The contingent transition problem

Chris Martens

September 15, 2012

The problem is this: you're representing a state transition system in linear
logic, but some state transitions require a contingent “check” before they fire.
Such rules might be written this way:

[C]A— B

Read “on the condition C', we can take a transition from state A to state
B.77

The question is how to express the uninterpreted syntax — meaning to check
C without consuming it — either in standard linear logic or through some other
meaningful proof theory.

Attempt 1: Consume and Produce

At first cut, this problem may seem trivial: just express the rule as

CRA—-C®B

But this interpretation is unsatisfying for a number of reasons. First, con-
sider the special case where C' is a disjunction:

(01@02)@)14*0(01@02)@3

To fire the transition, we have the knowledge that a specific one of C; and
Cs is true, but the resulting state loses that knowledge.
Second, consider when C' may share resources with A:

(c®a1) @ (a1 ®az) — (c®a;)®B

In this case, naively copying the precondition to the conclusion doesn’t fly,
because we actually wanted part of it to be consumed:

(c®a1)® (a1 ®ag) - c® B

The generalization of these failures is that it’s not valid to interpret checking
a precondition as deconstructing it and rebuilding it. We really want to leave it
entirely untouched, in “read-only” mode. This is why Frank Pfenning refers to
it as the “read-only access to resources problem.”



Observation: Additivity

For each of the two failure modes above, there seem to be local solutions.

[Cl S5 CQ]A — B

can be interpreted as

(01®A—001®B)&(02®A—002®B)

And for any particular known overlap between C' and A, we can interpret
the rule by simply not writing that part on the right of the —o.

A potential generalization of this idea is that we can share the context used
to check the precondition with that used to generate the consumed resources.

Attempt 2: Restricted Implication

I was discussing this problem with Taus Brock-Nannestad, who suggested the
following connective:

AFA BEC | AAEB R
A A~ BFC ArA~B "~

This connective is a special case of —o where to use such a rule on the left,
the entire remainder of the contert must go toward proving the argument and
only the consequent B may be used to continue. The idea was to represent
[ClA—-Bas (C®T)~ A—B.

Unfortunately, this connective fails the commutative cases of cut.

Furthermore, it should’t really be expected to adequately represent read-only
access. It correctly captures the idea of matching the current context against
C ® T, but there is no reason why the argument A shouldn’t have access to
those resources. Indeed, this fails to capture the overlapping resources example.

Observation: overlapping resources

The idea of using C @ T to match the context against the condition seems to
make sense, but really what’s going on is that we want something like the image
below, where the top set of overlapping resources is replaced by the bottom one,
B’s opacity meant to indicate that it subsumes the overlap.



Attempt 3: Additive implication

Noam suggested that at least on the left, we might replace [C]A — B with
(C —0) @ (A — B) (or indeed in general, define [C]A as (C — 0) & A. This
gives us the sort-of additive property we need: in one copy of the context, we
“check” C' by assuming it to imply a successful sequent. This already has the
problem that we might get the sequent to succeed in some other way with some
other rules; possibly those could be dodged by forcing focusing. This avenue
seems worth exploring, but it seems unsatisfying to need to change the proof
search semantics (also, potentially in violation of completeness of focusing).

Attempt 4: Partially Additive Implication

The last thing I came up with is the following left rule for yet another funny
form of implication:

A1|_z4 Al,AQ,BI—C
A]_,AQ,A—DB'_C

...but a lot of fiddling with potential right rules yields nothing that satisfies
both identity and (principal) cut. Two thoughts:

1. Maybe it can only appear on the left, like a validity judgment? When is
this, er, valid?

2. Maybe an affinity judgment or context is the right judgmental machinery
to augment with. but so far I haven’t gotten either to work.




