
Chapter 1

Introduction

The two activities of playing games and telling stories have shaped the way humans
learn and bond with one another since at least the dawn of history. From a human-
istic perspective, they are as central to our existence as language [Hui14]. They have
also never been entirely distinct, with each drawing on the human ability to invent fic-
titious worlds, defined by rules and aesthetics originating from people’s minds without
persistence of truth outside their “magic circles.”

Only in a comparatively tiny, recent sliver of humanity’s timeline have digital comput-
ers entered into a place of import for the enhancement of these activities, but they have
brought with them an explosion of new thought on how to design and construct delib-
erate playful, narrative experiences—new magic circles, as it were. One of the central
ideas in this rennaissance is that computers enable much richer system-driven interaction
than we were previously capable of creating. All games, digital or not, form a system,
or set of rules that interact with one another nontrivially. For example, the game of
Chess has rules for moving pieces of different shapes in patterns that are constrained by
rules that depend on the positions of the other pieces. These rules are easy enough for a
human to carry out by hand. But thanks to the speed of digital processing, we can now
describe highly complex systems whose effects require calculation that would be too
tedious to compute by hand while maintaining the spirit of play, such as the trajectories
of particles bouncing around in simulated space.

One of the earliest forms of digital game was the text adventure, a kind of story told
through interaction with a text-based command-line interface to navigate a fictional
world. Commands like go north and get lamp could be typed and translated into
changes in the game’s state, which would be reflected in changes to the prose describ-
ing the player’s surroundings, preceding the next prompt for input. (See Figure 1.1 for
a sample interaction with one of the earliest known text adventures [CW77].) Because
computers came with a means for displaying text already, all of the author’s concen-
tration could be left to designing the narrative world underneath: things such as the
map, the descriptions of places and items, the modeling of reactive elements, such as
machines and non-player characters. Items strewn throughout the game world could
be collected and combined to solve puzzles, such as fixing broken machines or bribing
stubborn characters. Text adventure enthusiasts often speak of the compelling sense of

1



Figure 1.1: Sample interaction with the game Adventure by Will Crowther.
(Also known as Colossal Cave.)

agency they experience when playing such games: thinking of the right command to
type involves a sense of imagination (“What would I do if I were really there?”), which
is an entry point into a conversation with the game world in which the player tests the
boundaries and rules established by the author. In other words, the player may partici-
pate in a world created by the game author in order to collaboratively author a story with
the computer. So the ability to simulate worlds with computers has enriched how we
tell stories, too, and has opened up new spaces at the intersection of play and narrative.

After the text adventure’s heyday, the mass commercialization of digital games en-
gendered a proliferation of “genre” terms, such as “first-person shooter” and “plat-
former,” that entered the public consciousness as a taxonomy of play. In such a taxon-
omy, the story game is thought of as something entirely separate from the strategy game,
with the former thought mainly of as alternatives to light reading (interaction mainly
“turns the page” in a digital book) whereas the latter is thought of as “more of a game,”
with real decisions and player agency. These categories then inform how designers con-
ceive of new games, and, at one further layer of indirection, how creators of game design
tools think to build affordances and libraries. So now it is difficult to discuss, much less
create, digital works that focus on things like mechanics, systems, and player agency
for narrative play—for example, text games that may require ingenuity and strategy to
tell their stories.

A counter-framework for designing and analyzing digital games from first princi-
ples was proposed by Hunicke et al. [HLZ04], suggesting a game be thought of in terms
of mechanics, dynamics and aesthetics (MDA). Mechanics are the basic rules of the game
(Chess example: queens can move diagonally), dynamics are the emergent patterns and
strategies that arise from mechanics (Chess example: book openings), and aesthetics
are the player’s holistic experience of the game (Chess example: the sensory experience

2



created by the pieces and the board; the cognitive experience of thinking several moves
ahead to plan a strategy). Such a framework allows one to find similarities in games
across artificial “genres” in terms of their mechanics or aesthetics, yet contrast them
along another of the three axes.

From a game creation perspective, the MDA framework also enables us to imagine
building a model of the mechanics separately from the game’s rendering as a whole,
aesthetic experience. This approach lends itself well to rapid prototyping, the idea that
designers do not want to build a complete end-to-end product before iterating on their
initial design, and so they should build rough but servicable mock-ups (prototypes)
until the design seems likely to work. Especially when creating games based on com-
plex systems with lots of interacting components, it can be helpful to test those systems
piece-by-piece before they are too large to reason about.

From a computer science perspective, we are in search of composable abstractions for
understanding narratives and games. The process of designing those abstractions, to-
gether with defining how they may be brought to life through execution and interac-
tion, is what constitutes the design of a programming language. The executable model
should give the designer some sense for the dynamics (and perhaps aesthetics) of the
eventual finished game, and it may also provide some automation to speed develop-
ment: automatically testing the game by carrying out some designated player strate-
gies, for example. It could also perform analysis of the program and tell the author
whether or not it has met some desired game properties. Such analysis plays a similar
role to regression testing in current-day software practice, but it has the ability to check
exhaustively for adherence to the specification.

Creating new abstractions for understanding different classes of computation has
been the purview of the field of programming languages for several decades. Before
digital computers had been invented, we had notions of computation that were in-
dependent of the particular physical artifacts for carrying it out, such as Church’s �-
calculus [Chu32]. After a long detour through the “von Neumann bottleneck” [Bac78],
we can now write programs in these machine-independent language models and run
them on real machines. Meanwhile, game designers have been inventing their own
programming languages, such as Inform 7 [Nel01], Twine [KA08], and Versu [ES], that
suit the specific needs of people crafting interactive stories with incredible immediacy,
in terms of affordances that match their imaginative process. But too often, these lan-
guages lean on the tradition of machine dependence (imperative state update) to estab-
lish their meaning, resulting in leaky or unstable abstractions. We champion the goal
of these tools— accessible means for non-computer scientists to participate in the cre-
ation of games—but suggest that an approach based on machine-independent, linguis-
tic techniques would serve the community. Furthermore, in sight of the broader goal
of understanding games at a basic and timeless level, we posit that neither the class of
games in question nor the programming tools in question should depend on the trends
nor limitations of current technology.

As such: this thesis project endeavors to provide a conceptual and computational
framework for understanding, building, and analyzing the interactive worlds that un-
derlie games and stories.

3



1.1 Potential Narratives
Text adventures eventually came to be understood under the larger umbrella term inter-
active fiction, or interactive works that tell stories with words. Like computation itself,
the history of interactive fiction begins before (and continues to exist outside of) the
digital computer.

Nick Montfort, an interactive fiction author and historian, traces the history of in-
teractive fiction to the I Ching, an ancient Chinese divination tool that used random
chance to generate prophetic text, and to the Llull machine, a similar Western inven-
tion [Mon05]. The connection is that these systems generate text with algorithms, based
on some underlying model, much like an interaction with a digital computer to derive a
story. In the 1960s, the French surrealist group of mathematicians, artists, and other in-
tellectuals going under the name Ouvroir de Littérature Potentielle, or Oulipo [Mot86],
gave the term potential literature to these systems that were not stories themselves, but
produced stories through human interaction. Following in step, we adopt Montfort’s
term potential narrative to describe our approach to narrative play, because we find it a
useful way to unify the playful aspects of interactive fiction with more readily-accepted
notions of game.

Interleaved with the development of digital interactive fiction were the “Choose
Your Own Adventure” and “game book” collections of print media devised as youth
entertainment, which present passages of text ending in choices, each of which corre-
sponds to a page in the book that the reader should turn to to continue the story. [HWF10]
These stories with enumerated choices at each branching point bear a strong structural
similarity to the digital form of hypertext, now widely known as the format of the World
Wide Web: text is organized into passages, each of which can contain links to other pas-
sages. A resurgence of interest in hypertext narratives came with the introduction of
Twine [KA08], an accessible tool for creation in this form. Even these more finitary no-
tions of participatory storytelling can be thought of as potential narratives: each path
through the story graph corresponds to one story.

Even as text-based digital games have fallen out of mainstream fashion in favor of
the dazzling possibilities afforded by modern graphics cards, storytelling still drives
the imagination behind widely-acclaimed commercial games, for everything from the
grand-scale adventure of Skyrim [Stu11] to the more personal world of Gone Home
[Gay13]. The idea of inhabiting a fictional persona to explore and change a rich, re-
active environment has seemingly never fallen out of favor, and the new experiences
enabled by digital games seem to have the potential for lasting impact on human cul-
ture as much as literary and cinematic fiction is now accepted to have. By tapping into
both historical precedent and computational possibilities, understanding these timeless
forms of art can bridge the humanities and sciences, fostering new means of expanding
human knowledge.

The relevance of interactive fiction to the broader domain of games and interactive
simulations that I investigate in this dissertation is less about the fact that they tell sto-
ries with words and more about the fact that they free the game designer from certain con-
straints that are present when thinking in terms of graphical motion rendering. Emily

4



Short and Richard Evans, the authors of the interactive storytelling authoring system
Versu, write about a similar concern in terms of the composability of text versus other
generative systems, and while we are more concerned with internal representation than
rendering, their explanation illustrates the relative cognitive concerns involved. [ES]

The main abstraction that our work borrows from interactive fiction and storytelling
is that of describing a possible event space in which an actor may intervene. As a domain
of computer science, interactive fiction contains interesting problems in the systems that
underlie it, and the questions of how to make those systems more expressive.

1.2 Generative Systems
One of the central problems in expressive interactive narrative design also concerns
many other artistic and scientific disciplines. The problem is one of human-created
versus computer-created content. For any piece of media that changes in response to
interactor input, the changes need to be generated on-demand. This means that any
sequence of interactions needs to create a representable state. In the case of branching
stories, any sequence of choices should result in a meaningful narrative situation. One
possibility, and the one chosen for Choose Your Own Adventure books and hypertext,
is for an author to create the amount of content necessary for every possible run in
the world simulation. But when a world is composed of many components, such as
a player inventory, the problem becomes intractable: every new variable doubles the
number of possible states. Instead, computational methods can be used to create new
scenes on-the-fly without having been seeded with them by the author. For instance,
a data structure to track the player inventory across different rooms can be seen as a
tool for generating a large number of story states. We refer to the techniques involved
in systematically composing a small number of hand-generated pieces to derive a large
state space as generative methods, though it is sometimes referred to as procedural content
generation [COM13]. We review a few examples of games using generative methods that
we take as inspiration for the kind of system we are interested in finding abstractions to
describe.

One domain for such methods is the simulation of non-player characters (NPCs). A
game can track a detailed model of character interiority [Pot05] including mood, knowl-
edge, sentiment, and goals. Galatea, an interactive fiction game by Emily Short [Sho00],
uses a complex dialogue model to create a “living statue” character that reacts differ-
ently to player commands depending on her mood, sympathy, tension, and conversa-
tion history and topics (see Figure 1.2). The system generates a wide space of possible
stories due to variations with respect to these factors. Short implemented Galatea using
a quip-and-response dialogue model reminiscent of a state machine. 1

Another problem domain is the simulation of multiple characters or agents. Will
Wright is an acclaimed game designer known for systems that generate worlds. He
is the primary designer behind the Sims series, including SimCity [Wri96] and The

1See https://emshort.wordpress.com/how-to-play/writing-if/my-articles/conversation/
for Short’s own explanation.

5



Figure 1.2: Sample interaction with Galatea with state display tool enabled.

Sims [Wri00]. None of the systems in these games are explicitly stated as potential nar-
ratives, but they nonetheless allow human collaboration to tell stories. The connection
with The Sims is perhaps most clear: the game provides a “digital dollhouse” with
which to perform stories at the player’s whim, without imposing external narrative
goals. Sim City works similarly, but with a focus on city configuration and aggregate
population data rather than the personal relationships and goals of the Sims. Spore
[Art08] was a virtuosic attempt to include simulations at multiple levels within an over-
arching meta-system. All of these systems compose experiences out of myriad chang-
ing state components, requiring very little hand-authored content. The idea that a story
can nonetheless be derived from such a system is sometimes called emergent narrative
[Ayl99]. The implementation challenges of such a system, as far as we are aware, mainly
lie in managing a very large evolving state (i.e. the status elements of every individual
Sim).

More recent investigations into the space of generative narrative experiences include
the high school social simulation game, Prom Week, which uses sophisticated social
models to determine how characters react to actions such as bullying or confiding based
on their own sentiments toward and memories of the acting character (see Figure 1.3).
Prom Week grew out of a tradition in interactive drama that includes the landmark
production of Façade [MS03], i.e. “believable drama.” Their aim was to create a system
that would generate a story using social physics, or rules for character interaction, rather
than presenting hand-authored scenes. The primary technology driving Prom Week is
actually a language, Comme il Faut (CiF) [MTS+10], in which the social physics engine
is implemented. Inference based on character interiority is used to generate possible
intents, which combine with player selection to determine actions.

We present these examples as a (partial) survey of state-of-the-art techniques in

6



Figure 1.3: Screenshot of Prom Week demonstrating character interaction options.

playable narrative based on generative methods. Having established this context, we
can now describe the goals, methods, and contributions of the dissertation.

1.3 Thesis Goals
Our overarching goal, extending beyond the scope of this thesis but informing its ap-
proach, is to develop computational tools and conceptual frameworks that support cre-
ating novel, experimental games and narrative systems. We frame the problem as one
of programming language design in the sense that this perspective entails creating new
abstractions with platform-independent, mathematical semantics. We also aim to bring
high-level design language in closer alignment with programming constructs, i.e. make
it so that the means of expressing ideas as executable artifacts closely mirrors game
designers’ conceptual framing.

The narrower goal for this thesis is to fully develop a correspondence between a
theory of formal logic proofs and ideas in narrative and game design, and to realize
its consequences in the form of a modeling tool. We have noticed a strong match be-
tween recently-emerging programming methodologies—specifically forward-chaining,
substructural logic programming—and the idioms needed to express game worlds and
mechanics, especially interactive fiction, and by exploring this connection we aim to
advance ideas in both fields: new programming languages for game design can expand

7



designer creativity potential, and new application domains for programming languages
can expand the range of computing phenomena accounted for by mathematical under-
standing.

Our target audience for this work is mainly research communities within game
design and logic, although we aspire to create an appeal to (non-academic) systems-
oriented narrative and game designers, and programmers with an amateur interest in
game design. Ideally, this work will serve to bridge communities interested in program-
ming language theory and game design and reveal many of the overlapping concerns:
for instance, both programming language design and game design consitute the cre-
ation of interfaces with a human user.

As artifacts whose goals are often dependent on human cognition such as expressive-
ness, productivity, flow, and emotional impact, both games and programming languages
are difficult to evaluate in quantitative measures, at least with purely computer science-
based techniques. If we intend to deepen a holistic understanding of activities like play
and programming, clearly some humanistic and psychological understanding will be
needed. Nonetheless, there are still questions that may be answered about the com-
puter’s half of the bargain, and indeed that can be answered with precise mathemat-
ics. It is those questions that we hope to bring into greater clarity for games through
methodologies commonly practiced in programming language theory.

In programming languages, the search for objective evaluation criteria has turned
mainly to mathematical proof: we create a formal model of a new programming lan-
guage design, then prove its soundness with respect to the appropriate formal notions.
For instance, a common theorem proved for a new language is type safety, which says
that certain rules circumscribing the set of admissible programs in the language ensure
that no program in that set will crash nor reach a stuck point in its evaluation. One can
imagine by analogy that the rules circumscribing a game might also ensure some formal
properties: for instance, in a multiplayer board game, we might want to ensure that
play is productive in the sense that as long as the game is not in an end state, some player
can always make a move that changes the game. The notion corresponding to a program
in this setting is a playthrough of the game.

But before these proofs can be formalized, and thus before we can truly subject
games to mathematical evaluation, we need a language for codifying playful rule sys-
tems themselves. This thesis describes a candidate for such a language, which is based
on a logical system called linear logic. We demonstrate how narrative structure can be
described abstractly in linear logic, then go on to see how we can realize linear logic as
a suitable programming language.

Part of this thesis is a new programming language designed specifically for the sup-
port of narrative and game design, and its own design has the following goals:

1. Has a mathematical foundation for the sake of clear, portable, and extensible se-
mantics

2. Is general enough to describe a wide range of operational logics in games
3. Can describe important aspect of narrative structure, supporting causal reasoning

and dependency analysis between narrative events

8



4. Has the potential for accessible front-end tools to be built atop it.
Our evaluation methods are twofold: first, by a selection of case studies using the

language, and second, by mathematical proofs about the language.
For the first criterion, we develop case studies that we believe to be representative

of the generative storytelling ideas surveyed in this introduction. The code for each
of these studies, as well as our reports on the iterative development process, serve as
the non-quantitative results of the thesis, available for subjective evaluation to anyone
who might consider using the language. Our own subjective judgment on the success
of these case studies is presented at the end of Chapter 5.

For the second, we illustrate the use of a mathematical reasoning framework for
stating and proving theorems about games encoded in our system. We prove that, in
general, questions of whether certain properties hold of games are decidable. Thus, au-
tomated checking of designer-stated properties of games may potentially be integrated
into the game prototyping and development process.

1.4 Approach
Now that we have stated our goals for the thesis, we may be more specific about the
computer science tools that we use to achieve them.

1.4.1 Preliminary Definitions
While play and stories as aspects of human culture elude fully-characterizing defini-
tions, we nonetheless need to define the scope of this thesis. Below we provide some
working definitions.

We define a world as a state space together with mechanics. A state space is a set of
parameters that can take on values that evolve over time. For example, the state space
of Chess includes the board, pieces, the locations and captured status of the pieces, and
which player’s turn is in effect. A state is an element of the state space, e.g. a particular
configuration of pieces on a Chess board. Mechanics are rules for how states can change.

Worlds may also specify one or several permissible initial states, in which case they
can be run, or evolved step by step according to its mechanics.

An interactive world is a world whose mechanics allow human participation or inter-
vention while the game is running. We can supplement this definition with informal,
subjective notions to say when an interactive world is a game or a potential narrative; that
is, an interactive world is a game when the interactor feels that they are playing it, and an
interactive world contains narrative (or is a story world) when its runs can be understood
by a human as stories.

The one aspect of these definitions that has not been completely detailed is what is
meant by rules for state change. By a rule, we mean something approximately of the
form “If X then Y ,” often codified as logical implication X �Y (“X implies Y ”). But
standard logical implication does not adequately capture the idea of transforming state,
as we explain next, leading us to an alternative formalism.

9



1.4.2 Linear Logic

Game rules refer not to a monotonically increasing body of knowledge but to a hetero-
geneously evolving state. They tell us what is permissible, but also what changes when
an action is carried out. The fact that a player’s rook is in a given Chess board cell may
hold at one point in the game, but after an action is taken, its position may change. So it
is not a “fact” in the same way that 1 + 1 = 2 is a fact; whether it holds depends on time
or some abstraction of it.

Logics of action and time have been studied well beyond the specific domain of
games, and include temporal logic [Lam94], situation calculus [MH69], and event cal-
culus [KS89]. All of these calculi stratify logical propositions by explicit timesteps, and
action specifications increment the timestep. However, in order to model a world with
a complex state space containing many components, each of these logics needs a notion
of inertia or frame rule that says “whenever an action changes the state of some compo-
nents, the rest of the state stays the same.” These rules need to be axiomatized, leading
to unwieldy proofs. Additionally, most applications and extensions of these logics have
been concerned with adapting them to model the real world (e.g. for robotics applica-
tions) such that they do not easily suit the world of narrative fictions [RY10].

Jean-Yves Girard’s linear logic [Gir87] is a logic that captures essential notions of state
change without explicit reference to time. The observation behind linear logic is that
standard logics’ monotonicity could be accounted for by the so-called structural rules,
or rules defining how assumed or known facts could be used in a proof—specifically,
assumptions may be freely duplicated and ignored. If one explicitly marks the duplica-
tion and ignoring of assumptions, rather than building them into the logic, then what
emerges is a notion of logical consequence embodying state transition, or evolving sys-
tems at a component-wise level, rather than permanent knowledge. Furthermore, linear
logical deductions are structured in such a way as to track resource dependency between
different state transitions, making them subject to analysis in terms of causality.

Thus, linear logic’s nature as a proof-theoretically-justified “logic of changes” makes
it suitable for our purposes to desribe narrative actions and game rules in this thesis.
We detail its definition and use for narrative spefications in Chapter 2.

1.4.3 Logic Programming

Logic programming is the main technique we will use to link the logical with the com-
putational. Traditionally, logic programming is realized by languages such as Prolog,2
wherein programs are collections of clauses (logical implications) together with a query,
or directive for proof search. A proof search engine then executes the program by at-
tempting to assemble a proof of the query from the program clauses. For example,
a program defining addition as a logical predicate plus(X,Y,Z) that holds whenever
X+Y=Z may be given the query plus(X,Y,10), which would compute all pairs of num-
bers that sum to 10. In general, there may be many proofs or no proofs. Generally one

2See http://www.swi-prolog.org/ for one implementation.

10



is interested primarily in whether or not there is a proof, and if so, which terms satisfy
it. In this domain, the engine searches for a proof with backward chaining, or reasoning
backwards from a goal to the assumptions available.

However, in our case, the proof itself is a relevant artifact of study—it embodies the
causal dependencies between events in the interactive world, which we illustrate in
Chapter 3. In the case of simulation and generation of narratives, as well as open world
games, we are often not especially interested in a particular goal (i.e. outcome of the
simulation) so much as the process and intermediate states, which are recorded by the
proof itself. In particular, we construct proofs with forward chaining, or reasoning for-
ward from a set of assumptions (representing an initial world configuration), to model
evolution of the interactive world “forward in time.”

Because of our shift in focus from goal-based inference to forward simulation, we
distinguish proof search—a process that may backtrack, and typically performs an ex-
haustive search of the provability space—from proof construction, or the use of logically
valid deductions to navigate a space while not necessarily arriving at a particular goal.
Put another way, proof construction may sacrifice completeness of provability, but not
soundness.

In addition to its primary function in our domain as a representation system for
rewriting rules over partial states, logic programming offers support for a variety of
powerful computational idioms, such as user-defined datatypes, relation-based defini-
tions, and pattern matching on narrative states. Many of these idioms are also found in
approaches developed by the Artificial Intelligence (AI) community, such as planning
and generative grammars. Many researchers in games have applied similar techniques
and referred to them as “AI techniques” [TZE+15] rather than “programming language
features”—by presenting these ideas from a programming language point of view, we
hope to bring some unification to ideas across these fields.

1.4.4 Logical Frameworks

A final source of techniques that we use as a starting point for our work is logical frame-
works as described by Harper et al. [HHP93]. The aim of logical frameworks is to pro-
vide a basis for formal codification of deductive systems in such a way that theorems
can be stated and proved by a human, and checked by computer, within that system.
The logical framework LF was realized as the proof assistant Twelf [PS98] for this activ-
ity. Twelf’s underlying machinery is largely based on logic programming, although the
“logic programs” written within it are typically analyzed, not executed. Logical frame-
works research has experimented with extending the underlying logic of Twelf to linear
logic, and the community has since been searching for suitable notions of specification
such that similar meta-theoretic capabilities to Twelf are possible. We rely heavily on
progress in this area, and contribute to that progress, for our concerns around proving
properties of games in Chapter 6.

11



1.5 Contributions

This dissertation describes the use of linear logic to specify potential narratives and
game mechanics. Our primary contribution is a full explication of a deep correspon-
dence between proof and play, or alternatively proof and narrative, in a way that gives a
formal justification for unifying play and narrative both conceptually and for the sake
of computational tools that can aid their development.

The formal model is implemented as two different logic programming languages,
one existing prior to this thesis work (Celf) and one implemented for the purposes of
deeper investigation into this work (Ceptre). Essentially, these investigations serve the
purpose of pushing the envelope of the formalism as far as it can go to find the limits
of its suitability for, and correspondence with, games and potential narrative specifica-
tions.

Our specific claim follows in the form of a thesis statement.

Thesis statement: Using linear logic to model interactive worlds enables rapid
prototyping of experimental game designs and deeper understanding of narrative
structure.

As evidence for this claim, we provide a written explanation of the correspondence
between linear logic proofs and stories, then illustrate the use of that correspondence
for narrative generation (in Celf) and game prototyping (in Ceptre). These results extend
the limits of present knowledge in how formal logic can be used to support generative
methods and interactive world authoring, and they also provide supporting case stud-
ies for a particular methodology in programing language design. We detail how each
part of the dissertation aligns with the thesis statement below.

Chapter 2 describes the correspondence between linear logic proofs and causally-
structured story, building largely on work by Bosser et al. [BCC10]. This chapter mainly
serves to establish the conceptual framework in which we understand narrative and
simulation events, separate from the notions of generation and interaction.

Chapter 3 shows how to operationalize the interpretation of narratives in linear logic
as programs, via a standard and general extrapolation of logical definition into proof
construction procedure, known as logic programming. In this chapter we illustrate how
to use the programming language Celf to generate narratives through a narrative world
specification given in terms of linear logic. This chapter supports the deeper understand-
ing of narrative structure part of the thesis statement.

Chapter 4 describes the development of a new programming language, Ceptre, suit-
able for programming not just generative but also interactive worlds. We introduce a new
programming construct called stages that serve to partition a world specification into
parts, then coordinate the control flow between those parts, resulting in a practical tool
for prototyping game mechanics and simulations.

Chapter 5 presents several case studies of Ceptre’s use for developing interesting
examples in the union of narrative and play design. We posit this chapter as the primary
support for the rapid prototyping part of the thesis statement.

12



In Chapter 6, we describe progress toward reasoning tools for linear logic programs
that allow authors to specify and check constraints on the evolving state. Such tools,
once fully automated, would allow world authors to specify their intent and ensure
that program rules preserve that intent. This chapter serves as secondary support for
the rapid prototyping part of the thesis statement, since program errors can often cause
slow progress toward building a working prototype.

Finally, in Chapter 7, we conclude by recapitulating the thesis statement, summa-
rizing how the work above has fulfilled its promises, and suggesting avenues of future
work.

13


