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Abstract. In this paper, we explore the use of Linear Logic program-
ming for story generation. We use the language Celf to represent nar-
rative knowledge, and its own querying mechanism to generate story
instances, through a number of proof terms. Each proof term obtained is
used, through a resource-flow analysis, to build a directed graph where
nodes are narrative actions and edges represent inferred causality rela-
tionships. Such graphs represent narrative plots structured by narrative
causality. Building on previous work evidencing the suitability of Lin-
ear Logic as a conceptual model of action and change for narratives, we
explore the conditions under which these representations can be opera-
tionalized through Linear Logic Programming techniques. This approach
is a candidate technique for narrative generation which unifies declarative
representations and generation via query and deduction mechanisms.
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1 Introduction

Linear Logic [1] has recently been proposed as a suitable representational model
for narratives [2]: its resource-sensitive nature [3] allows to naturally reason about
narrative actions and the changes they cause in the environment.

In this paper, we explore Linear Logic programming as a tool for narrative
representation and narrative generation.We describe how initial circumstances
and narrative actions can be declared in the Linear Logic programming language
Celf [4] and how using Celf’s search mechanism allows the generation of proof
terms which can be interpreted as causally structured narrative plots. To improve
narrative analysis, we developed a prototype front-end to Celf which allows the
generation and analysis of such plots.

Preliminary results are encouraging, allowing the generation of story variants
through a methodical programming approach.

After presenting related works and introducing the language Celf and our
dedicated plot interpretation and analysis tool, we describe how to use story
material to program and generate a variety of plots using the novel Madame
Bovary [5]: its narrative causal structure has been emphasized in Flaubert’s
working material [6].
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2 Related Works

Computational Approaches to Narrative Modelling. Narratives have al-
ways been an important topic for research in AI for their role as knowledge
structures [7]. Typical models to reason about these structures include Situation
Calculus [8, 9], Event Calculus [10], and other non-standard models [11].

Recent years have seen the widespread adoption of a variety of planning
techniques for the construction of narrative generation systems [12, 13], mostly
because of their support for the representation of causality. Linear Logic pro-
vides an expressive model of action and change (see [14]), where information
revision is dealt with at the level of the logical rules through the use of linear
implication. It is generally accepted that Linear Logic ,particularly Intuitionistic
Linear Logic [3],is a strong candidate to represent causality. A proof in Linear
Logic sequent calculus can be equated to a plan [15],which has led previous work
to explore its suitability for narrative representation, using a story-as-proof anal-
ogy [2]. This support of narrative causality at the logical level (which does not
require any adaptation of the language as in [16]) is also the advantage of Linear
Logic programming approaches when compared with standard logic program-
ming approaches to narrative generation such as [17] or [18].

Related Applications of Linear Logic. In [19], a fragment of Linear Logic
is used to model game scenarii and a transformation into Petri nets is then used
for game properties validation. A similar modelling and validation approach has
used a wider fragment to assist the design of piloting systems for interactive sto-
ries [20], which have similar but more generic properties than computer games.
A semi-automated application of Linear Logic to narratives has been described
in [21]: the intractability of proof search in the most expressive fragments of Lin-
ear Logic has led the authors to use the Coq proof assistant for story generation
and for evidencing properties transcending all narratives.

Linear Logic Programming. While classical logic provides systems for con-
structing and deconstructing truth, linear logic is a deductive system for con-
structing and deconstructing resources making its computational interpretations
particularly well suited to tackle resource-sensitive problems. A few program-
ming systems are based on Linear Logic. Lolli [22] follows goal-directed backward
proof-search interpretation in the intuitionistic fragment of Linear Logic (differ-
ing in this among other traits from Lygon [23] which allows multiple goals).
LolliMon [24] and Celf [4] are more recent systems that have extended Lolli
and where the forward and backward chaining phases may be controlled by the
programmer using a monad.

Linear Logic programming has been used in domains such as natural language
processing and language specification (see [25] for an overview and application
survey). To the best of our knowledge, the present work constitutes the first
application of Linear Logic programming to narrative generation.
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3 Celf Programming

Celf [4] is a Linear Logic programming system in the LF family [26]. At its
core is an inference engine based on that of LolliMon [24], where forward and
backward chaining phases may be controlled by the programmer. Atop that
structure, Celf uses dependent types for the representation of logical predicates;
this approach to logic programming means that the result of a query is a term of
the corresponding type, which can be analysed as a computational artefact. We
provide here an overview of Celf1 and show how Celf programs are structured,
focusing on the aspects relevant for narrative generation.

Celf programs are normally divided into two main parts: a signature, which
is a declaration of type and terms constants describing data and transitions, and
query directives, defining the problem for which Celf will try to find solutions
(proof terms showing that a given type is inhabited).

The technique used by Celf to compute proof terms is called focusing, based
on the foundations of Focused Linear Logic [27] interpreted as Monadic Con-
current Logic Programming. [24]

3.1 Focused Linear Logic

Focusing is a proof search strategy which was introduced by Andreoli [27]. It
reduces the search space to structural normal forms of proofs without reducing
the expressiveness of their computational interpretations.

Focusing requires that we split the connectives (and thus formulae depending
on their main connective) of Linear Logic into two groups, synchronous and
asynchronous. Asynchronous formulae, when they are in the goal position of
a sequent, may be eagerly decomposed without backtracking. Decomposing a
synchronous formula, on the other hand, requires making a choice, e.g. about
how to split the context. A search algorithm may then have to backtrack in order
to find the choice allowing the proof search to complete.

Focusing imposes a discipline on proof search that consists of phases: first
applying all possible invertible rules, then making a choice of formulae in the
sequent (asynchronous formulae on the left or synchronous formulae on the right)
to focus on. Focusing on a formula means decomposing it and focusing on its
subformulae until this process reaches an atomic proposition, uninterrupted by
rules that may apply to formulae out of focus.

3.2 Forward Inference via Monadic Logic Programming

The fragment of Linear Logic restricted only to asynchronous connectives yields
a backward-chaining, Prolog-like semantics (as implemented in Lolli [22]). On
the other hand, synchronous connectives enable us to write rules that function
as transitions and yield a forward-chaining, Datalog-like semantics. Inspired by
1 The Celf system can be obtained from https://github.com/clf/celf
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LolliMon [24], Celf gives the programmer control over when to enter a forward-
chaining phase, which may use synchronous connectives, through the use of a
monad. In Celf, monadic encapsulation is denoted using curly brackets {. . .}.

For example, any rule of the form A ⊸ {S} may fire when and only when
we are in a forward chaining phase, whereas rules of the form A ⊸ B, where
B is not a monadic expression, may take place only in the backward chaining
phase. The phases can interact when the subgoals (or antecedents) of rules in
one phase invoke predicates involving the other phase.

The search triggered by a query in Celf begins in a backward-chaining phase
using the query type as its goal, and if that type includes a monadic expres-
sion, it will enter a forward-chaining phase. This phase is implemented with a
committed choice semantics, backtracking over the selection of a rule only when
its antecedents cannot be met—effectively inducing a random choice between
all fireable rules on each forward chaining step. This built-in nondeterminism is
what lets us go automatically from a specification of a narrative structure to the
automatic generation of stories.

3.3 A Celf Program

Figure 1 shows an example of a Celf program, representative of the form we use
to model narratives. The program signature is structured as follows:

Atomic types (lines 2–10) correspond to atomic resources in the narrative.
Asynchronous types (lines 13–16) consist here of linear implications. Their

general form is expressed in Celf as A1 * ... * An -o {B1 * ... * Bn}, where
* denotes multiplicative conjunction and -o linear implication. Resources on
the left are consumed and resources on the right produced. Note that, while
when on the left-side of a linear implication the * can be treated without
the monad (by interpreting (A1 * ... * An) -o B as syntactic sugar for
the curried equivalent A1 -o ... -o An -o B), on the right of the -o, we
need to encapsulate the conjunction in a monad, as explained previously in
Section 3.2.
The narrative actions described here make use of affine resources of the form
@A: such resources, introduced in the environment, can be consumed during
the proof search at most once. By default, resources are linear, which means
that they need to be consumed for any proof search to terminate.
Linear implications describe transitions and correspond to narrative actions.
For example, line 14 of Figure 1,

emmaReadsNovel : type = emma * novel -o {@emma * @escapism}.

models a narrative action called emmaReadsNovel and expresses that upon
consumption of the resource novel, the resource escapism is produced. It
also expresses explicitly the conservation of the resource emma.

The initial state (lines 20–23) is a multiplicative conjunction (thus encap-
sulated in a monad as well) representing the initial state of the narrative
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1 % Narrative resources
2 convent : type.
3 education : type.
4 grace : type.
5 novel : type.
6 ball : type.
7 escapism : type.
8 emma : type.
9 charles : type.

10 emmaCharlesMarried : type.
11
12 % Narrative actions
13 emmaSpendsYearsInConvent : type = emma * convent −o {@emma * !grace * !education

}.
14 emmaReadsNovel : type = emma * novel −o {@emma * @escapism}.
15 emmaGoesToBall : type = emma * ball −o {@emma * @escapism}.
16 emmaMarries : type = emma * escapism * charles * grace −o {@emma * @charles
17 * @emmaCharlesMarried}.
18
19 % Initial environment (resources + actions)
20 init : type = { @emma * convent * !novel * @charles * @ball
21 * @emmaSpendsYearsInConvent * emmaReadsNovel
22 * @emmaMarries * @emmaGoesToBall
23 }.
24
25 % Celf query
26 #query * * * 3 (init −o {emmaCharlesMarried}).

Fig. 1. Example of a Celf program: definition of four narrative actions in terms of
narrative resources, of an initial environment, and of a query which will search 3 times
for a solution to produce the resource emmaCharlesMarried. Comments start with %.

and available narrative actions. These can be defined as a) linear, like em-
maReadsNovel: there is one copy in the initial environment, and it will need
to be consumed for any computation to terminate successfully; b) affine, like
@charles: there is initially one copy in the initial environment and it may or
may not be consumed by a successful computation; c) persistent, like !novel:
there is a generator for arbitrarily many copies in the initial environment and
any number of them may be consumed by a successful computation.

The second part of the program consists of a query directive (line 26), defining
the problem for which Celf will try to find solutions. Celf queries have five
parameters. In this example, we just define the last two. The fifth argument,
init -o {emmaCharlesMarried}, can be described as the goal. In other words,
Celf will attempt to find a proof term showing that it is possible to produce the
resource emmaCharlesMarried from the initial state defined as init. The fourth
argument specifies the number of times the search must be repeated (here 3).
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4 Well-formed Plots: Exhibiting Narrative Causal
Structures

Following a long tradition of analysing causality via graphs [28], we developed a
prototype tool, CelfToGraph2, that automatically transforms proof terms gener-
ated by Celf into directed acyclic graphs. Such graphs represent narrative plots,
structured by narrative causality, where nodes are narrative actions and edges
represent inferred causality relationships. In this section, we present the struc-
ture of these graphs by using an example (Figure 2) generated from the program
shown in Figure 1.

Looking at the program, we start by observing that the goal, emmaCharles-
Married, can only be produced by the action emmaMarries. Moreover, this action
requires the existence of the resource grace, which can only be produced by the
action emmaSpendsYearsInConvent. As a result, all the graphs will have the ac-
tion emmaSpendsYearsInConvent as a predecessor of the action emmaMarries. On
the other hand, the resource escapism can be produced by two different actions:
emmaGoesToBall and emmaReadsNovel. This means that in some of the generated
stories, the action emmaMarries can choose between the resource produced by
these two actions. We use OR nodes to express choice of resources, as shown
in Figure 2. As an aid to the reader, we label the edges with the names of the
resources enabling the causality relation. (This is different from the default be-
haviour of CelfToGraph, where edges are not labelled.) Every structured graph
has a node labelled init representing the initial narrative environment.

init

emmaGoesToBall

ball

emmaSpendsYearsInConvent

convent

emmaReadsNovel

novel

emmaMarries

charles

ORgrace

 escapism 

Fig. 2. Narrative plot generated from the Celf program presented in Figure 1. The node
init represents the initial narrative environment. All the other nodes are narrative
actions and edges represent inferred causality relationships.

2 CelfToGraph requires Celf v2.9 and is available at https://github.com/jff/TeLLer
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As shown in Figure 2, these graphs support the characterisation of multi-
ple causes: if actions emmaGoesToBall and emmaReadsNovel happen before emma-
Marries, it is impossible to determine which one of the first two is the real cause.
The graphs generated are dependent on the actual unfolded sequence of actions,
but it is important to note that there is not a bijection between graphs and Celf
solutions: whilst a Celf solution is precise about which narrative resources are
consumed, the graphs abstract that information and collect multiple choices in
the form of OR nodes. Also, different orderings of the same narrative actions can
produce the same graph. This means that the graphs generated allow the intro-
duction of a very fine differentiation between stories: a different ordering of
the same narrative actions during the unfolding of the story constitute a different
story if and only if the inferred causal model of the narrative is different.

CelfToGraph also allows us to query the generated graphs. The two main
query commands are exists a, which can be used to determine if the action a is
in all the generated graphs, and link a1 a2, which can be used to determine if
there is a link from action a1 to action a2 in all the graphs. These two commands
can be composed using the usual boolean operators.

5 Programming a Narrative
Having introduced the canonical structure of a Celf program through some nar-
rative examples, we can now describe the overall programming process through
which an entire narrative is modelled and simulated using the Celf language
built-in mechanisms.

5.1 Identification of Narrative Elements
The process of programming a narrative is that of describing circumstances that
can, by execution of the program, generate one or many stories. Following a
widespread paradigm in narrative generation research, we use a existing, linear,
baseline story to support our experiments. The detailed formalization of such
a story will bring to existence the many decision points and opportunities for
actions to succeed, fail or be deferred. Identifying the circumstances within a
static story such as Madame Bovary [5] is a human activity that can be assisted
by companion works [6].

The narrative elements we need to identify and model fall into two main cate-
gories. Narrative resources are available story elements (including characters)
as well as states of the story, which may be related to characters and motives.
In the present example, we model them using atomic types. Narrative actions
are transforming events occurring in the narrative. We model the impact they
have on the narrative, in terms of narrative resource creation and consumption.

Consider the narrative action of Emma marrying Charles which will allow us
to illustrate how we model resources. This action requires the presence of Emma
and Charles, and some facts representing those characters’ motivation for this
action: Emma’s grace and escapism. Their marriage results in the new fact that
they are married and Emma gets bored. We write it in Celf as:
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1 %% Encoding of an extract of the novel: Madame Bovary.
2 emma : type.
3 charles : type.
4 homais : type.
5 leon : type.
6 rodolphe : type.
7 emmaCharlesMarried : type.
8 convent : type.
9

10 <.............>
11
12 emmaIsDespaired : type.
13 charlesIsConcerned : type.
14 emmaInLove : type.
15 leonEmmaTogether : type.
16 arsenic : type.
17 inheritance : type.
18 denounced : type.
19 ruin : type.
20 emmaIsDead : type.
21
22 emmaSpendsYearsInConvent : type = emma * convent−o {!novels * !grace * !education * @emma}.
23 emmaReadsRomanticNovels : type = emma * novels−o {@escapism * @escapism * @emma}. %remove one

diminishes amount of stories
24 emmaMarriesCharles : type = emma * escapism * grace * charles−o {emmaIsBored * @emma *!

emmaCharlesMarried}.
25 emmaInvitedToBall : type = emma * emmaCharlesMarried * grace−o {@ball * @emma}.
26 emmaGoesToBall : type = emma * ball * escapism−o {@escapism * @escapism * @escapism * @escapism *

@emma}.
27 emmaDoesNotGoToBall : type = emma * ball−o {emmaIsBored * @emma}.
28
29 < ......>
30
31 emmaJumpsThroughWindow : type = emma * emmaIsDespaired * emmaRebels−o {@emmaIsDead}.
32 emmaGetsSick : type = emma * emmaIsDespaired−o {@debt * @debt * @debt * @debt * !charlesIsConcerned *

@emma}.
33 emmaLearnsBovaryFatherDeath : type = emma * leonEmmaTogether * charlesIsConcerned * homais−o {@arsenic

* @inheritance * @leonEmmaTogether * @emma}.
34 emmasLoveForLeonFalters : type = emma * leonEmmaTogether * emmaInLove−o {@emmaIsBored * @emma *

@leonEmmaTogether}.
35 emmaContractsDebts : type = emma * emmaIsBored−o {@debt * @emma}.
36 emmaCommitsSuicide : type = emma * ruin * arsenic * emmaRebels−o {@emmaIsDead}.
37 init : type =
38 { convent * @emma * @leonIsBored * !charles * !rodolphePastLoveLife * !homais
39 * @emmaSpendsYearsInConvent
40 * @emmaReadsRomanticNovels
41 * @emmaReadsRomanticNovels
42 * @emmaInvitedToBall
43 * @emmaMarriesCharles
44 * @(emmaGoesToBall & emmaDoesNotGoToBall)
45 <.......>
46 * @emmaLearnsBovaryFatherDeath
47 * @emmasLoveForLeonFalters
48 * !emmaContractsDebts
49 * !emmaContractsImportantDebts
50 * @emmaBecomesRuined
51 * @emmaCommitsSuicide
52 }.
53
54 #query * * * 100 (init−o {emmaIsDead}).

Fig. 3. Celf Code excerpt of a narrative description inspired by a fragment of the novel
Madame Bovary [5]. Atomic types corresponding to narrative resources are followed
by types describing narrative actions, then the initial environment declaration and
finally by the query of 100 attempts to generate stories ending by Emma’s death. (The
complete file contains 105 lines of code.)
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Fig. 4. Loading a Celf file and querying the set of generated plots. The first query
discriminates stories depending on a causal path between Emma’s suicide by Arsenic
and Hypolyte’s amputation. The second story restricts the search of the same causal
link to stories where Emma takes Arsenic, evidencing Hypolyte’s amputation is then
one of the cause of Emma’s death.

emmaMarriesCharles : type = emma * escapism * grace * charles−o
{emmaIsBored * @emma *!emmaCharlesMarried}

Immutable facts and hard rules are modelled as persistent: this is how we
represent Emma and Charles married status. We declare the state representing
Emma’s boredom as linear, since one of the driving force for her actions in the
story is to escape boredom. The resources corresponding to Emma and Charles
are respectively declared in the initial environment as affine and persistent, be-
cause Emma may die in the story and Charles is a constant presence in the
modelled fragment (line 38 of Figure 3). This is why the resource corresponding
to Emma needs to be preserved by this narrative action. Note that because in
this specific code example we are searching for stories where Emma dies, we
could have used a linear resource as well.

In addition to the author’s notes [6] for filtering through story events irrel-
evant for the modelled narrative structure, we proceed iteratively, and lazily
model a new resource when we model a narrative action involving it. The nar-
rative action corresponding to Emma taking arsenic to poison herself illustrates
this process: Emma learns about her father’s death from Homais (returning late
from a date with Leon) because Charles is afraid to upset her. She learns about
inheritance. We first model:
emmaLearnsBovaryFatherDeath : type = emma * leonEmmaTogether * charlesIsConcerned * homais−o

{@inheritance * @leonEmmaTogether * @emma}
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During the same event, a side conversation occurs between two of the characters
present during which Emma incidentally learns where to find arsenic. The im-
portance of this knowledge becomes only apparent when we model the narrative
action corresponding to Emma’s death. We then modify the code:
emmaLearnsBovaryFatherDeath : type = emma * leonEmmaTogether * charlesIsConcerned * homais−o

{@arsenic * @inheritance * @leonEmmaTogether * @emma}.
emmaCommitsSuicide : type = emma * ruin * arsenic * emmaRebels−o {@emmaIsDead}.

Mutually exclusive narrative actions can be explicitly suggested using the
choice connective & in the declaration of the initial conditions. These can be
used to encode key turning points in the narrative that are broadly recognized
as such, which is frequently the case when using existing stories as a baseline.
We use this connective to model Emma’s choice to attend the ball (see line 44
in Figure 3). The use of the choice connective & causes variation in the outputs.
However, the main mechanism for varied outputs remains the competition for
the consumption of resources by different narrative actions.

5.2 Incremental Formalization of the Narrative

As the examples above demonstrate, an advantage of modelling narratives using
a programming language is the ability to iteratively fine tune the model. Indeed,
programming is an iterative activity alternating between coding and testing
phases, and the tool that we developed improves immensely the effectiveness of
the testing phase.

Testing can exhibit plots with specific characteristics, as illustrated in Fig-
ure 4. We can also verify if the generation has a varied output (differing sig-
nificantly from the original plot) by exhibiting corresponding plots such as on
Figure 5. One can also test the impact of more narrative drive on the gen-
eration if enforcing an action is desired: by making emmaAcceptsLeonsAdvances
linear, one can observe the effect on the number and variability of the stories
generated (such a modification would generate a smaller number of stories per
100 queries, and all of them would end by Emma’s death by poisoning).

Such fine-tuning can help setting up threshold values where levels or a certain
amount of a given resource is needed to trigger various specific narrative actions.

5.3 Generated Plots

The complete code corresponding to the extract shown in Figure 3 consists
of a total of 105 lines of code, including 31 narrative action descriptions (the
rest of the code being mainly atomic declarations). As we have only explicitly
encoded one branching choice, the variety of outputs is due to the narrative
actions semantics (narrative action’s competition for resources, and the fact that
different actions can create the resource consumed by another one), and to the
forward chaining variability.

The code described allows to generate 72 different narrative sequences for
100 attempts. After a comparison of the corresponding plots using the CelfTo-
Graph’s command stats, we can exhibit 41 different plots (characterised by
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init

emmaSpendsYearsInCovent

emmaReadsRomanticNovels

leonFallsInLoveemmaMarriesCharles

emmaReadsRomanticNovels

emmaContractsDebts emmaInvitedToBall

emmaDoesNotGoToBall

emmaDiscoversLeonsLove

rodolpheDecidesToSeduceEmma

emmaPushesLeonAway

emmaAcceptsRodolpheAdvances emmaContractsDebts

rodolpheRelationshipFalters

charlesDecidesToOperateHypolyte

hypolyteIsAmputated

emmaPurchasesProstheticLeg emmaPurchasesGift

emmaOffersGift

rodolpheBreaksUp

emmaJumpsThroughWindow

(a) Emma does not attend the Vicomte’s Ball but still wants to escape
her life. She defenestrates when left by Rodolphe.

init

emmaSpendsYearsInCovent

emmaReadsRomanticNovels

emmaMarriesCharles

rodolpheDecidesToSeduceEmma

emmaReadsRomanticNovels

emmaContractsDebts

leonFallsInLove

emmaInvitedToBall

emmaGoesToBall

emmaAcceptsRodolpheAdvances

rodolpheRelationshipFalters

charlesDecidesToOperateHypolyte

hypolyteIsAmputated

emmaPurchasesGift emmaPurchasesProstheticLeg

emmaOffersGift

rodolpheBreaksUp

emmaGetsSick

emmaMeetsLeon

emmaBecomesRuinedemmaAcceptsLeonsAdvances

leonsMotherReceivesAnonymousLetter

bossDiscussesEmmaWithLeon

emmaLearnsBovaryFatherDeath

emmaCommitsSuicide

OR

OR

OR

(b) As in the original story, Emma attends the Vicomte’s Ball. Following Rodolphe’s
departure she becomes sick but later start another liaison with Leon. After being
ruined, she ingests Arsenic.

Fig. 5. Two of 41 causally structured plots generated by the code shown in Figure 3.
These plots have been exhibited using CelfToGraph querying language on the generated
set. Nodes in Grey are final action which do not have consequences.
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different generated causal structures), meaning that a number of different nar-
rative sequences share the same causal structures. This allows the characteri-
sation of classes of true story variants. Figure 5 exhibits examples of story
variants among those generated, which have been exhibited by the tool: the
first tells a story where Emma jumps through the window following the depar-
ture of Rodolphe, and the other a story where she takes arsenic. If we look at
the code Figure 3 l.31 32, two narrative actions emmaJumpsThroughWindow and
emmaGetsSick consume the resource emmaIsDespaired. When the first is trig-
gered by the forward chaining mechanism, we obtain a story ending with Emma
jumping through the window. When requesting 1000 query attempts, we obtain
747 solutions, among which 697 are different narrative sequences, and 226 are
different plots (i.e., 226 true story variants).

6 Conclusion

There has been much interest in the use of Linear Logic to represent natural
language semantics and the semantics of action and change. Narrative struc-
tures are based on the integration of the above phenomena, and Linear Logic
programming provides a direct mechanism to operationalize these descriptions

Our first results reported here are clearly encouraging and compare favourably
to other narrative generation techniques based on planning, while preserving all
the benefits of a declarative representation. This opens perspectives for appli-
cations such as Interactive Storytelling, where narrative generation is a default
interaction paradigm, allowing narratives to adapt to changes in the environ-
ment. In future work, we intend to develop this approach with the definition
of an interaction paradigm using Linear Logic’s choice connectives and on-the-
fly environment modifications. Another interesting line of inquiry would be to
explore the possible definition of normal forms for stories generated.
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A Appendix

This appendix is only for reviewing purposes. Not to appear in the final version.
We use it to show the complete Celf code that was shown partially in Figure 3.
The file is also available online at:

https://github.com/jff/TeLLer/blob/master/examples/celf2graph/LPNMR13-
madamebovary.clf.

1 %% Encoding of the Madame Bovary story.
2
3 %% All atoms in the story
4 emma : type.
5 charles : type.
6 homais : type.
7 leon : type.
8 rodolphe : type.
9 emmaCharlesMarried : type.

10 covent : type.
11 novels : type.
12 grace : type.
13 education : type.
14 escapism : type.
15 emmaIsBored : type.
16 ball : type.
17 leonIsBored : type.
18 leonInlove : type.
19 leonInfatuated : type.
20 emmaBelievesLeonsLove : type.
21 rodolpheDecidedToSeduce : type.
22 rodolphePastLoveLife : type.
23 rodolpheEmmaTogether : type.
24 rodolpheIsBored : type.
25 emmaFeelsGuilty : type.
26 hypolyteSurgeryPlans : type.
27 emmaCharlesHappy : type.
28 emmaRebels : type.
29 lheureux : type.
30 debt : type.
31 gift : type.
32 rodolpheIsHumiliated : type.
33 emmaIsDespaired : type.
34 charlesIsConcerned : type.
35 emmaInLove : type.
36 leonEmmaTogether : type.
37 arsenic : type.
38 inheritance : type.
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39 denounced : type.
40 ruin : type.
41 emmaIsDead : type.
42
43 emmaSpendsYearsInCovent : type = emma * covent −o {!novels * !grace * !

education * @emma}.
44 emmaReadsRomanticNovels : type = emma * novels −o {@escapism * @escapism

* @emma}.
45 emmaMarriesCharles : type = emma * escapism * grace * charles −o {

emmaIsBored * @emma *!emmaCharlesMarried}.
46 emmaInvitedToBall : type = emma * emmaCharlesMarried * grace −o {@ball *

@emma}.
47 emmaGoesToBall : type = emma * ball * escapism −o {@escapism * @escapism

* @escapism * @escapism * @emma}.
48 emmaDoesNotGoToBall : type = emma * ball −o {emmaIsBored * @emma}.
49 leonFallsInLove : type = emma * grace * novels * leonIsBored −o {

@leonInlove * @emma}. % debanged
50 emmaDiscoversLeonsLove : type = emma * leonInlove * emmaIsBored −o {

@emmaBelievesLeonsLove * @leonInlove * @emma}. % possibility
insertion what−if here

51 emmaPushesLeonAway : type = emma * leonInlove * emmaBelievesLeonsLove *
emmaCharlesMarried −o {emmaIsBored * @escapism * @emma}.

52 rodolpheDecidesToSeduceEmma : type = emma * grace * emmaCharlesMarried −
o {@rodolpheDecidedToSeduce * @emma}.

53 emmaAcceptsRodolpheAdvances : type = emma * escapism * escapism *
escapism * escapism * rodolpheDecidedToSeduce −o {
@rodolpheEmmaTogether * @emma}. % debanged

54 rodolpheRelationshipFalters : type = emma * rodolpheEmmaTogether −o {
@rodolpheIsBored * @emmaFeelsGuilty * @rodolpheEmmaTogether * @emma
}. % consume repro

55 charlesDecidesToOperateHypolyte : type = emma * charles *
emmaCharlesMarried * emmaFeelsGuilty * homais −o {
@hypolyteSurgeryPlans * @emmaCharlesHappy * @emma}.

56 hypolyteIsAmputated : type = emma * charles * emmaCharlesHappy *
hypolyteSurgeryPlans −o {!emmaRebels * !lheureux * @emma}.

57 emmaPurchasesGift : type = emma * rodolpheEmmaTogether * lheureux −o {
@debt * @gift * @emma * @rodolpheEmmaTogether}.

58 emmaOffersGift : type = emma * rodolpheEmmaTogether * gift −o {
@rodolpheIsHumiliated * @emma * @rodolpheEmmaTogether}.

59 emmaPurchasesProstheticLeg : type = emma * emmaRebels * lheureux −o {
@debt * @debt * @emma}.

60 rodolpheBreaksUp : type = emma * rodolpheIsBored * rodolpheIsHumiliated
* rodolphePastLoveLife * rodolpheEmmaTogether −o {@emmaIsDespaired *
@emma}.
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61 emmaJumpsThroughWindow : type = emma * emmaIsDespaired * emmaRebels −o {
@emmaIsDead}.

62 emmaGetsSick : type = emma * emmaIsDespaired −o {@debt * @debt * @debt *
@debt * !charlesIsConcerned * @emma}.

63 emmaMeetsLeon : type = emma * charlesIsConcerned * homais * grace *
education −o {@leonInfatuated * @emmaInLove * @emma}.

64 emmaAcceptsLeonsAdvances : type = emma * leonInfatuated * emmaInLove *
emmaRebels −o {@leonEmmaTogether * @emmaInLove * @leonInfatuated *
@emma}.

65 emmaLearnsBovaryFatherDeath : type = emma * leonEmmaTogether *
charlesIsConcerned * homais −o {@arsenic * @inheritance *
@leonEmmaTogether * @emma}. % consume repro

66 emmaReimbursesSomeDebt : type = emma * inheritance * lheureux * debt *
debt * debt * debt −o {@emma}.

67 leonsMotherReceivesAnonymousLetter : type = emma * emmaCharlesMarried *
leonEmmaTogether −o {@denounced * @leonEmmaTogether * @emma}.

68 emmasLoveForLeonFalters : type = emma * leonEmmaTogether * emmaInLove −o
{@emmaIsBored * @emma * @leonEmmaTogether}.

69 bossDiscussesEmmaWithLeon : type = emma * leonEmmaTogether *
leonInfatuated * denounced −o {@emma * @leonEmmaTogether}.

70 emmaContractsDebts : type = emma * emmaIsBored −o {@debt * @emma}.
71 emmaContractsImportantDebts : type = emma * emmaIsBored −o {@debt *

@debt * @debt * @emma}.
72 emmaBecomesRuined : type = emma * debt * debt * debt * debt * debt *

debt * debt −o {@ruin * @emma}.
73 emmaCommitsSuicide : type = emma * ruin * arsenic * emmaRebels −o {

@emmaIsDead}.
74 init : type =
75 { covent * @emma * @leonIsBored * !charles * !rodolphePastLoveLife * !

homais
76 * @emmaSpendsYearsInCovent
77 * @emmaReadsRomanticNovels
78 * @emmaReadsRomanticNovels
79 * @emmaInvitedToBall
80 * @emmaMarriesCharles
81 * @(emmaGoesToBall & emmaDoesNotGoToBall)
82 * @leonFallsInLove
83 * @emmaDiscoversLeonsLove
84 * @emmaPushesLeonAway
85 * @rodolpheDecidesToSeduceEmma
86 * @emmaAcceptsRodolpheAdvances
87 * @rodolpheRelationshipFalters
88 * @charlesDecidesToOperateHypolyte
89 * @hypolyteIsAmputated
90 * @emmaPurchasesGift
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91 * @emmaOffersGift
92 * @emmaPurchasesProstheticLeg
93 * @rodolpheBreaksUp
94 * @emmaJumpsThroughWindow
95 * @emmaGetsSick
96 * @emmaMeetsLeon
97 * @emmaAcceptsLeonsAdvances
98 * @emmaLearnsBovaryFatherDeath
99 * @emmaReimbursesSomeDebt

100 * @leonsMotherReceivesAnonymousLetter
101 * @emmasLoveForLeonFalters
102 * @bossDiscussesEmmaWithLeon
103 * !emmaContractsDebts
104 * !emmaContractsImportantDebts
105 * @emmaBecomesRuined
106 * @emmaCommitsSuicide
107 }.
108
109 #query * * * 100 (init −o {emmaIsDead}).


