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Abstract
We present a mechanized metatheoretic development of two pre-
sentations of LF: the Canonical presentation (in which only beta-
short, eta-long terms are well-formed) and the original version
based on definitional equivalence. We prove the standard metathe-
ory, i.e. that type checking is decidable and canonical forms ex-
ist uniquely. We do so by translating structures from the original
formulation to the canonical formulation, establishing that defini-
tional equivalence corresponds to syntactic equivalence of canon-
ical forms. This particular approach represents the first syntactic
proof of the metatheory of LF, thus the first that can be mechanized
in Twelf. It is also the first proof formally addressing the correspon-
dence between hereditary substitution in Canonical LF and defini-
tional equivalence in the traditional version, justifying the body of
recent work that takes Canonical LF as primary.

Categories and Subject Descriptors F.3.3 [Studies of Program
Constructs]: type structure; F.4.1 [Mathematical logic]: lambda
calculus and related systems

General Terms languages, theory

Keywords logical frameworks, dependent type theory, hereditary
substitution, mechanized metatheory, Twelf

1. Introduction
The logical framework LF [9] and its implementation Twelf [14]
comprise a framework for defining and reasoning about deductive
systems. Developments using this technology include a the mech-
anized definition of Standard ML [10], solutions to the POPLmark
challenge [1], the metatheory of a framework for distributed mobile
code [12], and a proof-carrying filesystem [6].

LF is a dependently-typed lambda calculus. When taking its
type theory as the object of study, there are two extant classes
of presentation: one in which terms may be written in the stan-
dard way and redexes in types are handled through definitional
equivalence; the other in which terms must be written in canon-
ical (roughly, normal) form, and substitution must be redefined to
preserve that form. The former can be seen as the programmer’s in-
terface to LF—it is the original presentation, and it corresponds to
a more standard notion of programming. All of the complexity lies
in the metatheory of deciding the type system. On the other hand,
the canonical presentation provides a convenient basis for studying
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tm : type.
lam : (tm -> tm) -> tm.
app : tm -> tm -> tm.

eval : tm -> tm -> type.
eval/beta : eval (app (lam E) E’) V

<- eval (E E’) V.
% ...

Figure 1. Untyped lambda calculus in Twelf

and extending the LF type theory itself. Its metatheory is relatively
straightforward and amenable to structural proof techniques.

To illustrate more concretely the distinction between these two
LF systems, consider the standard LF encoding of the untyped
lambda calculus in Figure 1. We refer to LF as the meta-level and
to the untyped lambda calculus (in general, the language being
encoded) as the object-level. We give the syntax as well as one
evaluation rule for the object-level. The following discussion refers
to notions of reduction and expansion at the meta-level.

According to the original formulation of LF, the included eval-
uation rule may be written in several different ways. Consider the
term E. Because it has (meta-level) type tm -> tm, it can be eta-
expanded to λx:tm.E x. We could replace each occurrence of E in
the rule with its η-expansion. Notably, if we did so in the second
occurrence, we would create a β-redex.

The LF terms in this example are said to be in canonical form iff
we η-expand in the first occurrence, where it is an argument (lam
(λx.E x)) and do not in the second occurrence, where it is applied
as a function (E E’). More generally, canonical forms are fully eta-
expanded except where they would introduce beta-redexes.

This definition prescribes a unique way to write a term given its
type, which comes up when considering adequacy. For an encoding
to be adequate means that elements of the object language, such as
terms or derivations, are in a compositional bijection with LF terms
of the corresponding type. However, the space of all LF terms is too
large; only by restricting to canonical LF terms of the appropriate
type does the theorem hold.

Additionally, canonical forms provide a basis for decidabil-
ity of type checking. Type checking reduces to type equivalence
checking, and one way to tell if two terms are equivalent is to
put them both in canonical form and compare (because canonical
forms are unique). We should, e.g., be able to deduce decidably that
eval E E’ and eval (λx.E x) E’ are equivalent types.

The notion of canonical form can be seen as an extrinsic prop-
erty of an LF term, defined separately as a technical device. Up to
a certain point in LF’s history, that was exactly its treatment, e.g. in
earlier proofs of decidability and existence of canonical forms, such
as Harper and Pfenning’s logical relations argument [8]. While this
approach is elegant and has mechanized in HOL [20], we were in-
terested in a syntactic approach amenable to formalization in Twelf.



For that we needed theory developed later: the distinct type system
Canonical LF.

Felty [5] first observed that you could restrict LF to β-normal
terms from the get-go by changing the grammar and formation
rules. However, non-canonical forms were still needed because
canonicity is not preserved by substitution; in Felty’s work, the no-
tion of equality depends on β-reduction over non-canonical forms.

Watkins [21] later had the insight that one could work entirely
within canonical forms if we redefine substitution to normalize any
redexes it creates. It is this notion of hereditary substitution, similar
to a sequent calculus notion of cut, that is central to this work’s
version of Canonical LF and to the simplicity and significance of
our proof.

The canonical system gives rise to a straightforwardly decid-
able bidirectional type checking algorithm. Function applications,
variables, and constants can synthesize their types while functions
are checked against a provided type. No equivalence checking is
necessary since terms are unique—or put another way, types are
compared purely syntactically (i.e. by unification in the metalogic).
Instead the subtle reasoning manifests in the metatheory of substi-
tution, which is nonetheless amenable to a structural proof adapted
from proofs of cut admissibility in sequent calculus.

Our theorem therefore is that type checking in the original LF
can be faithfully reduced to type checking in Canonical LF. This
boils down to defining an algorithm to translate the syntactic ob-
jects of LF to syntactic objects of canonical LF. We prove the al-
gorithm total, sound, and complete. Because we are translating one
system to another, we use the compilers terminology EL (external
language) and IL (internal language) for original and canonical LF,
respectively.

In the sense that this is a proof about the EL, soundness and
completeness say that any judgments we wish to decide in the
EL may first have their pieces translated and the corresponding
judgment decided in the IL. Alternatively, the proof can also be
viewed as a validation of Canonical LF. A considerable body of
research on LF has been based on the canonical formulation [11,
15, 19, 21]; this proof confirms that they are talking about the same
thing, and moreover that definitional equivalence gives a semantics
to hereditary substitution.

The entire proof is formalized in Twelf. We borrow heavily from
the methodology used in Crary’s mechanization of the singleton
calculus [3] in this development. Source code may be found at
www.cs.cmu.edu/~cmartens/lfinlf, and this paper will make
use of notation and judgments that should be recognizable in the
source should the reader care to look.

2. LF
In this section we describe our formulation of LF, the EL. 1

The top-level object of an encoding is a signature, for which we
use the metavariable Σ. Every extension of the signature introduces
a new type constant or term constant.

Σ ::= · | Σ, c : Ā | Σ, a : K̄

(We will write every EL metavariable with a bar to distinguish
it from IL metavariables, which come later.)

Constructors are:

Ā ::= a | (Ā M̄) | λx:Ā. Ā | Πx:Ā. Ā

They can be constants, applications of a constructor to a term,
lambda expressions, or (dependent) function types. The variables

1 The interested reader may follow along with the development by referring
to noncan.elf. Where applicable, the inference rules herein are named
after their corresponding signature declarations there.

M̄ : Ā M̄ has type Ā
Ā : K̄ Ā has kind K̄
K̄ : kind K̄ is a kind

M̄ ≡ N̄ : Ā M̄ and N̄ are equivalent at type Ā
Ā ≡ B̄ : K̄ Ā and B̄ are equivalent at kind K̄
K̄ ≡ L̄ K̄ and L̄ are equivalent

Figure 2. Judgments of LF.

x range over terms (there is no type polymorphism). We will use
Ā → B̄ as shorthand for Π :Ā.B̄ when there is no dependency
in B̄. We follow the original presentation by including family-
level lambda. Several subsequent formulations omit it based on the
folkloric observation that the system is equivalent without it, but
it serves to be a convenient technical device in our proof, so we
include it.

The (standard) grammar for terms and kinds follows.

M̄ ::= c | x | (M̄ M̄) | λx:Ā.M̄

K̄ ::= type | Πx:Ā. K̄

The judgments of LF are summarized in Figure 2. For each
of these judgments J , there is a hypothetical version Γ `Σ J
parameterized over a term context Γ and a signature Σ; in the
typing rules, we stick to a notation closer to the Twelf development
in which the context and the signature are implicit, residing in the
ambient metalogic.

We will now inspect a few of the key typing and equivalence
rules; the entirety of the type system can be found in the appendix.

Equivalence is introduced to the type system via the conversion
rule (and correspondingly for constructors):

M̄ : Ā Ā ≡ B̄ : type

M̄ : B̄
eof/eqtp

Ā : K̄ K̄ ≡ K̄′

Ā : K̄′
ekof/eqkind

The premise Ā ≡ B̄ : type says that Ā and B̄ are equivalent
types, i.e. equivalent constructors at kind type. In general, we say
that families are equivalent at kind K (and prove as an invariant
that they each in fact inhabit kind K). Constructor equivalence
ultimately appeals to term equivalence, which is where we will
restrict our attention for this discussion.

Our notion of equivalence permits β and η conversion via the
following rules:

M̄ : Πx:Ā.B̄′ N̄ : Πx:Ā.B̄′′

x : Ā ` (M̄ x) ≡ (N̄ x) : B̄

M̄ ≡ N̄ : Πx:Ā.B̄
eqtm/ext

x : Ā ` M̄ : B̄ N̄ : Ā

(λx:Ā.M̄) N̄ ≡ [N̄/x]M̄ : [N̄/x]B̄
eqtm/beta

The remaining equivalence rules introduce type conversion
(analogously to eof/eqtp) and close the relation under equivalence
and compatibility.

The notion of substitution for the EL is the standard, uniform,
capture-avoiding substitution that we see no need to include (and
get for free in Twelf).

3. Canonical LF
In a canonical presentation of a proof system, we syntactically
separate terms that are canonical (hereafter “terms”) and terms
that are atomic (hereafter “atoms”), ruling out beta redexes. Eta-
length is ensured by the typing rules, which are divided into two



c : A ∈ Σ A⇐ type

c⇒ A
at-of/const

x : A ∈ Γ A⇐ type

x⇒ A
at-of/var

R⇒ base(P )

at(R)⇐ base(P )
of/at

x:A `M ⇐ B A⇐ type

λx.M ⇐ Πx:A.B
of/lam

R⇒ (Πx:A.B) M ⇐ A [M/x]B is B′

(R M)⇒ B′
at-of/app

Figure 3. Type synthesis for atoms and checking for terms.

judgments, type checking and type synthesis, comprising a bidi-
rectional, syntax-directed algorithm. Harper and Licata [7] provide
excellent exposition on this formulation of LF, which we attempt
to recapitulate here. Such a system is known by a few other names,
such as intercalation [2] and verifications and uses [13].

The canonical presentation of LF will be the IL for our proof.
Because the only well-formed, well-typed terms are beta-short and
eta-long, there is no need to consider types up to a notion of equiva-
lence. The heavy lifting gets passed off to substitution, which must
be redefined to preserve canonicity. The grammar of Canonical LF
is as follows: 2

R ::= c | x | (R M)

M ::= at(R) | λx.M

By inspection, we see that no beta-redexes are admitted: the
head of an application may never be a λ.

We have two distinct typing judgments for these syntactic
classes:

M ⇐ A M checks at type A
R⇒ A R synthesizes type A

Together, they constitute a bidirectional type checking algo-
rithm. The judgment M ⇐ A can be read operationally such that
given a term and a type, it succeeds when they check—in logic pro-
gramming terms, it has input-input mode. The judgment R ⇒ A
can be read with input-output mode: given an atom, it produces the
type. Intuitively, atoms have the property that their types can be
“read off” from the signature and constraints of the context, propa-
gated top-down. Terms, on the other hand, must provide their type,
from which information flows upward in the derivation tree. The
key rule is where they meet in the middle, at the typing rule for
at(R), the inclusion of atoms into terms. This rule precludes par-
tial application (enforces eta-length) by requiring the atom to have
a base type:

R⇒ base(P )

at(R)⇐ base(P )
of/at

Typing of terms and atoms is summarized in Figure 3. Note that
the typing rule for application depends on substitution, which we
write as a relation rather than a metalevel function to suggest that
we need to define it—it is not the standard, uniform substitution
granted by the metalogic.

In order to say what counts as a base type for the of/at rule, we
need a similar stratification of atomic and canonical type families
and corresponding kinding judgments. (Kinds are the same as pre-
viously.) “base(P )” signifies base types, which are “atomic” type
families.

2 The interested reader may follow along with canonical.elf for this
section.

a : K ∈ Σ K : kind
a⇒ K

at-kof/const

A⇐ type x:A ` B ⇐ type

Πx:A.B ⇐ type
kof/pi

P ⇒ Πx:B.K M ⇐ B [M/x]K is K′

(P M)⇒ K′
at-kof/app

A⇐ type x:A ` B ⇐ K

λx:A.B ⇐ Πx:A.K
kof/lam

P ⇒ type

base(P )⇐ type
kof/base

Figure 4. Kinding for type families.

type : kind
wfkind/tp

A⇐ type x:A ` K : kind

Πx:A.K : kind
wfkind/pi

Figure 5. Well-formedness of kinds.

P ::= a | (P M)

A ::= base(P ) | Πx:A.B | λx.A
The kinding and well-formedness rules for type families and

kinds are listed in figures 4 and 5.

3.1 Substitution
Ordinary substitution, when applied to a canonical term, can create
β-redexes; for an example, consider

[(λy.N)/x](x M) −→R (λy.N) M

Therefore we use hereditary substitution [21]. The key rule defines
how to substitute into an application. Roughly speaking, to substi-
tute N for x in (R M),

• Let M ′ = [N/x]M .
• Compute [N/x]R, resulting in F , which may be either an atom

or a term.
• If F is an atom, return (F M ′).
• If F is a term, it must have the form λx.O (because it is a

function). In that case, hereditarily compute [M ′/x]O.

Whether [N/x]R results in a term or an atom depends on
whether x is the head variable of R—that is, whether R =
xN1 . . . Nn for n ≥ 0.

Thus we formally define substitution (at the term level) as three
judgments:

• [N/x]M isM ′ for substituting into a term, resulting in a term
• [N/x]R is R′ for substituting into an atom, resulting in an atom

(when x is not the head of R)
• [N/x]R isM for substituting into an atom, resulting in a term

(when x is the head of R)

The rules defining these judgments are summarized in Figure 6.
The rules for constructors and kinds are similar, but without the
“rm” cases for constructors, as there are no type variables.

Most of hereditary substitution just crawls the structure of the
term to find variables to replace, as in uniform substitution. The
hereditary case, rmsub/app, is where all the action takes place, as
we previously described.

The only other rule of particular interest is the sub/rm rule, in
which the substitution only occurs when the resulting term of the



[N/x]R is R′

[N/x]at(R) is at(R′)
sub/rr

[N/x]R is at(R′)

[N/x]at(R) is at(R′)
sub/rm

[N/x]M isM ′

[N/x](λy.M) is λy.M ′
sub/lam

x does not occur free in R
[N/x]R is R

rrsub/closed

[N/x]x is N
rmsub/var

[N/x]R is R′ [N/x]M isM ′

[N/x](R M) is (R′ M ′)
rrsub/app

[N/x]R is λx.O [N/x]M isM ′ [M ′/x]O is O′

[N/x](R M) is O′
rmsub/app

Figure 6. Hereditary substitution.

rmsub is an atom (the rule says at(R′) rather than general M ).
This restriction adds a smidgen of typing information to the rule, 3

needed to carry through the termination proof. Most prior presenta-
tions of hereditary substitution track the simple types of the compo-
nents of the substitution in the definition, making it manifestly total.
We instead argue externally the totality of this relation over well-
typed terms, allowing us to state hereditary substitution as a simple
syntactic rewrite. Thus we require this extra restriction, which will
prove necessary for our approach to the metatheory. Reed discusses
an alternative typeless approach [17].

3.2 Metatheory of Hereditary Substitution
The primary result of this paper relates hereditary substitution
and canonical forms to the standard notion of substitution and
convertibility in the EL. Before that, we must set the stage by
showing internal soundness and completeness of the canonical
forms presentation, which is entirely independent of the EL.

The top-level Hereditary Substitution states 4 :

Proposition 1 (Hereditary Substitution). If x : A ` M ⇐ B and
N ⇐ A, then there exist M ′ and B′ such that [N/x]M isM ′,
[N/x]B is B′, and M ′ ⇐ B′.

We delay the proof sketch until after stating and proving the
important lemmas. First, we prove uniqueness of substitutions,
which (straightforward) proof can be found in subst-fun.thm.

Next, to untangle the dependencies of the proof, several lemmas
must operate over derivations whose type dependencies have been
erased. Below we define erasure −o, which takes a dependent type
to its corresponding “simple type” or “type skeleton”.

T ::= o | T → T

(base(P ))o = o

(Πx:A.B)o = Ao → Bo

(λx:A.B)o = Bo

3 That is, it rules out the possibility of a function.
4 The interested reader may follow along with the files
canonical-simple.elf, subst-effect.thm, substitution.thm,
and expand.thm for this section.

The last clause of this definition exists solely to make it total;
for our purposes, we will only never need to simplify proper types.

We also define auxiliary typing judgmentsM ⇐o T andR⇒o

T , obeying the same synthesis/checking stratification as before,
such that M ⇐ A and Ao = T implies M ⇐o T . This defini-
tion allows us to prove that substitution preserves simple types by
straightforward induction over the simple-typing derivation. Then
we can prove that hereditary substitution always exists on well-
simply-typed inputs.

Lemma 3.1 (Effectiveness of Hereditary Substitution 5). Assume
N ⇐o S.

1. If x :o S ` M ⇐o T , then there exists M ′ such that
[N/x]M isM ′.

2. If x :o S ` R ⇒o T , then either there exists an atom R′

such that [N/x]R is R′ or there exists a term M such that
[N/x]R isM .

Proof sketch. By lexicographic induction first on S and second on
the typing derivation of the open term.

The majority of cases follow by straightforward induction and
rule application. As in proofs of cut in sequent calculus, only
one case is interesting, because of its argument that the induction
applies to smaller derivations according to the metric:

Case x :o S ` (R M) ⇒o U by the application typing
rule and N ⇐o S. Specifically we are in the subcase where
after applying the i.h. to x :o S ` R : T → U , we obtain
[N/x]R is λy.P .
First, we obtain the well-simple-typing of λy.P from the fact
that substitution preserves simple types, and invert to obtain
y :o T ` P ⇐o U .
However, since that derivation is not a subderivation of that of
(R M), we need to show that the type T is smaller than S,
which follows from the fact that x is the head variable of R.

Lemma 3.2 (Permutability of Hereditary Substitutions 6). If:

x1 :o T1 , x2 :o T2 ` M :o S
x1 :o T1 ` N2 :o T2

N1 :o T1

[N1/x1]N2 is pN2

[N1/x1]M is pM
[N2/x2]M isMq

then there exists pMq such that [N1/x1]Mq is pMq and
[pN2/x2]pM is pMq.

The hardest part of this lemma is probably just writing down the
statement. In addition to the above, we need a theorem statement for
each possible combination of substitutions on atoms: two rrsubs,
an rrsub followed by an rmsub, an rmsub followed by a sub. We
omit the formal statement of these lemma subparts.

Proof sketch. The proof proceeds by induction over the simple
types of the variables and the derivation of the inner substitution.
Again, we require the simple types to be part of the termination
metric to enable using the i.h. in cases involving rmsub/app.

Each case roughly has the form of inverting on the typing
derivation to get well-formedness of the subterms in the substitu-
tion, then making an inductive call, and reassembling the substi-
tution derivation on the results of the recursive call, and showing

5 can-sub-esm in subst-effect.thm
6 sub-permute-es in subst.thm



(through uniqueness of substitutions, e.g.) that the swapped-order
substitution has the same result.

Once permutability has been proven using simple typing deriva-
tions, we can use it on full typing derivations just by erasing the
type dependencies.

Finally, we sketch the proof of hereditary substitution.
An instance of the theorem is needed for each syntactic class

and relevant formation judgment, including synthesis and checking
of terms, atoms, type families, and kinds. The statement varies de-
pending on whether the substitution is into atoms (or atomic types)
vs. terms (or canonical type families). Notably, the mode of the type
substitution (whether it is an input or output) follows the structure
of bidirectional typing, although, since all substitutions are effec-
tive and unique, this structure serves merely for convenience and
does not affect provability.

Theorem 3.3 (Hereditary Substitution 7). Assume M ⇐ A.

1. If x:A ` R ⇒ B and [M/x]R is R′, then [M/x]B is B′ and
R′ ⇒ B′.

2. If x:A ` R ⇒ B and [M/x]R is N , then [M/x]B is B′ and
N ⇒ B′.

3. If x:A ` N ⇐ B, [M/x]N is N ′, and [M/x]B is B′, then
N ′ ⇐ B′.

4. If x:A ` P ⇒ K and [M/x]P is P ′, then [M/x]K is K′ and
P ′ ⇒ K′.

5. If x:A ` B ⇐ K, [M/x]B is B′, and [M/x]K is K′, then
B′ ⇐ K′.

6. If x:A ` K : kind and [M/x]K is K′, then K′ : kind.

Proof sketch. By lexicographic induction on Ao and the typing
derivation of the open object (e.g. M ).

In the application cases, we need to use Substitution Permutabil-
ity to show that the substitution into the type, a premise to the out-
put typing derivation, can happen after the substitution for the outer
free variable referenced by the theorem.

Thinking of Canonical LF as a logic, the Substitution proof es-
tablishes an internal soundness property, by analogy with Cut Ad-
missibility. The corresponding internal completeness property is
Expansion, which says we can eta-expand atoms into correspond-
ing terms.

To expand an atom R of type A, we apply a function ηAo(R)
defined on the structure of Ao as follows:

ηo(R) = at(R)

ηS→T (R) = λx. ηT (R ηS(x))

It is worth noting that defining this function over simple types
greatly simplifies the metatheory. The analogous theorem in the
singleton calculus metatheory [3], defined over dependent types,
requires the theorem to be mutually inductive with several seem-
ingly unrelated lemmas. We can stage the proof much more directly
in this case.

Again, a key lemma is permutability, this time referring to
permuting substitution with expansion. Here we will state but not
prove this lemma; its proof does not require techniques we have not
already discussed.

Lemma 3.4 (Expansion-substitution permutability 8). Permutabil-
ity has five subparts.

7 subst-em in subst.thm
8 sub-expand in expand.thm

1. If [M/x](ηT (R)) is N and x is notR’s head, then [M/x]R is R′

and ηT (R′) = N .
2. If [M/x](ηT (R)) is N and x is R’s head, then [M/x]R is N .
3. If [ηT (R)/x]Q is Q′, then Q′ = [R/x]atQ.
4. If [ηT (R)/x]Q is N , then there exists S such that ηS([R/x]atQ) =
N .

5. If [ηT (R)/x]M isM ′, then M ′ = [R/x]atM .

The notation [−/−]at refers to standard non-hereditary, atom-
for-atom substitution.

Theorem 3.5 (Expansion 9).
If R⇒ A then ηAo(R)⇐ A.

Proof sketch. By induction over the expansion derivation. The base
case is trivial. In the arrow case, we inductively get the well-
typedness of the newly-introduced variable in the premise. It re-
mains to show that substituting the expansion of the variable for
the same variable results in the same type—this follows from per-
mutability. Then, an inductive call on the inner application com-
pletes the proof.

4. Translation
We now have all the necessary tools at our disposal to define the
translation from EL to IL. 10

Translation from EL to IL syntactic objects is defined with
respect to the classifier (type or kind) that the IL object inhabits;
accordingly, it will be written M̄ ↘ M : A for terms, Ā ↘
A : K for type families, and K̄ ↘ K for kinds. The notation
M̄ ↘ M : A means “M̄ translates to M at type A”, where A
is the IL type which M inhabits. This type index exists mainly to
treat the type label on the EL lambda, which would otherwise be
lost upon translation to an IL lambda and is needed for metatheory.

To translate constants and variables, we expand them at the type
we read from the signature or context.

Γ ` x : A ηAo(x) = M

Γ ` x↘M : A

Σ ` c : A ηAo(c) = M

Γ `Σ c↘M : A

To translate an application, first we translate the function, which
must become a lambda. Then we translate the argument and (hered-
itarily) substitute its translation into the body of the lambda.

Γ ` M̄ ↘ λx.M : Πx:B.A Γ ` N̄ ↘ N : B
[N/x]M isM ′ [N/x]A is A′

Γ ` (M̄ N̄)↘M ′ : A′

To translate a lambda, translate the type label, then translate the
body under the assumption of the variable having that type.

Γ ` Ā↘ A : type Γ, x : A ` M̄ ↘M : B

Γ ` (λx:Ā. M̄)↘ (λx.M) : Πx:A.B

Analogous rules apply to translate constructors and kinds. Of
note is the fact that, in order to keep the rules for type constructors
analogous to the term case, we need a notion of expansion on
type constructors (for the constant case). That is the motivation
behind keeping the family-level lambda expression in the system;
they are necessary if we want to expand constants of function
kind. Alternatively, we could have changed translation to target a

9 expand-reg-em in expand.thm
10 The interested reader may follow along with translate.elf for this
section.



disjunctive datatype, but this would have potentially significantly
changed the structure of the proof.

We prove the following invariant of translation:

Lemma 4.1 (Translation Regularity).

1. If M̄ ↘M : A, then M ⇐ A.
2. If Ā↘ A : K, then A⇐ K.

Proof sketch. By straightforward induction over the translation
judgment.

5. Completeness
Completeness says that definitionally equivalent terms translate to
identical canonical forms, i.e. if M̄ ≡ N̄ : Ā, then Ā↘ A : type,
M̄ ↘M : A, N̄ ↘ N : A, and M = N . 11

As before with substitution and expansion, we will need a
lemma that allows us to permute the relevant operation with substi-
tution, in this case translation.

Theorem 5.1 (Translation-substitution permutability 12). Assume
M̄ ↘M : A.

1. If x:A ` N̄ ↘ N : B then [M/x]N is N ′, [M/x]B is B′,
and [M̄/x]N̄ ↘ N ′ : B′.

2. If x:A ` B̄ ↘ B : K then [M/x]B is B′, [M/x]K is K′,
and [M̄/x]B̄ ↘ B′ : K′.

Proof sketch. By induction over the open translation derivation
(e.g. x:A ` N̄ ↘ N : B).

Case N̄ = x, using rule trans/var, meaning N = ηAo(x).
By Expansion, x:A ` N : A, so we may use Effectiveness to
derive the substitution [M/x]N is N ′. Because we can derive
[M/x]x isM , by Expansion-substitution permutability, N ′ =
M .
Case N̄ = (L̄ N̄) using the rule trans/app, giving us sub-
derivations of L̄ ↘ λy.L : Πx:B.C, N̄ ↘ N : B,
[N/y]L is Ly , and [N/y]C is Cy . By i.h., we get that the
translations of [M̄/x] into N̄ , L̄, and C̄ are equivalent to
the hereditary substitution into their translations, with re-
spect to the inner variable, y. To apply the trans/app rule to
these pieces, we need to swap the substitutions, i.e. show that
[M/x][N/y]L = [[M/x]N/y][M/x]L (and similar for C).
This is satisfied by hereditary substitution permutability.

Other cases proceed straightforwardly.

We are now ready to state and prove Completeness in full,
which is several mutually inductive lemmas: completeness of typ-
ing/formation and completeness of equivalence for all syntactic
forms.

Theorem 5.2 (Completeness 13).

1. If M̄ ≡ N̄ : Ā, then Ā ↘ A : type, M̄ ↘ M : A,
N̄ ↘ N : A, and M = N .

2. If Ā ≡ B̄ : K̄, then K̄ ↘ K, Ā ↘ A : K, B̄ ↘ B : K, and
A = B.

3. If K̄ ≡ K̄′, then K̄ ↘ K, K̄′ ↘ K′, and K = K′.
4. If M̄ : Ā, then Ā↘ A : type and M̄ ↘M : A.
5. If Ā : K̄, then K̄ ↘ K and Ā↘ A : K.

11 The interested reader may follow along with the files trans-sub.thm
and complete.thm for this section.
12 trans-sub-e in trans-sub.thm
13 eqtm-comp in complete.thm

6. If K̄ : kind, then K̄ ↘ K.

It is also mutually inductive with the corresponding cases of (1)
and (2) for type families and kinds.

Proof sketch. The proof proceeds by structural induction on the
input derivation for all cases. The most interesting cases are for
beta and extensionality equivalence rules. We outline these cases
below.

Case
M̄ : Πx:Ā.B̄′ N̄ : Πx:Ā.B̄′′

x:Ā ` M̄ x ≡ N̄ x : B̄

M̄ ≡ N̄ : Πx:Ā.B̄
eqtm/ext

By i.h. and inversion, Ā ↘ A : type, B̄′ ↘ B′ : type, B̄′′ ↘
B′′ : type, M̄ ↘M : Πx:A.B′, and N̄ ↘ N : Πx:A.B′′.
By i.h. on the equivalence between the applications, inversion
on the output, and permutability of expansion with substitution,
B = B′ = B′′, M̄ ↘ λx.L : Πx:A.B and N̄ ↘ λx.L :
Πx:A.B.
Case

N̄ : Ā x:Ā ` M̄ : B̄

(λx:Ā.M̄) N̄ ≡ [N̄/x]M̄ : [N̄/x]B̄
eqtm/beta

By i.h., Ā ↘ A : type, N̄ ↘ N : A, x:A ` B̄ ↘ B : type,
and x:A ` M̄ ↘M : B.
By translation-substitution permutability,

[N/x]M isM ′

[N/x]B is B′

[N̄/x]M̄ ↘M ′ : B′

[N̄/x]B̄ ↘ B′ : type

The rules trans/lam and trans/app complete the case.

The remaining cases are straightforward.

6. Soundness
Soundness says that terms that translate to identical canonical
forms are definitionally equivalent, i.e. 14

Proposition 2. If M̄ ↘M : A, N̄ ↘M : A, and Ā↘ A : type,
then M̄ ≡ N̄ : Ā.

We achieve this result by defining transliteration, a back trans-
lation from IL syntactic forms to EL, and proving that translation
composed with transliteration produces equivalent terms. Translit-
eration is summarized in the appendix.

At first glance, it appears that soundness should be the easy di-
rection: canonical forms are “obviously” a subset of the full term
language of LF. The tricky part is justifying hereditary substitution
in terms of definitional equivalence. We want a lemma like we had
in completeness about translation (transliteration) permuting with
substitution, except in this case, it doesn’t quite: if we substitute
after transliterating, we may wind up with redexes, whereas per-
forming hereditary substitution IL-side would eliminate those. In-
stead, we need to say that the results are definitionally equivalent,
e.g. something like:

Proposition 3 (Transliteration-substitution permutability). If
x:A ` M ⇐ B ↗ M̄ , N ⇐ A ↗ N̄ , [N/x]M isM ′, and
[N/x]B is B′, then there exists Ō and B̄′ such that
M ′ ⇐ B′ ↗ Ō, B′ ↗ B̄′ : type, and [N̄/x]M̄ ≡ Ō : B̄′.

14 The interested reader may follow along with the files pi-inj.thm,
convert-sub.thm, reduce-equiv.thm, and sound.thm for this sec-
tion.



The above lemma wound up being the most difficult and time-
consuming part of the proof due to numerous unsuccessful at-
tempts.

In order to maintain a strong enough invariant for the inductive
calls to go through, we need to exploit the fact that the relation
between [N̄/x]M̄ and Ō is directional, i.e. the former reduces
to the latter. But we also needed to disentangle the theory about
constructors from the theory about terms to avoid having circular
dependencies in the proof.

Our insight was to define a notion of untyped computation sep-
arate from definitional equivalence. This lets us set the stage with
the necessary lemmas over constructor-level equivalence, specifi-
cally injectivity of Pi, before we need to recall such a property for
the metatheory of term-level equivalence.

First, we define term-level reduction M −→M ′ as follows.

M̄ −→ M̄
reduce/refl

Ā −→ Ā′ M̄ −→ M̄ ′

λx:Ā.M̄ −→ λx:Ā′.M̄ ′
reduce/lam

(λx:Ā.M̄) N̄ −→ [N̄/x]M̄
reduce/beta

M̄ −→ M̄ ′ N̄ −→ N̄ ′

M̄ N̄ −→ M̄ ′ N̄ ′
reduce/app

Reduction on constructors just reduces the inner terms:

a −→ a tpreduce/const

Ā −→ Ā′ B̄ −→ B̄′

Πx:Ā.B̄ −→ Πx:Ā′.B̄′
tpreduce/pi

Ā −→ Ā′ B̄ −→ B̄′

λx:Ā.B̄ −→ λx:Ā′.B̄′
tpreduce/lam

Ā −→ Ā′ M̄ −→ M̄ ′

Ā M̄ −→ Ā′ M̄ ′
tpreduce/app

Notably, there is no beta rule for constructors. Reduction on
kinds is similar.
−→∗ denotes the reflexive, transitive closure of −→. After

proving a few easy compatibility lemmas for −→∗, we can state
the permutability lemma in terms of the transitive closure:

Lemma 6.1 (Transliteration-substitution permutability (reduc-
tion) 15). Suppose N ⇐ A↗ N̄ .

1. If x:A ` M ⇐ B ↗ M̄ , [N/x]M isM ′, and [N/x]B is B′,
there exists Ō s.t. M ′ ⇐ B′ ↗ Ō and [N̄/x]M̄ −→∗ Ō.

2. If x:A ` R ⇒ B ↗ M̄ , [N/x]R is R′, and [N/x]B is B′,
there exists Ō s.t. R′ ⇒ B′ ↗ Ō and [N̄/x]M̄ −→∗ Ō

3. If x:A ` R ⇒ B ↗ M̄ , [N/x]R isM , and [N/x]B is B′,
there exists Ō s.t. M ⇐ B′ ↗ Ō and [N̄/x]M̄ −→∗ Ō

4. If x:A ` B ⇐ K ↗ B̄, [N/x]B is B′, and [N/x]K is K′,
there exists C̄ s.t. B′ ⇐ K′ ↗ C̄ and [N̄/x]B̄ −→∗ C̄.

5. If x:A ` P ⇒ K ↗ B̄, [N/x]P is P ′, and [N/x]K is K′,
there exists C̄ s.t. P ′ ⇒ K′ ↗ C̄ and [N̄/x]B̄ −→∗ C̄.

6. If x:A ` K ↗ K̄ and [N/x]K is K′, there exists K̄′ s.t.
K′ ↗ K̄′ and [N̄/x]K̄ −→∗ K̄′.

Proof sketch. By lexicographic induction on Ao and the transliter-
ation derivation for the open term. The case when the substitution
is hereditary involves the reduce/beta rule, as expected.

15 convert-sub-e in convert-sub.thm

It remains to relate reduction and definitional equivalence. In
fact, this implication is nontrivial, and in the course of the devel-
opment we made sure to prove it before hinging the permutability
lemma on this fact.

Consider proving the following proposition: if M̄ : Ā and
M̄ −→ N̄ , then M̄ ≡ N̄ : Ā.

Case
λx:Ā′.M̄ : Πx:Ā.B̄ N̄ : Ā

(λx:Ā′.M̄) N̄ : [N̄/x]B̄
eof/app

and (λx:Ā′.M̄) N̄ −→ [N̄/x]M̄ .
Need to show (λx:Ā′.M̄) N̄ ≡ [N̄/x]M̄ : [N̄/x]B̄

We cannot apply the equiv/beta rule here without a derivation
of the well-typing of M , meaning we need to invert the typing of
the lambda. So let us try to prove the following:

If λx:Ā.M̄ : C̄, then C̄ ≡ Πx:Ā.B̄ and x:Ā ` M̄ : B̄.

Case
λx:Ā′.M̄ : Πx:Ā.B̄′ x:Ā ` (λx:Ā′.M̄) x : B̄

λx:Ā′.M̄ : Πx:Ā.B̄
eof/ext

Need to show: x:Ā ` M̄ : B̄

In order to show the second output of the theorem, we will
need to manipulate the second premise of the extensionality rule
from typing a redex (λx:Ā′.M̄)x to typing its contractum M̄ .
But that follows from what we were proving in the first place:
that reduction preserves typing. So we must make these lemmas
mutually inductive.

In addition, both of these cases rely on the well-formation of the
components of the Pi type involved, in order to invoke the needed
substitution of x:A for x:A′. This lemma amounts to “injectivity of
Pi”:

Proposition 4 (Injectivity of Pi). If Πx:Ā.B̄ ≡ Πx:Ā′.B̄′ : type,
then Ā ≡ Ā′ : type and x:Ā ` B̄ ≡ B̄′ : type.

Most of the naive proof of this proposition is easy, but it fails
on the extensionality rule due to transitivity: two Pis might be
equivalent through some mediating type which isn’t a Pi. 16

Therefore, we need to generalize this lemma to get it to go
through. We define two more notions, normalization of construc-
tors at the constructor level (maintaining term redexes), and simi-
larity of constructors at a given kind, which is like equivalence only
stronger: in particular, it implies injectivity.

Effectively, this gives us a way of relating two constructors
that are made of equivalent Pis, under some arbitrary (but equal)
number of lambdas. This equivalence is defined with respect to
constructor-level reduction; term-level reduction is a completely
separate notion. Crucially, these rules can avoid dealing with hered-
itary behavior, because there is no such behavior at the type level
(because LF has no abstraction over types).

Πx:Ā.B̄ ↓ Πx:Ā.B̄
norm/pi

B̄ ↓ B̄′

λx:Ā.B̄ ↓ λx:Ā.B̄′
norm/lam

B ↓ λx:Ā.C̄

(B̄ M̄) ↓ [M̄/x]C̄
norm/app

Similarity Ā ∼ B̄ : K̄ reduces to equivalence in the case of Pi
and simply strips off binders in the case of lambda.

16 It was partly for this reason that Harper and Pfenning [8] left constructor-
level lambda out of their formulation.



Ā ≡ Ā′ : type x:Ā ` B̄ ≡ B̄′ : type

Πx:Ā.B̄ ∼ Πx:Ā′.B̄′ : type
sim/pi

x:C̄ ` B̄ ∼ B̄′ : K̄

λx:Ā.B̄ ∼ λx:Ā′.B̄′ : Πx:C̄.K̄
sim/lam

Lemma 6.2 (Generalized injectivity of Pi 17). If Ā ≡ B̄ : K̄ and
Ā ↓ Ā′, then B̄ ↓ B̄′ and Ā′ ∼ B̄′ : K.

Proof sketch. By induction on the derivation of equivalence.

Now Pi Injectivity is a special case:

Corollary 6.3 (Injectivity of Pi 18). If Πx:Ā.B̄ ≡ Πx:Ā′.B̄′ :
type, then Ā ≡ Ā′ : type and x:Ā ` B̄ ≡ B̄′ : type.

Now we can relate reduction and equivalence.

Lemma 6.4 (Reduction implies equivalence 19). This lemma is
mutually inductive with inversion of lambda typing.

1. If M̄ : Ā and M̄ −→ N̄ , then M̄ ≡ N̄ : Ā.
2. If λx:Ā.M̄ : C̄, then C̄ ≡ Πx:Ā.B̄ : type and x:Ā ` M̄ : B̄.

Proof sketch.

Case of (1)

λx:Ā′.M̄ : Πx:Ā.B̄ N̄ : Ā

(λx:Ā′.M̄) N̄ : [N̄/x]B̄
eof/app

and (λx:Ā′.M̄) N̄ −→ [N̄/x]B̄.
Πx:Ā.B̄ ≡ Πx:Ā′.B̄′ : type and x:Ā′ ` M̄ : B̄′ by i.h.(2).
Ā ≡ Ā′ : type by Pi Injectivity.
N̄ : Ā′ by rule.
Therefore, (λx:Ā′.M̄) N̄ ≡ [N̄/x]B̄.

x:Ā′ ` M̄ : B̄ N̄ : Ā′

(λx:Ā′.M̄) N̄ ≡ [N̄/x]B̄ : [N̄/x]B̄
equiv/beta

Case of (2)

λx:Ā′.M̄ : Πx:Ā.B̄′ x:Ā ` (λx:Ā′.M̄) x : B̄

λx:Ā′.M̄ : Πx:Ā.B̄
eof/ext

By rule, (λx:Ā′.M̄) x −→ [x/x]M̄ .
By i.h.(1), x:Ā ` (λx:Ā′.M̄) x ≡ M̄ : B̄.
By regularity of equivalence, x:Ā ` M̄ : B̄, which is almost
what we need except for x’s type.
By i.h.(2), Πx:Ā.B̄′ ≡ Πx:Ā′.B̄′ : type.
By Pi Injectivity, Ā ≡ Ā′ : type; therefore we can substitute
x:Ā′ for x:Ā, as needed.

The remaining cases are straightforward.

We can extend the above to −→∗ with a trivial induction over
the transitive-reflective closure; finally, we can restate permutabil-
ity in terms of equivalence, as in the original proposition, and prove
it via appeal to Transliteration-substitution permutability (reduc-
tion) and Reduction equivalence.

Having closed off the key permutability lemma, we can finally
prove the takeaway theorem about transliteration:

Theorem 6.5 (Translation inversion 20). If M̄ ↘ M : A, then
M : A↗ M̄ ′, A : type↗ Ā, and M̄ ≡ M̄ ′ : Ā.

17 norm-sim in pi-inj.thm
18 eqtp-pi-invert in pi-inj.thm
19 reduce-equiv in reduce-equiv.thm
20 sound-trans in sound.thm

Proof sketch. By induction on the translation derivation. The one
hard case is application.

Case
M̄ ↘ λx.L : Πx:B.A N̄ ↘ N : B

[N/x]L is L′ [N/x]A is A′

M̄ N̄ ↘ L′ : A′
trans/app

By i.h.,
N ⇐ B ↗ N̄ ′,
B ⇐ type↗ B̄,

x:B ` L⇐ A↗ L̄,
x:B ` A⇐ type↗ Ā,

N̄ ≡ N̄ ′ : B̄, and M̄ ≡ λx:B̄.L̄ : Πx:B̄.Ā.
By transliteration-substitution permutability, L′ ⇐ A′ ↗ L̄′

such that L̄′ ≡ [N̄ ′/x]L̄ : [N̄ ′/x]Ā.
By substitution equivalence (a lemma we omitted), because
N̄ ≡ N̄ ′, we get [N̄/x]L̄ ≡ [N̄ ′/x]L̄ : [N̄/x]Ā.
Similar reasoning for A gets us the remainder of the premises
we need; the rest follows from equivalence rules.

We derive the soundness theorem as a corollary.

Corollary 6.6 (Soundness 21). If M̄ ↘M : A, N̄ ↘M : A, and
Ā↘ A : type, then M̄ ≡ N̄ : Ā.

Proof. From translation inversion on the first and second inputs, we
get M̄ ≡ M̄ ′ : Ā′ and N̄ ≡ M̄ ′ : Ā′ (A′ in both causes because
type conversion is a function).
A ≡ A′ by the type translation analog of translation inversion.
The rest is just application of equivalence rules:

M̄ ≡ M̄ ′ : Ā′
Ā ≡ Ā′ : type

Ā′ ≡ Ā : type

M̄ ≡ M̄ ′ : Ā

N̄ ≡ M̄ ′ : Ā′
Ā ≡ Ā′ : type

Ā′ ≡ Ā : type

N̄ ≡ M̄ ′ : Ā

M̄ ′ ≡ N̄ : Ā

M̄ ≡ N̄ : Ā

7. Discussion
We presented a proof of the metatheory of LF using syntactic
techniques that we have formalized in Twelf. The mechanization
is approximately 36 KLOC (including comments and whitespace)
and takes about 8 seconds to check on an Ubuntu laptop from 2008.

The proof represents a significant proof engineering effort as
well as a theoretical contribution, which effort we have not dis-
cussed here. We use Crary’s explicit contexts technique [4], needed
in certain cases to refer to dependencies on variables in the ambi-
ent context, for a great deal of the metatheory, which unfortunately
winds up bloating the proof with a lot of repetitive boilerplate. Hav-
ing a way to write the technique as a library would improve matters;
the authors have not seriously investigated whether the LF module
system [16] would serve this purpose.

A potential contribution of this work is that extensions to LF,
such as some of those mentioned in the introduction that form
the basis of Ph.D. theses [11, 19], could be proportionally formal-
ized as extensions to this development. Other projects requiring the
metatheory of dependent type theories in general might use this
development as a starting point. A litmus test of this claim of ex-
tensibility might be Reed’s discussion of adding base type poly-
morphism to LF [18].

21 soundness in sound.thm



To summarize, our contributions are:

• A novel syntactic account of the metatheory of LF with constructor-
level lambda and extensionality

• A validation of existing work based on Canonical LF and hered-
itary substitution

• A Twelf mechanization of this metatheory which may be freely
referenced and extended.
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A. EL Rules
Full EL (LF) type system.

Signature checking
Σ ok

· ok
Σ ok `Σ K̄ : kind

Σ, a : K̄ ok

Σ ok `Σ Ā : type

Σ, c : Ā ok

Ā : K̄

a : K̄ ∈ Σ K̄ : kind

`Σ a : K̄
ekof/const

Ā : type x : Ā ` B̄ : type

Πx:Ā.B̄ : type
ekof/pi

Ā : type x : Ā ` B̄ : K̄

λx:Ā.B̄ : Πx:Ā.K̄
ekof/lam

Ā : Πx:B̄.K̄ M̄ : B̄

(Ā M̄) : [M̄/x]K̄
ekof/app

C̄ : Πx:Ā.K̄′ x : Ā ` (C̄ x) : K̄

C̄ : Πx:Ā.K̄
ekof/ext

Ā : K̄ K̄ ≡ L̄
Ā : L̄

ekof/eqkind

Term typing
M̄ : Ā

c : Ā ∈ Σ Ā : type

`Σ c : Ā
eof/const

x : Ā ∈ Γ Ā : type

Γ ` x : Ā
eof/var

x:Ā ` M̄ : B̄ Ā : type

λx:Ā. M̄ : Πx:Ā. B̄
eof/lam

M̄ : Πx:Ā.B̄ N̄ : Ā

(M̄ N̄) : [N̄/x]B̄
eof/app

M̄ : Πx:Ā.B̄′ x : Ā ` (M̄ x) : B̄

M̄ : Πx:Ā.B̄
eof/ext

M̄ : Ā Ā ≡ B̄ : type

M̄ : B̄
eof/eqtp



Kind well-formedness
K̄ : kind

type : kind
ewfkind/tp

x : Ā ` K̄ : kind

Πx:Ā.K̄ : kind
ewfkind/pi

Term equivalence
M̄ ≡ N̄ : Ā

Ā ≡ Ā′ : type x : Ā ` M̄ ≡ M̄ ′ : B̄

λx:Ā.M̄ ≡ λx:Ā′.M̄ ′ : Πx:Ā.B̄
eqtm/lam

M̄ ≡ M̄ ′ : Πx:Ā.B̄ N̄ ≡ N̄ ′ : Ā

(M̄ N̄) ≡ (M̄ ′ N̄ ′) : [M̄ ′/x]B̄
eqtm/app

M̄ : Πx:Ā.B̄′ N̄ : Πx:Ā.B̄′′

x : Ā ` (M̄ x) ≡ (N̄ x) : B̄

M̄ ≡ N̄ : Πx:Ā.B̄
eqtm/ext

x : Ā ` M̄ : B̄ N̄ : Ā

(λx:Ā.M̄) N̄ ≡ [N̄/x]M̄ : [N̄/x]B̄
eqtm/beta

M̄ ≡ N̄ : Ā

N̄ ≡ M̄ : Ā
eqtm/sym

M̄ ≡ N̄ : Ā N̄ ≡ Ō : Ā

M̄ ≡ Ō : Ā
eqtm/trans

M̄ : Ā

M̄ ≡ M̄ : Ā
eqtm/refl

M̄ ≡ N̄ : Ā Ā ≡ B̄ : type

M̄ ≡ N̄ : B̄
eqtm/typecon

Family equivalence
Ā ≡ B̄ : K̄

Ā ≡ Ā′ : Πx:B̄.K̄ M̄ ≡ M̄ ′ : B̄

(Ā M̄) ≡ (Ā′ M̄ ′) : [M̄/x]K̄
eqtp/app

Ā ≡ Ā′ : type x : Ā ` B̄ ≡ B̄′ : K̄

λx:Ā.B̄ ≡ λx:Ā′.B̄′ : Πx:Ā.K̄
eqtp/lam

Ā : Πx:C̄.K̄′ B̄ : Πx:C̄.K̄′′

x : C̄ ` (Ā x) ≡ (B̄ x) : K̄

Ā ≡ B̄ : Πx:C̄.K̄
eqtp/ext

x : Ā ` B̄ : K̄ N̄ : Ā

(λx:Ā.B̄) N̄ ≡ [N̄/x]B̄ : [N̄/x]K̄
eqtp/beta

Ā ≡ B̄ : K̄

B̄ ≡ Ā : K̄
eqtp/sym

Ā ≡ B̄ : K̄ B̄ ≡ C̄ : K̄

Ā ≡ C̄ : K̄
eqtp/trans

Ā : K̄

Ā ≡ Ā : K̄
eqtp/refl

Ā ≡ B̄ : K̄ K̄ ≡ L̄
Ā ≡ B̄ : L̄

eqtp/kcon

Kind equivalence
K̄ ≡ L̄

type ≡ type
eqkind/tp

K̄ : kind

K̄ ≡ K̄
eqkind/refl

Ā ≡ Ā′ : type x : Ā ` K̄ ≡ K̄′

Πx:Ā.K̄ ≡ Πx:Ā′.K̄′
eqkind/pi

L̄ ≡ L̄
L̄ ≡ K̄

eqkind/sym
K̄ ≡ L̄ L̄ ≡ J̄

K̄ ≡ J̄
eqkind/trans

B. Transliteration
M ⇐ A↗ M̄

R⇒ base(P )↗ M̄

at(R)⇐ base(P )↗ M̄
convert/at

A⇐ type↗ Ā
x:A `M ⇐ B ↗ M̄

λx.M ⇐ Πx:A.B ↗ λx:Ā.M̄
convert/lam

R⇒ A↗ M̄

c : A ∈ Σ
c⇒ A↗ c̄

convert/const

x:A ∈ Γ
x⇒ A↗ x̄

convert/var

R⇒ Πx:A.B ↗ M̄ N ⇐ A↗ N̄ [N/x]B is B′

(R N)⇒ B′ ↗ (M̄ N̄)
convert/app

A⇐ K ↗ Ā

P ⇒ type↗ A

base(P )⇐ type↗ Ā
tpconvert/base

A⇐ type↗ Ā
x:A ` B ⇐ type↗ B̄

Πx:A.B ⇐ type↗ Πx:Ā.B̄
tpconvert/pi

A⇐ type↗ Ā x:A ` B ⇐ K ↗ B̄

λx:A.B ⇐ Πx:A.K ↗ λx:Ā.B̄
tpconvert/lam

P ⇒ K ↗ Ā

a : K ∈ Σ
a⇒ K ↗ ā

atpconvert/const

P ⇒ Πx:A.K ↗ Ā
M ⇐ A↗ M̄ [M/x]K is K′

(P M)⇒ K′ ↗ (Ā M̄)
atpconvert/app

K ↗ K̄

type↗ type
kconvert/type

A : type↗ Ā x:A ` K ↗ K̄

Πx:A.K ↗ Πx:Ā.K̄
kconvert/pi


