
Of Ludics & Ludology:
Systems of Play as

Linear Logic Programs

Chris Martens
Carnegie Mellon University

1

Presented at NJPLS, May 16, 2014

SPOILER WARNING

2

takeaway:

linear logic* as a tool for game design
enables rapid experimentation and structural

analysis of a wide range of core mechanics.

*… with various extra-logical additives.

THREE ACTS

3

I. Game Design Vocabulary
Example

Linear logic programming

II. Payoff: Proofs as interaction traces
Generation & Analysis

III. Promise: Interactivity
Invariant Checking

ACT I
Setup: destroy assumptions

4

5

6

graphics + sound + mechanics
movement, enemies, levels, bosses, items, characters,

endings, ...

what are (digital) games made of?

7

graphics + sound + mechanics
movement, enemies, levels, bosses, items, characters,

endings, ...

most frameworks’ starting point:

8

languages for programming games:

Unity
Twine

Inform 7
GameMaker, Scratch

StageCast, PuzzleScript
C++?
FRP?

9

LANGUAGE
AFFECTS

DESIGN DECISIONS

10

graphics + sound + mechanics
movement, enemies, levels, bosses, items, characters,

endings, ...

a better starting point?

11

rules
resources

my starting point:

RULES

12

Rules of play
~

Rules of logic
linear logic

RULES

Rules of play
~

state change through manipulation of resources
~

linear logic

13

RULES

Rules of play
~

state change through manipulation of resources
~

linear logic

14

Linear Logic
core judgment:

Γ; Δ ⊢ A

A persistent ∈ Γ
A linear ∈ Δ

15

Linear Logic
core judgment:

Γ; Δ ⊢ A

A ∈ Γ: subject to wk, contr, exchg
A ∈ Δ: “use exactly once”

16

Linear Logic

A -o B
A * B

!A
1

17

Linear Logic Programming

fill a signature with predicate declarations
pred <arg_types>

and constant declarations
c : A

18

Linear Logic Programming

fill a signature with predicate declarations
pred <arg_types>

and constant declarations
r : B -o C

19

EXAMPLE
2d, turn-based puzzle games

http://www.puzzlescript.net

20

http://www.puzzlescript.net
http://www.puzzlescript.net

21

Hardcoded assumptions:
turn-based

2d grid of adjacent locations
player controls one entity

controls are up, down, left, right, x
single player

e.g. Sokoban

22

in PuzzleScript:

23

[> Player | Crate] -> [> Player | > Crate]

24

My assumptions
turn-based

2d grid of adjacent locations
player controls one entity

controls are up, down, left, right, x
single player

25

sokoban in linear logic

@ @

@ @

26

@ @

@ @

sokoban in linear logic

27

move :
loc pusher L * in_dir L Dir L' * empty L'
 -o {empty L * loc pusher L'}.

@ @

@ @

sokoban in linear logic

28

move :
loc pusher L * in_dir L Dir L' * empty L'
 -o {empty L * loc pusher L'}.

push :
loc pusher L
* in_dir L Dir L' * loc block L'
* in_dir L' Dir L'' * empty L''
 -o {empty L

* loc pusher L' * loc block L''}.

@ @

@ @

sokoban in linear logic

29

EXECUTABLE SPECS AS
LINEAR LOGIC PROGRAMS
1. specify the predicates needed to track state, e.g.

loc <entity> <location>

2. codify state transitions as linear implications
A -o {B}

3. specify a query: initial state and expected final state

30

SEMANTICS OF LINEAR LOGIC
PROGRAMS

A -o {B} induces a transition:
forall Δ,

Δ, A → Δ, B

@ @

31

SEMANTICS OF LINEAR LOGIC
PROGRAMS

the {curly braces} mean
“forward chaining” proof search

(lax modality/monad)

32

SEMANTICS OF LINEAR LOGIC
PROGRAMS

A -o {B} induces a transition:
forall Δ,

Δ, A → Δ, B
meaning this is admissible:

Δ, B → *
Δ, A → *

33

COMMITTED CHOICE
when there are multiple choices available,

pick one and commit
(NO BACKTRACKING)

@

34

these ideas are implemented in
frameworks like Celf, LolliMon,

Lygon

(I use Celf)

ACT II

Payoff: More interesting examples,
Proofs & Analysis

35

36

GOAL: interactive fiction with
complex character interaction.

37

shakespearean tragedy world

state components:
character location, possession,

sentiment toward other characters,
goals

38

shakespearean tragedy world
at <character> <location>
has <character> <object>

anger <character> <character>
philia <character> <character>

depressed <character>

39

shakespearean tragedy world

!dead <character>
!killed <character> <character>

40

do/insult :
at C L * at C’ L * anger C C’

-o {at C L * at C’ L * anger C C’
 anger C’ C * depressed C’}.

41

do/compliment :
at C L * at C’ L * philia C C’

-o {at C L * at C’ L *
 philia C C’ * philia C’ C}.

42

do/murder :
anger C C’ * anger C C’ * anger C C’ *
 anger C C’ * at C L * at C’ L *
 has C weapon
-o {at C L * !dead C’ * !murdered C C’ *
 has C weapon}.

43

do/mourn :
at C L * philia C C’ * dead C’
-o {philia C C’ * at C L *
 depressed C * depressed C}.

44

do/becomeSuicidal :
at C L * depressed C * depressed C *
depressed C * depressed C

-o {at C L * suicidal C *
 wants C weapon}.

45

do/loot

 : at C L * dead C' * has C' O *
 wants C O
 -o {at C L * has C O}.

46

do/comfort
: at C L * at C' L *
 suicidal C' * philia C C' * philia C' C
 -o {at C L * at C' L *
 philia C C' * philia C' C *
 philia C' C}.

47

initial state

48

story_start :
init -o

{ at romeo town * at montague mon_house *
 at capulet cap_house * at mercutio town *
 at nurse cap_house * at juliet town *
 at tybalt town * at apothecary town *

 has tybalt weapon * has romeo weapon *
 has apothecary weapon *

 ...

49

... *
anger montague capulet * anger capulet montague *
anger tybalt romeo * anger capulet romeo *
anger montague tybalt *

philia mercutio romeo * philia romeo mercutio *
philia montague romeo * philia capulet juliet *
philia juliet nurse * philia nurse juliet *

neutral nurse romeo * neutral mercutio juliet *
neutral juliet mercutio *
neutral apothecary nurse *
neutral nurse apothecary}.

50

final state

51

ending_happy : nonfinal *

actor C * actor C’ *
at C L * at C’ L * married C C’ -o {final}.

ending_vengeance : nonfinal *

actor C1 * actor C2 * actor C3 *
killed C1 C2 * philia C3 C2 * killed C3 C1

-o {final}.

52

proofs as stories

53

proof of
init -o {final}

!x:init.
let [xs] = r [ys] in … end

54

?J�>JHAJMO

<�H@M>PODJ D�URPHR �ÂÃ ;�� ;��
;��

�;��

;�� �;�� ;�� �;�� �;��

X88 : at mercutio L
X89 : at romeo L
X90 : philia mercutio romeo
X91 : philia romeo mercutio
X92 : philia romeo mercutio

X78 : at mercutio L
X85 : at romeo L
X86 : suicidal romeo
X81 : philia mercutio romeo
X83 : philia romeo mercutio

55

concurrent equality

let x1 = M1 in let x2 = M2 in M
~

let x2 = M2 in let x1 = M2 in M

iff the inputs of M2 are separate from the
outputs of M1.

56

...
let {[X73, [X74, [X75, [X76, X77]]]]}

= do/insult/private [a-tybalt, [a-romeo, [X68, [X66, X72]]]] in

let {[X85, [X86, X87]]}

= do/becomeSuicidal [a-romeo, [X79, [X41, [X59, [X52, X77]]]]] in

let {[X88, [X89, [X90, [X91, X92]]]]}

= do/comfort [a-mercutio, [a-romeo, [X78, [X85, [X86, [X81, X83]]]]]] in

let {[X101, [!X102, [!X103, X104]]]}

= do/murder [a-romeo, [a-tybalt, [X58, [X40, [X76, [X51, [X94, [X96, X27]]]]]]]] in

let {[X105, [X106, [X107, X108]]]}

= do/compliment/private [a-nurse, [a-juliet, [X46, [X47, X30]]]] in

let {[X109, [X110, [X111, X112]]]}

= do/compliment/private [a-juliet, [a-nurse, [X106, [X105, X108]]]] in

let {[X113, X114]}
= do/loot [a-romeo, [a-tybalt, [X101, [X102, [X26, X87]]]]] in

...

57

graphical representation of traces

58

init

do/insult/privatedo/formOpinion/dislike

do/compliment/witnessed

do/travelTo

do/compliment/private

do/murder

do/marry

ending_1

do/steal

do/thinkVengefully

do/mourn

do/becomeSuicidal

cleanup/1

do/eroticize

do/suicide

do/flirt/discrete

59

init

do/insult/privatedo/formOpinion/dislike

do/compliment/witnessed

do/travelTo

do/compliment/private

do/murder

do/marry

ending_1

do/steal

do/thinkVengefully

do/mourn

do/becomeSuicidal

cleanup/1

do/eroticize

do/suicide

do/flirt/discrete

60

queries on sets of traces

61

> exists ending_1

> exists do/thinkVengefully &&
̃link do/thinkVengefully do/murder

62

Martens, Ferreira, Bosser
“Generative Story Worlds as

Linear Logic Programs”
accepted to INT 2014

ACT III

Promise: Interactivity;
Invariant Checking

63

64

sokoban, reprise
interactivity, version 1:

at choice points (multiple rules apply), present all
available options to player

@

move
Dir = up, down;
L = …, L’ = ...

push
Dir = right
L, L’, L’’..

65

PROBLEM: not all parts of the program should be
manipulable by the player

66

interactivity, version 2:
give a language of interaction

67

dir : type.
u, d, l, r : dir.

act : type.
move <dir> : act.

-- new piece of state:
action <act>

68

augment rules w/extra premise:
push :
action (move Dir) *
loc pusher L * in_dir L Dir L'
* loc block L'* in_dir L' Dir L''
* empty L''
-o {empty L * loc pusher L' * loc block L''}.

move :
action (move Dir) *
loc pusher L * in_dir L Dir L' * empty L'
-o {empty L * loc pusher L'}.

69

but when to introduce
“action A”?

70

PHASES

Phases
Block-delimited subsignatures

phase world = {
 rule1 : current Action * … -o {…}.
 rule2 : current Action * … -o {…}.
}

phase player = {
rule : player_turn -o {…}

}

71

Phases

phase world = {...}

phase player = {...}

quiesced world -o
 {player_turn * phase player}.

quiesced player -o {phase world}.

Connected by specification of quiescence behavior

72

Phases
…are block-delimited subsignatures connected by

specifications of quiescence behavior.

73

quiesced P * State -o {phase P’ * State’}.

arbitrarily many phases
looping + branching

74

rock * paper -o {paper}.
paper * scissors -o {scissors}.
scissors * rock -o {rock}.

rock * rock_count N -o {rock_count N+1}.
paper * paper_count N -o {paper_count N+1}.
scissors * scissors_count N -o {scissors_count N+1}.

init -o {rock_count 0 * paper_count 0 * scissors_count 0
 * rock * rock * rock * paper * paper * scissors}.

75

rock * paper -o {paper}.
paper * scissors -o {scissors}.
scissors * rock -o {rock}.

rock * rock_count N -o {rock_count N+1}.
paper * paper_count N -o {paper_count N+1}.
scissors * scissors_count N -o {scissors_count N+1}.

init -o {rock_count 0 * paper_count 0 * scissors_count 0
 * rock * rock * rock * paper * paper * scissors}.

76

rock * paper -o {paper}.
paper * scissors -o {scissors}.
scissors * rock -o {rock}.

rock * rock_count N -o {rock_count N+1}.
paper * paper_count N -o {paper_count N+1}.
scissors * scissors_count N -o {scissors_count N+1}.

init -o {rock_count 0 * paper_count 0 * scissors_count 0
 * rock * rock * rock * paper * paper * scissors}.

77

phase rps = {
rock * paper -o {paper}.
paper * scissors -o {scissors}.
scissors * rock -o {rock}.

init -o {rock * rock * rock * paper * paper * scissors}.
}

phase count = {
init -o {rock_count 0 * paper_count 0 * scissors_count 0}.

rock * rock_count N -o {rock_count N+1}.
paper * paper_count N -o {paper_count N+1}.
scissors * scissors_count N -o {scissors_count N+1}.

}

78

phase rps = {
rock * paper -o {paper}.
paper * scissors -o {scissors}.
scissors * rock -o {rock}.

init -o {rock * rock * rock * paper * paper * scissors}.
}

phase count = {
init -o {rock_count 0 * paper_count 0 * scissors_count 0}.

rock * rock_count N -o {rock_count N+1}.
paper * paper_count N -o {paper_count N+1}.
scissors * scissors_count N -o {scissors_count N+1}.

} %% expects: all rock, all paper, or all scissors.

Compiling Phases

79

We can interpret phase-structured programs as programs
with higher-order, mixed-chaining rules in Celf.

Compiling Phases

80

We can interpret phase-structured programs as programs
with higher-order, mixed-chaining rules in Celf.

FINALE

81

82

83

84

85

how designs fail

FINALE

86

takeaway:

linear logic with phases
as a DSL for game design enables

rapid experimentation and structural analysis
of a wide range of core ludical mechanics.

