
PARSIFAL Summer 2011 Internship Report

Logically validating logic programs

Chris Martens

August 22, 2011

1 Overview

Logic programs can be used to specify systems, and logic programming
languages such as Elf [Pfe91] and Lambda Prolog [MN86] provide settings
intentionally designed to this end. The use of higher-order logic program-
ming (clauses with implications as subgoals) can be used to encode hypo-
thetical reasoning in a logic or predicates over terms with free variables in
a programming language. Although Elf (LF underneath) is dependently
typed and Lambda Prolog is simply-typed, they both use this same basic
mechanism to achieve powerful encodings.
Where these encoding approaches diverge fundamentally is at the point

of doing metatheory; that is, stating and proving theorems about the en-
coded system. The systems Twelf (cite), with Elf at its base, and Abella
(cite), with Lambda Prolog, demonstrate these differing approaches.
On the Abella side, metatheory is done in another logic entirely called

G. This reasoning layer enables the user to state inductive definitions and
metatheorems that may mention sequents corresponding to Lambda Prolog
proofs (at the specification layer). For instance, if of and step are Lambda
Prolog predicates corresponding to the typing and stepping relations of a
programming language, then one may state the preservation theorem in
Abella as

Theorem preservation : forall E E’ T,

{of E T} /\ {step E E’} -> {of E’ T}.

The curly braces {} denote specification layer proofs. The proof is then
carried out as a sequence of tactics.

I R A 22, 2011

2 Logically validating logic programs

The Twelf approach, on the other hand, makes use of LF’s dependent
types for its metatheory. A proof is also a logic program. Because LF is the
representation language,we can state a theoremas a relation over object-level
proofs, which are terms in LF. For example:

preservation : of E T -> step E E’ -> of E’ T -> type.

This declaration tells us that preservation is a predicate relating deriva-
tions of of E T, step E E’, and of E’ T. The clauses that follow corre-
spond to the cases of an inductiveproof,with subgoals calling preservation
recursively corresponding to induction hypotheses. In order for these
clauses to constitute a proof, they must obey certain conditions as checked
by the logic programming analyses %mode, %worlds, and %total.

What this project aims to investigate is the logical basis for said logic
programming analyses. In otherwords, canG justify Twelf’s justification for
proofhood? The hypothesis is that if we had LF as the specification layer for
Abella, then we could code our proofs at that layer (as we would in Twelf)
and check the %mode, %worlds, and %total properties of the program at the
reasoning layer.

The rest of this document goes into specific accomplishments of the
summer, exploring several examples of mode analysis and presenting a
logical generalization. What follows from there ismore tenuous exploration
of the other ideas discussed in this overview, including termination and
coverage; we conclude with future directions.

2 Mode analysis in a two-level logic

Given a predicate p, a mode declaration for p is an assertion that designates
some of its arguments as inputs and some as outputs. Checking such a
declaration is usually described in terms of “groundness”: if you feed the
predicate ground inputs and it returns a substitution for the outputs, those
substitutions will be ground.

In unification language, “ground”means simply that it does not contain
any unification variables. So for example if p(−,−) has mode (+,−) (which
assertion we may abbreviate as p(+,−)), then if we query p(0,X), we expect
a complete answer forX in terms of constants in the program (or no answer
at all). However, a query of e.g. p(X,Y) or p(s(X),Y) will not necessarily
return ground substitutions. Moding is part of what says we can treat a
predicate like a function.

I R A 22, 2011

Logically validating logic programs 3

However, we would instead like an explanation of moding in logical
terms that can be expressed at the Abella reasoning layer rather than in
unification terms.

2.1 Example 1: Addition of natural numbers

plus z N N.

plus (s N) M (s P) :- plus N M P.

The predicate plus has mode (+,+,−). 1 To check this, we look at each
clause in turn, assume the inputs are ground and check that the outputs
are ground. In the z case, the output is the same as the second input, so
it is ground. In the s case, we assume (s N) (and therefore N) and M to be
ground, so by induction, P is ground, so (s P) is ground.

For this example, we can take ground to mean “well-typed” (in the
metalogic), as defined by a reasoning-level predicate on natural numbers:

Define $nat : nat -> prop by

$nat z ;

$nat (s N) := $nat N.

Then our theorem can be stated as follows:

Theorem plus_moding : forall N M P,

{plus N M P} -> $nat N -> $nat M -> $nat P.

The proof proceeds in exactly the manner sketched above and can be
found in the reference files for this document.

2.2 Example 2: Edges and paths

Aproblemwith this typing definition approach comes up in the case where
we want to write programs over an open set of data. Consider a logic
program that computes paths through a graph:

path X X.

path X Z :- edge X Y, path Y Z.

1This is not to say that is the only mode it has: it can also be given mode (+,−,+) or
(−,+,+), meaning it can be used for subtraction as well as addition.

I R A 22, 2011

4 Logically validating logic programs

Suppose the elements related by path have the type node. The mode of
path should be determinablewithoutmentioning a specific graph (represented
by inhabitants of node and edge). Thismeanswewant to leave the signature
open to certain extensions of the signature that add inhabitants to the types
node and edge.
Because we do not want to mention specific inhabitants, there is no

reasoning-level predicate we can write down to give our moding theorem
in terms of. As a strawman, suppose we wrote

Define $node : node -> prop by

$node N.

Now suppose we change our path program to be ill-moded for the mode
(+,−).

pathbad X Y.

The theorem

Theorem path_moding : forall N M,

{pathbad N M} -> $node N -> $node M.

will hold trivially by the (inferred) type of the inputM.
Suppose instead we let $node be the empty definition. In this case, the

same theorem would hold vacuously by casing on the $node N, which has
no inhabitants.
We need a way to be parametric over extensions to the signature. We

can achieve this with Abella’s type declaration mechanism in the reasoning
level:

Type $node node -> prop.

As this type has no induction principles attached to it, the only way to
acquire such a typing is to have it by assumption, induction hypothesis or
lemma.
Weneedonemore thing in order to check themode for path successfully,

which is an assumption that edge has mode (+,−). This is another property
that can be validated or failed by the specific graph in question; by isolating
it as a lemma we abstract from a choice of graph to a specification of graphs.

Theorem edge+- : forall X Y, {edge X Y} -> $node X -> $node Y.

skip.

I R A 22, 2011

Logically validating logic programs 5

The “skip” tactic provides no proof and treats the theorem as an axiom.
Now indeed we can prove our mode theorem:

Theorem path_moding : forall X Y,

{path X Y} -> $node X -> $node Y.

but not the analogous theorem for pathbad.
It should be noted at this point that the type declaration approach can

be extended to inductive types, albeit in an unsound way, by treating the
inductive equivalences as “axioms” (theorems with a skipped proof). For
example, if we wanted to leave the world of natural numbers open, we
could say

Type $nat nat -> prop.

Theorem $natz : $nat z.

skip.

Theorem $nats : forall X,

($nat X -> $nat (s X)) /\ ($nat (s X) -> $nat X).

skip.

and still be able to prove the moding theorem for plus, using these
axioms rather than the supported induction tactics. While the motivation
for doing so may be unclear for the case of natural numbers, where the
natural treatment of them is as a closed set, consider instead the types for
simple lambda terms: wemay soundly leave open the set of base types, but
still wish to form arrow types between them inductively. The next example
illustrates this setting, and, in addition, introduces the complications of
contexts and higher-order programs.

2.3 Example 3: Type synthesis

Here is an encoding in lambda prolog of the lambda-calculus with type
labels, along with the definition of type synthesis for it. By “synthesis” we
mean that we think of the type as an output.

%%% sig file %%%

kind tm, ty type.

type arrow ty -> ty -> ty.

I R A 22, 2011

6 Logically validating logic programs

type lam ty -> (tm -> tm) -> tm.

type app tm -> tm -> tm.

type of tm -> ty -> o.

%%% mod file %%%

of (lam T M) (arrow T U) :- pi x\ (of x T => of (M x) U).

of (app M N) T :- of M (arrow U T), of N U.

What should the mode theorem for the of predicate look like?
As a first cut, it should be something like

Theorem of_moding : forall M T,

{of M T} -> $tm M -> $ty T.

First we must say what we mean by $tm and $ty. We want to allow for
constants introduced by a hypothetical signature extension to extend the
definition of terms and types, i.e. we will reason about hypothetical base
types and terms (like booleans or natural numbers). Then the predicates
are defined as reasoning-level types and axioms:

Type $ty ty -> prop.

Theorem $tyarrow : forall A B,

($ty (arrow A B) -> $ty A /\ $ty B)

/\

($ty A /\ $ty B -> $ty (arrow A B)). skip.

Type $tm tm -> prop.

Theorem $tmapp : forall M N,

($tm M /\ $tm N -> $tm (app M N))

/\

($tm (app M N) -> $tm M /\ $tm N). skip.

Theorem $tmlam : forall A M,

($ty A /\ (forall x, $tm (M x)) -> $tm (lam A M))

/\

($tm (lam A M) -> $ty A /\ (forall x, $tm (M x))). skip.

Note the use of forall in the definition of $tm.
However, if we try to prove the theorem as stated, we cannot prove

the lambda case, as we would need to invoke induction on a proof in an

I R A 22, 2011

Logically validating logic programs 7

extended context. We must parameterize the theorem by the context (first
defining contexts).

Define ctx : olist -> prop by

ctx nil ;

nabla n, ctx (of n A::G) := ctx G.

Theorem of_moding : forall G M A,

ctx G -> {G |- of M A} -> $tm M -> $ty A.

However, this gives us an additional case in the induction: the case
where of M A is a member of G.

We can patch this either by requiring of the context that its types be
ground (i.e. if of E T is in the context, then somust be $ty T), or by adding
an additional assumption to the theorem. To avoid polluting the standard
context definition, we opt for the latter:

Theorem ofmode : forall G M A,

ctx G -> (forall X B, member (of X B) G -> $ty B)

-> {G |- of M A} -> $tm M -> $ty A.

Note that this is an awkward requirement: the context is only ever ex-
tended by the of rules, so we ought to be able to perform a reasoning-level
analysis of said rules to observe that they never introduce anything random
into the context (only typesdeterminedby their input terms). But thenotion
of context is external to the specification, and the only reasoning principles
on it we have are the oneswe impose at the reasoning level. AndrewCave’s
internship project could be applicable to this problem.

2.4 Limitations

Our treatment of moding does not soundly capture Twelf’s. To see why,
consider the following clause, where a is some element of a base type i and
p relates two elements of type i.

p(X, a) :- p(Y, Z).

Under the interpretation above, p hasmode (+,−). It has one clause, and
in that clause the output a is a ground atom, which gets translated at the
reasoning level to a member of the type $i, satisfying the proof obligation.

I R A 22, 2011

8 Logically validating logic programs

But running the analogous code through Twelf, we get an error that
says the input of the subgoal p(Y, Z) is “not necessarily ground.” Indeed,
operationally, this program invokes a predicate with an argument that is
not determined by its own inputs: it must invent the input Y from thin air.
But because the clauses’ own output doesn’t depend on that invocation,
neither does our proof.
For the same reason, any predicate can be shown, by our logic, to have

mode (+, ...,+): there are no proof obligations in the theorem. Indeed, the
only time a predicate can fail to have all-+mode is when some clause uses it
in a subgoal with unground inputs. The moding theorem that Twelf proves
requires that the predicate obey the moding contracts of other predicates. This
treatment works from an operational perspective in terms of “making up
inputs”, but as a statement about a collection of logical propositions, it
seems to make no sense.
Indeed for the sake of doing metatheory, we need not make as picky

a distinction as Twelf. Such a mode error would not stop a proof from
being correct, it would simply indicate an unneeded subgoal. For now, we
take our definition of moding a useful notion distinct from (or, perhaps, an
approximation of) Twelf’s.

I R A 22, 2011

Logically validating logic programs 9

References

[MN86] Dale Miller and Gopalan Nadathur. Higher-order logic program-
ming. In Ehud Shapiro, editor, Third International Conference on
Logic Programming, volume 225 of Lecture Notes in Computer Sci-
ence, pages 448–462. Springer Berlin / Heidelberg, 1986.

[Pfe91] Frank Pfenning. Logic programming in the LF logical framework.
Logical Frameworks, pages 149–181, 1991.

I R A 22, 2011

	Overview
	Mode analysis in a two-level logic
	Example 1: Addition of natural numbers
	Example 2: Edges and paths
	Example 3: Type synthesis
	Limitations

