1.

wf_stacks o- on_table B

169



o- wf_stack B
o- wf_stacks.

wf_stack B o- clear B.

wf_stack B o- on B’ B
o- wf_stack B’.

This specification does not suffice to rule out ill-formed blocks world configurations
as specified in Section 6.2, because it does not enforce that a given block B is not, say,
simultaneously held by the arm and on the table (or appearing in multiple stacks). The
term indices of the rules may be instantiated with any substitutions, including ones that
unify them with otherwise-existing terms.

6.4 Generative Invariants

A generative signature, in contrast to a consumptive signature, is one that describes a
context property through rules that generate all permissible contexts, again using the
analogy between logic programs and grammars. Generative signatures and their use
for specifying logic program invariants were also first described in [Sim12].

Generative signatures are collections of forward-chaining rules together with a seed
context Ay, usually containing a distinguished gen atom which is expanded by the sig-
nature. By convention, we will assume that all seed contexts take this form such that
the signature itself suffices to specify the property.

At first glance, generative signatures look like consumptive signatures “with the ar-
rows turned around:” instead of distinct wf (well-formedness) predicates for each por-
tion of the context, we have distinct generators, analogous to nonterminals in a gram-
mar, for each portion of the context. A complete well-formed context A, then, is one for
which there is a transition sequence A, — A along rules given in the generative sig-
nature ¥,.,, where A contains no nonterminals. An extremely simple example is given
below:

gen -o {a * gen}.
gen -o {1}.

This signature, equipped with the seed context {gen}, describes contexts containing
zero or more instances of a. Formally, the set of contexts that a signature > and a seed
Ay describes is the set of reachable contexts from A, following rules in 3. We call such
a signature and seed pair (X, A) a generative invariant of a program signature ¥’ if all
rules in >’ maintain the program state’s membership in the set generated by X seeded
with Ay. We make this notion more precise later.

In addition to universally-quantified indices (standard logic variables), generative
invariants may also include existentially generated variables via rules of the form A -o exists x.B.
The existential quantifier has completely standard treatment from a forward-chaining
proof search perspective; see the CLF paper [WCPWO03] for a formal treatment.

170



6.4.1 Example: Generative Signature for Blocks World

Below we give a generative signature characterizing the blocks world domain, effec-
tively by “turning the arrows around” in the consumptive signature. Let YXpygen =

gen/bw : gen -o gen_arm * gen_stacks.

gen_arm/af : gen_arm -o arm_free.

gen_arm/ah : gen_arm -o exists b. arm_holding b.

gen_stacks/done : gen_stacks -o 1.

gen_stacks/more :

gen_stacks -o exists b. on_table b * gen_stack b * gen_stacks.
gen_stack/clear : gen_stack B -o clear B.
gen_stack/more : gen_stack B -o exists b. on b B’ * gen_stack b.

This signature says: in order to build a blocks world, build an arm and a set of block
stacks. The arm can either be free or holding a block. A set of block stacks can be empty,
or it can contain a block stack starting with a new block index, where that block is on the
table, along with the rest of the set of block stacks. A block stack is indexed by its top
block, and that block can either be clear, or have another block on top of it that becomes
the new block stack index.

6.4.2 Generative Property Preservation

We now define what it means for program transitions to preserve generative properties.

Definition: A transition A, A — A, B preserves a generative property (X,.,, A) iff for
all A, whenever Ay ~y . A, A%, itis also the case that Ay vy, A, B*.

In particular, for the blocks world example, we can show how to reason that the
pickup_from_table rule, enabling the transition A, ot b, af, cl b — A, ah b, preserves the
invariant by showing that:

Proposition 6.4.1. If

gen

{gen} —s,... A, on table b, arm_free, clear b

then
{gen} —s,.. A, arm_holding b

Proof Sketch: The signature Yj,z.n can generate A, on_table b, arm_free, clear b in only the
following way, up to concurrent equality:

1. Apply rule gen/bw to get context {gen_arm, gen_stacks}.

2. Apply rule gen_arm/af to get context {arm_free, gen_stacks}.

3. Apply some unknown rule sequence to gen_stacks to yield an unknown context
D1 along with another copy of gen_stacks.

4. Apply gen_stacks/more to create b along with its on_table property. Context is
now {arm_free, D1, on_table b, gen_stack b, gen_stacks}.

5. Apply gen_stack/clear to gen_stack b to get clear B.

171



6. Apply some unknown rule sequence to gen_stacks to get a side effect nonterminal
context D2, and eventually eliminate all nonterminals.
The context is now {arm_free, D1, on_table b, clear b, D2}.
The original frame context A must equal D1, D2.

Need to show: {gen} —y, A, arm holding b.

Given the proof trace above, we can modify it selectively to produce the context we
need. We modify step 2 to replace gen_arm/af with an application of gen_arm/ah, which
generates a block b that is indistinguishable from the specific b in question up to alpha
renaming, and the predicate arm_holding b. We modify steps 4 and 5 to be the null
transition, simply linking together the trace that generated D1 to the trace that uses
gen_stacks to generate D2, eliminating the terminals that were produced as a side-effect.

O

To make the above proof sketch formal, we need to give the input trace in terms of €
notation (a sequence of let-bindings let (z; ...z,) = r R witnessing the transformation
{gen} —s,.... A, on_tableb, arm free, clear b) and prove that it really is the only possi-
bility, up to concurrent equality. Simmons [Sim12] carries out such proofs by proving
permutability lemmas, which say that in any trace, we can permute the generation of the
terminals we care about to the end, then reason inductively on the remaining trace pre-
fix. The tediousness and surfeit of cases in these proofs suggest that formal argument
over traces is the wrong level of abstraction for these proofs—in the case of generative
well-formedness, we do not care about the order in which things are generated by the
signature but rather only about reachability between intermediate states of the genera-
tive program. An attempt at visualizing the structure of a generative trace is given in
Figure 6.1.

The ability to draw the trace this way makes several assumptions that we would
need to prove about a given generative signature, such as non-interference between
gen_arm and gen_stacks, and for that matter the fact that terminals cannot interfere
with the trace structure. All of these assumptions suggest constraining the grammar of
generative signatures themselves in such a way that their traces always have this tree-
like structure, which we will do when we formalize them in an attempt to automate
proof search.

6.4.3 Potential for Automation

We have not yet devised a general algorithm for checking preservation of generative
invariants, and we suggest that without a better layer of abstraction for reasoning about
generative traces, such a task is intractable: the by-hand proofs frequently involve
inductively-proven lemmas and careful scrutiny of the particular generative signature
at hand. However, generative signatures so far yield the most definitive result of the
three approaches: if we limit programs and generative signatures to atomic propositions,
invariant preservation is decidable. We give a proof of this fact in Section 6.5.

172



Figure 6.1: Generative trace structure
These diagrams depics the generative trace structure for blocks world well-formedness
of precondition and postcondition of the rule
pickup_from_table : on_table B * clear B * arm_free -o arm_holding B.
Precondition trace:

>

gen_stacks

Y

gen_stack ] [ gen_stacks ]

)

Postcondition trace:

arm_holding b
gen_stacks

(null transition)

gen_stacks




6.4.4 Limitations

Generative signatures resolve the major limitation of consumptive signatures, the ex-
pression of apartness constraints, through the existential quantifier, which always gen-
erates a fresh term distinct from any others previously in existence. However, this ap-
proach is not without its limitations.

For one thing, we suspect that generative signatures are a substantially less intuitive
way to write specifications than, for instance, the first-order formulas of meta-linear
logic discussed in Section 6.2. While meta-linear logic is a fairly direct way of translat-
ing a constraint on a program into a logical formula, generative invariants require the
programmer to operationalize their understanding of the constraint by specifying how to
generate contexts that satisfy it.

Second, there is another large class of constraints we cannot describe with generative
invariants: consider describing well-formed graphs where edges between nodes are pred-
icates in the program, but we do not want to create self-loops or multi-edges. However,
a new node created may refer back to an old node. A candidate signature is:

gen/nodes : gen -o exists n:node. gen_edges n * gen.
gen_edges/edge : gen_edges N * gen_edges N’

-0 edge N N’ * gen_edges N * gen_edges N’.
gen_edges/done : gen_edges N -o 1.

This specification has two problems: first of all, it has a rule with two nonterminals
on the left, which even in the propositional case falls outside the known-decidable frag-
ment. Second, it cannot avoid generating self-edges or multi-edges, since nothing stops
Nand N’ from having the same node substituted for them. The existential “fresh gener-
ation” property does not help us here, because it cannot promise to keep indices apart
in a non-local way, i.e. in a rule other than the one where the existential appears.

In general, there does not appear to be a way to specify formation properties in
which indices can be shared arbitrarily between predicates while also enforcing certain
apartness constraints. Even with meta-linear logic, we would need to introduce new
apartness primitives on terms in order to handle such a specification.

6.5 Decidability of Invariant Checking for the Proposi-
tional Fragment

In this section we prove that checking whether a (propositional) generative invariant
holds of a (propositional) linear logic program is decidable. We do so by modeling
propositional generative signatures and programs as vector addition systems (first intro-
duced by that name by Karp and Miller [KM69], although the equivalent Petri nets
were devised earlier [Pet66]) in a way that they can be treated using known techniques.
Specifically, we show how invariant preservation can be modeled in Presburger Arith-
metic, the first-order theory of natural numbers with inequality and addition, which
(despite impractical computational complexity) happens to be decidable [Sta84].

174



6.5.1 The Propositional Fragment

Propositional Ceptre programs are those which do not have any logic variables (II-
bound variables), and thus the available transitions at any point in the program does
not depend on the term language available. Formally, it is simply a restriction of the
grammar of rules to

A = §—o08
S = 1|la|S®S

Instead of refering to these programs as propositional Ceptre programs, we will refer
to them as propositional Horn programs by analogy with Horn clauses in standard logic
programming (i.e. ones with no left-nested implication) [Kow74], which we believe is
consistent with prior definitions of the Horn fragment of linear logic [Kan92, Kan95].

Below is an example of a propositional Ceptre program modeling coin exchange—
r1 exchances a dime for two nickels, and r2 exchanges a quarter for two dimes and a
nickel.

rl : d -on * n.
r2 : q-od *d * n.

Even with such a limited specification, we can already ask all of the same questions
we asked in the beginning:
e What is the set of well-formed states? In this case, it is simply any number of
quarters, dimes, and nickels.

e Which states do we take to be well-formed initial states? For instance, we might
specify that we start with entirely quarters, or we might allow any configuration
of coins.

e What is the set of possible states at quiescence (termination) of the program?
This depends on the set of initial states. If we take the initial states to be those
with only quarters, then we expect to have a multiple of five nickels at the end
and no other coins. If we allow any set of coins initially, then we will have an
arbitrary number of nickels (and no other coins) at the end.

Indeed, the propositional fragment corresponds with Petri nets [Mur89] and has
been used for quite sophisticated specifications in the games and interactive storytelling
literature as well as for modeling concurrent and distributed programs. For instance,
Dang et al. [DHCS11] specify a slapstick interactive storytelling scenario in which the
player character is attending a party and may take various actions that have cascading
effects, such as lighting a woman'’s cigarette:

light_cig : bored_woman * woman_has_cig * cig_not_lit
-o woman_has_cig * cig_lit.

..which can lead to objects and animals catching fire. Because the scenes are all en-
tirely hand-authored and specific to certain characters and objects, the whole interactive
space can be described with atomic propositions.

175



Furthermore, first-order logic programs may be expanded to propositional ones
through the process of grounding, if their term domains are finite. For instance, if we
have the type header

char : type.
loc : type.
at char loc : pred.

alice : char.
bob : char.

den : loc.
foyer : loc.

Then the rule rule : at C L -o 1 may be expanded into the following four rules:

at alice den -0
at alice foyer -o
at bob den -0
at bob foyer -o

[ S Y

Such a process is typically not considered computationally practical, since the num-
ber of rules needed to represent a single rule grows combinatorially with the number of
logic variables it has, and checking Presburger formulas is doubly-exponential in com-
plexity [FR98]. However, since our only aim with this proof is to establish decidability
(rather than a tractable algorithm), we note that our proof extends to these programs as
well.

Thus we consider decidability of invariant checking for propositional programs to
be a valuable and novel contribution to the space of validating interactive media.

6.5.2 A Tricky Example

To see why the problem of invariant preservation is a challenge, consider the following
generative signature >,.

gl : gen -o {a * cs}.

g2 : gen -o {b * c * c}.

g3 : cs -o {c * cs}.

g4 : cs -o {1}.

Note that the class of contexts (X, gen) describes is one where an a can appear
alongside arbitrarily many cs, but a b requires exactly two cs alongside it.

Here are two rules that should pass (preserve the invariant):

1. a -o {a * c}.

2. a x ¢ -o {a}.

That is, if there is an a in the context, we should be able to add or subtract arbitrarily
many cs.

On the other hand, here are two rules that should fail (do not preserve the invariant):

1. 1 -0 {c}.

176



2. ¢ —o {1}

That is, we may not arbitrarily remove or generate a c. The second generative rule g2
permits a context with exactly one b and two cs. Rules are context-sensitive with respect
to generative invariants; they cannot be reasoned about in isolation.

Thus, our algorithm needs to be able to account for preservation not on a purely
local, or context-free, basis, but rather in a sense that takes into account all the possible
ways an atom on the left-hand side of the rule could be generated—which may impose
some constraints on the context—and conclude that, in all of those scenarios, including
their constraints, the right-hand side of the rule could have been generated in its place.

6.5.3 Vector Addition Systems

In order to draw on prior work in algorithms for validating these systems, we need to
understand them in terms of the formalisms chosen by that prior work. In particular,
a number of useful properties have been shown of vector addition systems, which we
employ to obtain decidability.

A vector addition system (VAS) V is an initial configuration v, € N” for a fixed dimen-
sion n, along with a set T" of transitions describing how a configuration v may evolve.
Transitions can be described as vectors ¢ € Z" along with side conditions of the form
k € N", which imposes the inequality constraint v > k. If the conditions hold of a con-
tfiguration v (i.e. v > k) and v+t > 0, the transition ¢ is said to be applicable or fireable,
and the configuration may evolve to v + t.

For a transition (¢, k) € T that is applicable in v, we notate a transition relation ~-, i.e.
v ~» v+t, which we use in addition to its transitive closure ~~*. The set of configurations
{z | v ~* x} is called the reachability set of v, and can be extended to sets of starting
configurations as well. VASes are equivalent to Petri nets (see e.g. [Ler10, Kan95]),
and for both systems, the central problem is computing reachability sets: given a set of
starting configurations, what are all of the possible states the system might wind up in?
This problem is known to be decidable [Pet77, ST77] (however, we do not make direct
use of this fact for our proof).

The correspondence also extends to provability of a sequent in the propositional
Horn fragment of linear logic. Simply put, a VAS transition rule of the form (¢, k) can be
interpreted as a forward-chaining linear logic rule

¢
' ®...0a" o't ... ®arth

Where ¢; = max(k;, —t;) and a° means a ® ... ® a with c repetitions.
In the other direction, a linear logic program with rules of the form

' ®...Qa" — b ®. .. ® b
(with like atoms grouped together without loss of generality) can be interpreted as
a VAS by the following process:

1. Give an arbitrary canonical ordering for all atoms in the program to form the space
of possible vectors. Thus each atom a corresponds with an index ¢, of the vector.

177



2. For each rule in the above form, create a transition (¢, k) where ¢; = ¢; — d; and
ki = C;.
By way of example, all of the rules in ¥,,. may be translated to the following vector
addition rules over <gen, cs, a, b, c>:

gl : <-1, 1,1, 0, 0> ; <1, 0, 0, 0, 0>
g2 : <-1, 0,0, 1, 2> ; <1, 0, 0, 0, 0>
g3 : <0, 0,0,0,1> ; <0, 1, 0, 0, 0>
gd : <0, -1, 0, 0, 0> ; <0, 1, 0, 0, 0>

The initial configuration {gen} is represented by the vector (1,0, 0, 0, 0).

As mentioned previously, the decidability of this problem does not help us directly
with deciding if a given program rule preserves a generative invariant. We can, how-
ever, recast the preservation problem as a VAS problem: if we want to check whether
aruler : A — B satisfies a generative invariant /, reformulate I as a vector addition
system V; = (ig,T7). The rule r will correspond to some transition (¢, k) (in a different
vector addition system, whose full definition is not needed).

Definition: A transition (¢, k) preserves the invariant given by VAS V; with starting con-
figuration 7 iff for all configurations v > k

. *
ZO WV] v

implies

. *

The vector v in this definition represents an arbitrary frame context A, A in which
the rule fires. °
We can make a few more definitions to simplify this characterization:

Definition: The reachability set of a vector v under a particular VAS V is the set of all
vectors v’ such that the transitive closure of all transitions in V' can take v to v':

reachy (v) = {v' | v~ v}

Definition: The postset of a given vector set S along a transition (¢, k), denoted post; 1, (5),
is the set of all vectors v’ such that there exists a v € S where (t, k) is fireable on v and
v =uv+t.

Now we can reword the above criterion for preservation as simply
pOSt(tkT)(S) cs

where S = reachy, (¢o).

5 Note that, in general, the arity of vectors for a generative invariant will be higher than the arity for
the VAS corresponding to the program we want to check—invariants contain nonterminals that do not
appear in program configurations. So to make this definition more precise, the transition iy, ~» v should
really be iy ~~ v where v} = v; when ¢ is within bounds for v and v; = 0 everywhere else.

178



In general, computing the reachability set does not help us answer this question.
However, some (not all) VASes can be expressed as Presburger Arithmetic formulas, a
subset of first-order logic propositions that may refer to multiplicaiton and addition of
natural numbers (but not exponentiation). Presburger Arithmetic is known to be de-
cidable, as shown by Presburger in 1929 (simultaneously with his presentation of the
system). And if the reachability set S of a vector addition system V; representing an in-
variant corresponds to a Presburger formula, then the question of whether a given rule
7 preserves it (post(,, () C 5) can also be expressed as a Presburger formula. Thus, what
remains is to show that the particular subset of VASes that correspond with generative
invariants are all expressible as Presburger formulas.

6.5.4 Presburger Vector Addition Systems

In general, VASes are not expressible as Presburger Arithmetic formulas. An explana-
tion of this fact and a characterization of the Presburger fragment is given in [Ler13].
Briefly speaking, one can encode exponentiation as a VAS, which is not within the
bounds of Presburger Arithmetic. In this section, we recapitulate Leroux’s characteriza-
tion of Presburger Vector Addition Systems in terms of how we use them for generative
invariants.

In order to show that generative invariant preservation is decidable, we need to
isolate a fragment of the VAS language that is both suitable to use for our generative
invariants of interest and expressible in Presburger Arithmetic.

Leroux shows that the Presburger-expressible VASes are exactly those which have an
equivalent “flat” representation. A flat VAS is one that can be characterized as a finite
sequence of arbitrarily-repeated finite transition sequences. More formally, consider a
word w to be a sequence of transitions ¢, . .. such that ¢;;; may always follow ¢;. The
Kleene closure operator on words w* means “w repeated 0 or more times, so long as it
applies.” For instance, the closure ¢* of a transition ¢ corresponding to the linear logic
rule a — b means that ¢ may be applied as many times as there are copies of a in the
configuration it starts with.

A flat language, then is one that can be written as

(wy)* .. (wy)”

for some finite set of words w; ... w,,.

A flatable VAS is one with the same reachability set as a flat VAS. One known class
of flatable VASs are so-called Basic Parallel Processes, or BPPs [Esp97], which are those
corresponding to sets of Horn linear logic rules with a single premise (or Petri nets
where every transition has a single input). Although this class may sound limiting,
every generative invariant we have studied so far meets this criterion. °

®Generative invariants for specifying the operational semantics of programming languages [Sim12]
occasionally include a second premise, but always a persistent one (premise of the form !A4). This kind
of rule may still be expressible as a BPP so long as the persistent premise can be represented as a side
condition, but we currently exclude these examples from our proofs.

179



There exist published, proven terminating, and implemented methods to decom-
pose VASs such as BPPs into flat languages [Fri00, FO97]. These techniques involve
iteratively disentangling cyclic rule dependencies.

As an alternative to automatically finding an equivalent flat language, we can sim-
ply stipulate that a given generative invariant must be flat. We note that prior to this
investigation, there was no rigorous characterization of what differentiates a generative
signature from any other linear logic program, and a constraint like this one serves as a
candidate for characterizing the space of suitable signatures.

6.5.5 Flat(able) Generative Invariants

Here is a generative invariant that is not flat, corresponding loosely to a propositional
erasure of a well-formedness specification for blocks world.

gl : gen -o {t * gen’}. %% t "= "on table"; construct a new stack
g2 : gen’ -o {b * gen’}. %% b "= "on"; add a block to a stack

g3 : gen’ -o {c * gen}. ¥% c "= "clear"; finish a stack and return
g4 : gen -o {f}. %h £ "= "arm free"

gh : gen -o {h}. %% h "= "arm holding a block"

If we try to characterize the allowable traces generated by this program as a gram-
mar, we would write something like (g19593)* g g, meaning basically: generate an arbi-
trary number of stacks of blocks by first generating a block on the table, then generating
an arbitrary number of blocks atop it, then designating the last one as clear; finally,
designate the arm as either free or holding a block. ”

This specification is not flat because there is “nested” looping of the rule g2 within
the wider loop formed by g1 and g3. This introduces the constraint that a t and ¢ both
must be generated in order for there to be more than zero bs. It also means that, if there
are no nonterminals gen and gen’, the number of ts and cs must be the same.

However, the set of contexts generated by this signature is equivalent to those cre-
atable by a flat specification. In fact, the flat specification is closer to the one we have
already seen:

gl : gen -o {t * gen * gen’} %) begin a new stack

g2 : gen’ -o {b * gen’}. %% add a block to a stack
g3 : gen’ -o {c}. %% finish a block stack
g4 : gen -o {f}.

g4 : gen -o {h}.

The flat language representing the reachability set is:

(91)"(92)"(g3)"(94)"(g5)"

7 We could give a more precise characterization of the signature with additional regular language con-
structs, such as (g19593)*(g4|gs|1), since exactly one of g4 or g5 will fire at the end exactly once (or neither
of them will). However, prior work makes use of only the regular language constructs of concatenation
and repetition, which affects their mapping into Presburger formulas. The Kleene star can be used to
express this same thing because after g, fires, neither g, nor gs can, and if g4 fires 0 times, then g5 may fire
0 or 1 times.

180



In other words, the generative signature can be read operationally as follows: First,
create an arbitrary number of seeds for new block stacks. Then, if applicable, we add
blocks to all of those stacks. Then finish all of those stacks by marking their tops as clear.
Then optionally generate a free arm, and if applicable (i.e. if we opted not to generate a
free arm) generate an arm holding a block.

6.5.6 Computing Presburger reachability sets

In general, the postset of a vector set under an iterated word w* can be given by bind-
ing an existential variable for the number of iterations, then computing an inductive
definition of the union of those sets.

More precisely, to recapitulate Leroux’s result [Ler13], define the displacement of a
word w = t; ...t to be the vector §(w) = 22‘:1 t;. Define also for w a configuration c,,
such that ¢,,(i) = max{—(t; +---+1¢;)(¢) | 0 < j < k}. This value ¢,, denotes the minimal
configuration for which there exists a run (applicable transition sequence) labeled by w.

Then, the postset of a set S under a single repeated word w is given by the following

Presburger formula:

post(S,w*) ={x | Jv e S.In € Nov > ¢, Av+nd(w) =z}

Then, for a VAS with starting configuration ¢, and represented as the flat language
wi ... w}, a sequence of Presburger sets C; denoting the reachability set for the entire
system is computed inductively:

O() = {CO}
Ci; = post(Ci_1, (wy)")

The reachability set is given by v € post*({cy}) = C,, where n is the number of words
in the flat sequence.

6.5.7 The Algorithm

Now that we have a Presburger characterization of the reachability sets of generative
invariants, we can describe what it means for a rule r : A — {B} to preserve an in-
variant (X, ) as a Presburger formula itself. We denote by |A,|, |X|, and so on the
compilation of each of these linear logic program components into their corresponding
vector addition system components.

Let S = post]y, (|Ao|). The rule r preserves X iff

post, (S) € S

In general, a postset post, ;,(S) can be denoted logically as the Presburger set {v |
dreSz>kANx+t=nv}

And we can write the above subset condition as an implication; in particular, if g is
the number of constants in the specification (i.e. the width of the vector):

181



Ve,veZl(zeSANx>kNe+t=v)DveS

Whether a given vector is in S is decidable since the set itself is Presburger com-

putable.

6.5.8 End-to-End Example

Let’s revisit the tricky case from Section 6.5.2.

gl

: gen -o {a * cs}.
g2 :
g3 :
gl :

gen -o {b * c * c}.
cs -o {c * cs}.
cs -o {1}.

As a vector addition system over <gen, cs, a, b, c>, we write this as a sequence
of vector pairs t ; k:

gl :
g2 :
g3 :
gl :

<-1, 1,1, 0, 0> ; <1, 0, 0, 0, O>
<-1, 0, 0,1, 2> <1, 0, 0, 0, 0>
<0, 0,0,0, 1> :<0,1, 0,0, 0>
<0, -1, 0, 0, 0o ; <0, 1, 0, 0, 0>

The corresponding flat language is:

g2*glxg3*gl*

The language compiles to the Presburger formula Cy, where

Co = {<1,0,0,0,0>}
C1 = post(Cy, g2")
Cy = post(Cy,gl")
C3 = post(Cy, g3
(

Cy, = post(Cs, g4

")
")

If we omit needless existential quantification over rules that only apply a fixed num-
ber of times, we can easily generate this set by hand:

182



Co = {<1,0,0,0,0>}
post(Co, g27)
= {<1,0,0,0,0>,
<0,0,0,1,2>}
Cy = post(Cy,gl")
— {<1,0,0,0,0>,
<0,0,0,1,2>,
<0,1,1,0,0>}
C3 = post(Cy,g3")
= {<1,0,0,0,05,
<0,0,0,1,2>,
<0,1,1,0,0>} U
{v]|3n € Nwv=<0,0,1,0,n>}
Cy = post(Cs,gh")
= {<1,0,0,0,0>,
<0,0,0,1,2>,
<0,1,1,0,0>} U
{v|3n € Nwv=<0,1,1,0,n>} U
{v|3n € Nwv=<0,0,1,0,n>}

0
I

If we further restrict this set to exclude states with nonterminals by intersecting with
the set {v | vp = 0 A v; = 0}, we get the set of well-formed states
{<0,0,0,1,2>} U{v | 3In € N.v =<0,0,1,0,n>}

Or in other words, the contexts {b, ¢, ¢} and {a, ¢} for arbitrary n, as expected.

Checking Program Rules

Now we can work out the decision procedure for the example on a couple of differ-
ent program rules. We revisit two examples from Section 6.5.2, one that preserves the
invariant and one that does not:

1. a -o {a * c}. (should pass)
2. 1 -o {c}. (should fail)

Consider the postset of C' along each rule: for rule 1, the only part affected is the
second disjunct. C" = post, (C) =

{<0,0,0,1,2>} U{z | In.x =<0,0,1,0,n>} U{x | In.x <0,0,1,0,n+1}

183



But this last unioned set is a subset of {z | In.x = <0,0,1,0,n>} (which can be
determined in Presburger Arithmetic by modeling subsethood as implication).
For rule 2,

C" = posty(C)
= {<0,0,0,1,2>} U
{z | In.<0,0,0,1,n+2>} U
{z | In.x =<0,0,1,0,n>} U
{z | In.z <0,0,1,0,n+1>}

This set is not a subset of the original, so it fails, as expected.

6.5.9 Adequacy and Correctness

The following lemmas serve as basic sensibility checks on the encoding we have used
to devise our decidability proof.

Proposition 6.5.1 (Adequacy). Modeling generative invariants as vector addition systems is
sound and complete with respect to derivability (in the logic) and reachability (in the VAS). That
is, formally, if |Xgen, Do| = (V. o) then Ag — x50, if and only if cy ~5, |0].

This property follows by the standard correspondence between linear logic deriv-
ability and vector addition reachability [Kan95].

Proposition 6.5.2 (Soundness). If the Presburger formula representing a rule r : A — B
preserving a flat generative invariant (¥, Ao) has a proof, then for all A, Ay ~~%, A, A implies
Ay ~5 A B.

Proof Sketch: Let S = post® s, (|A¢l). Let (¢, k) be the transition and constraint of |r|. By
correspondence with vector addition systems, the Presburger formula has a proof if and
only if post, (S) C S.

The postset along |r|is {v|Fz € S.x > kA x +t = v}.

If we consider the vector respresentation of each side of the rule |A| and | B|, we can
write ¢ as |B| — |A| and k as |A|. So this postset can be written alternatively: {v|3z €
S.ax > |A|ANx+ |B| —|A| =v}.

We know |A, A| € S, and we need to show |A, B| € S.

A is in the set of vectors {v} specified by the postset, because |A, A| is in S, is greater
than |A| by translation of contexts into vectors, and |A, A| + |B| — |A| = |A, B|. Thus
|A, B| € S, as required. O

Proposition 6.5.3 (Completeness). Converse of soundness. If, for all A, (Ag ~35, A, A)
implies (Ay ~3%, A, B) and there is a flat representation of 3, then the Presburger formula
representing invariant preservation of (¥, Ag) along r : A —o B has a proof.

Proof Sketch: Let S = post”|s;(|Ag|). The Presburger formula has a proof if and only if
post,(S) C S, i.e. forall v,

(Jzxe Sz >|AANx+|B|—|Al=v)Dve s

184



which is what we need to show.
What we know is that VA.(Ag =5 A, A) D(Ag =% A, B), or in VAS terms,

IA,Ale SDIA, Bl e S

Assume a given vector v, and assume of it the premise of what we need to show: that
there exists an x such thatz € SAz > |A| Az + |B| — |[A] = v).

Now instantiate the |A| quantified over in our assumption at = — | A|. Now we know
x—|Al+|Al € SDx —|A| +|B| € S. We know z € S, so now we know v € S, as
required. O

6.6 Conclusion

We have presented three methods for specifying program invariants, and for each dis-
cussed their potential for automation and their limitations. We have also presented a
decidability proof for checking invariants of programs within a large fragment describ-
ing most of the programs we have considered in this thesis.

We close this chapter with a discussion of a limitation of all three of these systems,
suggesting that there is still a great deal of investigation to do both in terms of automat-
ing specification checks and extending the expressiveness of specification languages.

6.6.1 Limitation: Instance-Dependent Invariants

One of our motivating examples for investigating program property proof is allowing
the author to state and enforce playability constraints. For an example of a playability
constraint, consider spatial navigation puzzles, such as the dungeon layouts in which
locked doors separate some rooms and keys may be found in some rooms. Gareth Rees
has studied this dungeon structure ® in the context of The Legend of Zelda: Ocarina of
Time [Nin98]; we replicate their diagram from Figure 3 here:

Small key 1 | Small key 1 | | amall key 3 |
EMD
Cungeon A: may becomea unscheable Cungeon B: always sohable

In this diagram, rooms (depicted with capidal letters) with “Key” labels require a
key (any small key, indistinguishable) to open them, and rooms with “Small key” labels

8 Article available at http://garethrees.org/2004/12/01/ocarina-of-time/.

185



contain such a key. For the dungeon to be solvable means that every room can eventually
be reached by a player starting in the “Start” node.

We can easily give a program specifying the space of player actions for such a dun-
geon, which presumably include moving from room to room, picking up keys, and
unlocking rooms that require a key when we have one:

door : type.
room : type.

entity : type.
player : entity.
small_key : entity.

adjacent room door room : bwd.
% defined by domain instance

locked door : pred.
open door : pred.

at entity room : pred.
holding entity entity : pred.

move : at player R * adjacent R D R’ * open D -o at player R’.
open_door : $at player R * adjacent R D R’ * locked D
* holding player small_key
-o open D.
pickup_key : $at player R * at small_key R
-0 holding player small_key.

Defining “accessibility” between locations requires some kind of recursive specifi-
cation, which could perhaps be stated as a backward-chaining linear logic program or
as a generative invariant of some kind. But note that any invariant that would describe
solvability of a dungeon depends crucially on the specific initial configuration, since
it is really a property of that configuration as well as of the program—and none of the
techniques we have discussed so far encompass such a statement. Temporal logics, such
as those used in model checking, present promising techniques that could account for
properties like these, wherein it is feasible to exhaustively check the possible configura-
tion space [CGP99]. In lieu of a concrete solution, however, we posit this example as a
potential benchmark for game invariant specification techniques going forward.

186



