
Rule-Based Interactive Fiction (Full Presentation)

Chris R. Martens Zachary A. Sparks Claire E. Alvis William E. Byrd

Carnegie Mellon University, Indiana University

{cmartens}@cs.cmu.edu,{zasparks,calvis,webyrd}@cs.indiana.edu

1. Interactive Fiction

Interactive fiction (hereafter IF) is a genre of game in which
players interact in a text loop not unlike a REPL [7]. The
game provides a prompt, the player enters a command, and
the game responds with the next prompt, possibly changing
some internal state.

Typically, the game’s state includes a map of a physical
space that the player navigates with directional commands.
The space consists of connected rooms, and within the
rooms are objects and characters that the player can interact
with, e.g. by looking around, examining something, taking
something, or talking to someone. The player also typically
has an inventory to store taken objects, which can be used
in various ways.

The author of a piece of interactive fiction is tasked
with describing a rich setting and anticipating the player’s
actions. With each new interactable object introduced, the
space of game play explodes combinatorially. Of course, in
order for the game to feel interactive, we cannot anticipate
and script a response to every action; we need to set up
simple rules that emergently generate game content. (In the
game design world, this notion of generativity is referred
to as procedural.) Most frameworks for writing interactive
fiction deal with this combinatorial explosion by establishing
broad defaults for every command; the IF author needs only
to override default game responses to selected actions upon
a new object she introduces.

A key challenge in language design for any kind of game
programming is enabling such a rich space of possible games
that feel generative and interactive rather than canned. IF
in particular is a ripe domain for programming languages
research because it introduces the richness of game design
without the extra cruft of rendering. Everything is a turn-
based, discrete state transition. We can imagine turning this
crank on an extralinguistic interpreter; the language, then,
need only be for specifying game logic. A programming lan-
guage for interactive fiction could easily extend to prototyp-
ing games with fancier rendering systems, and indeed some
like-minded game programmers have done this [11].

The majority of IF has been developed in the systems
Inform [8], TADS, and ADRIFT. The authors of this work
are primarily familiar with Inform, specifically Inform7. In
Inform7, the author specifies game behavior by matching on
a player action (possibly guarded by some condition) and
specifying a state change. We hope to base our design on
this idea but using concepts from logic programming and
substructural logics to make games easier to specify and
reason about.

What follows is a sketch of ideas for describing pieces
of interactive fiction as sets of rules and some speculation
towards using such descriptions as a programming language.

2. Logic Programming and IF

In functional programming, we like to think of propositions
as types and proofs as programs. In what the authors coin
the Miller Correspondence [6], logic programs correspond to
propositions and traces correspond to proofs. If we want to
write a game as an interactive logic program, then running
that program (playing that game) should somehow corre-
spond to interactive proof search, or interactive theorem
proving, not terribly unlike what many PL researchers do
regularly in systems like Coq, Isabelle, and Agda. Important
questions to ask in ITP come up in IF as well: at what point
should reasoning be filled in automatically? What proof
strategy should that automatic reasoning employ? In the
talk we will argue that the proof theoretic ideas of forward
chaining and left focus play a key role in the IF setting.

A logic program is a set of initial facts (typically general
and hypothetical) from which new facts can be generated
and queries on the space of facts can be made. It can be
viewed as an inference system and its execution as proof
search.

As a small example, consider the following Prolog [2]
program to find paths between nodes in a graph:

path X X.
path X Z :- edge X Y, path Y Z.

Each block of code preceding a period is a clause of the pro-
gram, and the capital-letter variables are implicitly univer-
sally quantified. The logical interpretation of this program
is one in which there are atomic predicates path(-,-) and
edge(-,-), and two axiomatic propositions,

∀x.path(x, x)

and

∀x, y, z.edge(x, y) ∧ path(y, z) ⊃ path(x, z)

We can create a graph by adding an additional clause for
each edge (with lowercase identifiers for specific nodes), then
run a query such as path a X to get the set of all the nodes
reachable from a. The execution of that program resembles
constructing derivations of facts like path a b from rules in
the program along with its core rules for implication and
quantification.

We can imagine beginning to design a world with the ba-
sic logic programming toolset: we would introduce predicates
(or types) for each kind of thing in the world, like rooms
and objects and people, and we could write predicates like
visible to determine whether the player can see an object.
But as soon as we want to talk about state change, standard
logic programming fails us. For example, if we want to turn
off a light, the visibility of certain objects goes away—but
treating the action as an ordinary implication, the old facts

1

stay around. Ordinary propositional logics (such as the basis
of Prolog) are monotonic: learning new facts can never erase
old ones. This brings us to linear logic.

3. Linear Logic Programming

Linear logic [4] lets us reason locally about state. Hypotheses
must be used exactly once, though they can be reordered.
For example, using ⊗ as linear conjunction and (as linear
implication, the proposition A ⊗ B (B ⊗ A is derivable,
but neither A⊗B (A nor A(A⊗A is derivable.

A minimal example of an interactable object encoded as
a linear logic program is toggling a switch:

flip on off.
flip off on.
toggle : sw v * flip v u -o sw u.

Implicitly, we have two contexts: δ, the ephemeral context,
is where we put resources that can be consumed, whereas
Γ, the persistent context, is where we put facts such as the
rules defined above.

Supposing a distinguished proposition end, a standard
linear sequent calculus for DILL (linear logic with !), and a
desire to toggle the switch from on to off, we could construct
the following derivation corresponding to a trace of the
program:

Γ; sw on −→ sw on Γ; · −→ flip on off

Γ; sw on −→ (sw on)⊗ (flip on off)

.

..
Γ; sw off −→ end

Γ; ∆, sw on, (sw on)⊗ (flip on off) (sw off −→ end

Γ; ∆, sw on, ∀(v, u).((sw v)⊗ (flip v u) (sw u) −→ end

Γ; ∆, sw on −→ end

The unfinished derivation is the continuation of the program
after toggling the switch. It represents a new choice point in
the program where the human part of the interactive theo-
rem prover could select a persistent rule from Γ. Supposing
we had many switches, levers, and knobs, this component of
choice could be a lot like a gameplay interaction.

3.1 Known issues

An important aspect of this problem arises when you want
to add persistently learnable facts over ephemeral facts. In
the previous section, we mentioned the possibility of having
a visibility predicate, which is clearly ephemeral but which
we may wish to use as a precondition to a rule without
consuming it. In the talk we may go into further detail.

4. Defeasible Logic

Another weakness of vanilla logic programming is its inabil-
ity to easily reason about exceptions to rules. A simple ex-
ample is when determining whether or not a room is well-lit.
By default, a room is lit, unless the lights are out, unless the
player has a flashlight, unless the flashlight broke, unless the
player fixed it...the list goes on and on.

Some of these are subsumed by linear logic, but linear
logic still does not provide a general account of writing rules
and their exceptions. For this, we need a different logic,
called defeasible logic [9, 2], which innately allows reasoning
about exceptions to rules.

For example, suppose we have a simpler case of the above
example, in which a room is lit by default, unless the lights

are out, unless the player has a flashlight. We could write
this in d-Prolog as follows:

RD : {isRoom(X)} => lit(X).
RL : dark(X) => ~lit(X).
RF : {inRoom(X), has(flashlight)} => lit(X).

RF > RL.
RL > RD.

Each of the three rules indicates one of these cases. In
addition to the rules themselves, we define an ordering on the
rules stating their precedence. Intuitively, the lights being
out in a room override their default illuminated status, and
having a flashlight should illuminate the room even if the
lights are out. Defeasible logic is a clean and elegant way of
specifying rules such as these (and more complicated ones).
It remains to be seen whether or not it would be subsumed
by linear logic, but either way, this is a use case that we
want to understand more thoroughly.

Acknowledgments

We thank Andrew “Zarf” Plotkin for his original presenta-
tion on rule-based interactive fiction, for his participation
in the Iron Geek Language Design experiment, and for pro-
viding IF examples for testing our language design. We also
thank Chung-chieh Shan for introducing us to both Andrew
and this research problem, and for suggesting the use of
defeasible logic in interactive fiction. Donald Nute has gra-
ciously answered our questions about defeasible logic and
d-Prolog. We thank Cassie Orr and Doug Orleans for their
enthusiastic participation in the Iron Geek Language Design
marathon.

References
[1] Apt, K. R. Principles of Constraint Programming.

Cambridge University Press, 2003.

[2] Covington, M. A., Nute, D., and Vellino, A. Prolog
programming in depth. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1997.

[3] Friedman, D. P., Byrd, W. E., and Kiselyov, O. The
Reasoned Schemer. The MIT Press, 2005.

[4] Girard, J.-Y. Linear logic. Theor. Comput. Sci. 50 (1987),
1–102.

[5] Marriott, K., and Stuckey, P. J. Programming with
Constraints. An Introduction. The MIT Press, 1998.

[6] Miller, D. Proof search foundations for logic programming.
http://www.lix.polytechnique.fr/Labo/Dale.Miller/
papers/wollic03.pdf, July 2003.

[7] Montfort, N. Twisty Little Passages: An Approach to
Interactive Fiction. MIT Press, Cambridge, MA, USA,
2004.

[8] Nelson, G. Natural language, semantic analysis and
interactive fiction. In IF Theory. Apr. 2005.

[9] Nute, D. Defeasible logic. Oxford University Press, Inc.,
New York, NY, USA, 1994, pp. 353–395.

[10] Plotkin, A. Rule-based programming. http://eblong.
com/zarf/rule-language.html, June 2010.

[11] Smith, A. M. You have to mine the ore. http://eis-blog.
ucsc.edu/2009/06/you-have-to-mine-the-ore/, June
2009.

2

