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Abstract

Narrative generation enables a range of opportunities
for understanding the creative act of storytelling.
Prior approaches have mostly converged on a pipeline
model, wherein story structure is generated as a
precursor to discourse structure, mapping individual
story events to discourse elements. This model,
however, unnecessarily limits narrative possibilities,
which most prior work avoids by implicitly assuming
a textual output medium.

We investigate a new generation approach that treats
discourse as primary, using comic generation as a
testbed. Our approach is based on leading discourse
theories for comics by McCloud (panel transitions) and
Cohn (narrative grammar). Rather than rearranging pre-
existing panels, we generate panel contents based on
notions of relatedness supported by cognitive theories
of visual language. We present a proof-of-concept
generator with a wide range of abstract comic output,
a computational realization of McCloud’s and Cohn’s
comics theories, and a modular algorithm that affords
the evaluation of visual discourse theories.

Introduction

The computational generation of stories (hereafter narrative
generation) is an enterprise that can help us understand one
of the most creative aspects of human intelligence (Boyd
2009): reasoning about possible and impossible worlds, and
weaving narratives around our daily lives (Herman 2013).

Historically, narrative generation has followed what
Ronfard and Szilas (2014) term the pipeline model: a
narrative artifact is computationally generated by first
simulating the story world as a collection of events, and
then piping the story world information to a discourse
generator, which generates a selective presentation of story
world events in a particular medium. While we defer our
discussion of related work until a later section, a great deal
of existing work in the computational creativity community
has primarily pursued this pipeline model for narrative
generation (Gervas 2009).

As Ronfard and Szilas argue, the pipeline model is neither
necessary nor sufficient for narrative generation. Authors
intentionally design their narratives to affect audiences
in specific ways (Chatman 1980; Bordwell 1989), which
involves reasoning beyond what is communicated (the
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underlying story world) but rather how it is communicated.
It is unnecessary to simulate an aspect of the narrative
universe that is never communicated to the audience, if
it does not inform the ultimate delivery of the narrative
artifact. It is also insufficient to reason about the story
and discourse constituents independent of each other,
because the characteristics of a discourse realization shape
the stories that can be told in that medium (Herman
2004). Constraining the generation process to the pipeline
model unnecessarily restricts how creative the generator
can ultimately be, since story world commitments are not
revisited when generating discourse. Further, as will be
detailed later, narrative authorship depends on audiences
being able to fill in the gaps left open in the consumption
of a story (Saraceni 2016; Magliano et al. 2016).

Most prior work that uses the pipeline model implicitly
assumes text, or spoken verbal language, as the output
generation medium, which allows the pipeline model to
avoid some of its limitations by baking medium assumptions
into the story model. For example, narrative generators can
model updates to internal character state, such as emotion
or knowledge change, which can simply be described in
text. Communicating those occurrences visually poses a
significantly greater challenge. Thus, we propose a simple
kind of visual narrative as a testbed for discourse generation:
wordless comics. Comics are a relatively unexplored
domain of computational narratology (Mani 2012), and they
present a wide range of expressive opportunities not afforded
by text.

Our work represents a departure from the pipeline
model, discourse-driven approach to narrative generation,
for generating comics. In this model, the story world
is only simulated inasmuch as is necessary to support
the telling of story events in the discourse; that is, we
have a notion of temporal ordering and account for which
actants have previously appeared. We present a small-
scale computational system (Montfort and Fedorova 2012)
to generate comics as a proof-of-concept for our approach.

In the remainder of this paper, we discuss theoretical
aspects of comic writing, our computational implementation
of a comic generation system, and our experience with the
refinement of our model. Our primary takeaway is that both
global and local reasoning are important aspects of narrative
generation: local reasoning is important for maintaining



narrative coherence, and global reasoning is important for
maintaining satisfying narrative structure. Both are thus
important parts of creating comprehensible comics, and we
present an outline of future work designed to explore the
human interpretation of our generated artifacts.

On Generating Comics

Skilled authors convey their stories with knowledge of
how information is likely to be processed by an audi-
ence. Readers learn to optimize their consumption of
relevant information (Pirolli 2007), and work to construct
inferences (Magliano et al. 2016) about story content
in the liminal spaces of discourse (in between sentences
in text, panels in comics, scenes in film); inferences for
story content are constructed when they are needed for
comprehension, and enabled by what has been narrated thus
far (Myers, Shinjo, and Duffy 1987). All told, the dynamic
between story authors and audiences parallels the dynamics
of people engaged in cooperative conversation as outlined by
the philosopher of language Grice (1975): the storyteller, as
the active contributor to the ongoing communicative context,
is expected to make her contributions to the discourse based
on what is relevant to her narrative intent. As Murray (2011)
states:

In a mature medium nothing happens, nothing is
brought on stage (or screen or comic book panel or
described in prose) that does not in some way further
the action. Whatever the viewer is invited to direct
attention to is something that further defines the role
([of a] character) or the function (dramatic beat).

These expectations give rise to narrative devices such as
Chekhov’s gun, wherein narrative elements are introduced
because they are relevant, and they ultimately demonstrate
their relevance at some point in the story. Narrative authors
can at the same time flout this expectation of cooperativity
in service of a counterpart narrative device, the red herring,
wherein a story element is introduced and which ultimately
has no relevance to the unfolding story.

Thus, for the enterprise of computational narratology,
it seems prudent to encode the constraints and effects of
narrative discourse, since (as the primary point of contact
with the narrative artifact) narrative discourse carries with
it expectations and conventions that ultimately affect how
story consumers understand the narrative. While we
acknowledge that coherent story structure is important for
comprehension (Graesser, Olde, and Klettke 2002), the
audience recovers that structure only insofar as it is afforded
by the discourse structure.

Purely visual comics, or sequences of visual imagery
arranged in panels, present an excellent avenue along which
to study discourse theories computationally. The same
principles apply: comprehensible comics lack visual clutter,
and differences across the gutters (gaps between panels) are
designed to be filled in by an audience’s inference. These
principles, as well as notions of brevity, relatedness, and
other principles of cooperative narration, manifest in terms
of discrete particles that are easily recognized and generated
by computer programs.

Relatedness
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Figure 1: The spectrum of relatedness as discussed by
Saraceni (2016). Relatedness indicates how comic panels
are connected or associated in the minds of readers,
spanning from textual factors to cognitive factors. Along
that spectrum, there are three distinguished categories of
relatedness: repetition, collocation, and closure, which
have demonstrably different effects on the construction of
narrative mental models.

Comics are structurally similar to written text (Saraceni
2016): they are both made up of individual elements
(sentences in text, panels in comics), delimited by special-
purpose symbols (full stops in text, panel borders in comics),
which can be easily identified, and which can contain a
variable amount of information. However, unlike text,
comics afford an additional pictorial dimension through
which to express information via a palette of visual elements
and their spatial relationships to one another, e.g. their
relative size, rotation, horizontal and vertical juxtaposition,
and distance. While in general comics offer two dimensions
of authorship affordances (textual and visual language),
in this work we are concerned only with the pictorial
dimension. Saraceni describes three notions of relatedness
between comic elements. Relatedness, a property of a comic
that indicates how its panels are connected or associated,
depends on a comic’s cohesion — the lexico-grammatical
features that tie panels together — and coherence — the
audience’s perception of how individual panels contribute
to her mental model of the unfolding events. Relatedness
emerges from a spectrum of fextual' factors to cognitive
factors, illustrated in Figure 1. Saraceni distinguishes three
categories of relatedness. Closer to the textual end of
the spectrum is the repetition of visual elements across
panels. Beyond repetition is collocation, which refers to
an audience’s expectation that related visual elements will
appear given the ones that have been perceived. Closer
to the cognitive end of the spectrum is the closure over
comic elements, which refers to the way our minds complete
narrative material given to us. Closure is terminologically
borrowed from the field of visual cognition, but is intended
as the mental process of inference that occurs as part of an
audience’s search for meaning (Gerrig and Bernardo 1994).

In Figure 2, we see a comic that depends on the three
aforementioned aspects of relatedness: first, repetition of
the stove and pot is used to maintain cohesion across

"Textual here does not mean the use of actual text, but rather is
a shorthand for surface code (Zwaan and Radvansky 1998).



7?

Figure 2: Strip #1639 of XKCD, © Randall Munroe. This
comic depends on three aspects of relatedness as described
by Saraceni (2016), and as illustrated in Figure 1.

panels. Second, the punchline of the comic depends on
collocation in the sense that we expect “sugar” to come
in small measurements, based on non-grammatical domain
knowledge. Finally, the comic depends on closure in that
we expect the audience to infer several things: that before
the start of the comic, the character had been following a
recipe; that the character went to retrieve the boxes of sugar
between panels 3 and 4; and that the character intends to add
sugar to the pot.

In our work we sought to develop a small scale
computational model, and thus focused primarily on
modeling discourse structure which lies on the textual side
of the spectrum. However, our discourse model includes a
minimal model of story, which is needed in order to account
for some elements of the cognitive side of the spectrum:
in particular, we assume chronological ordering between
panels and track which visual elements have appeared
previously in the panel sequence. We developed two
computational models of discourse structure: one based
on McCloud’s (1993) account of transition types, and the
other based on Cohn’s (2013) theory of visual language.

System Description

Our approach to generating visual narratives begins as a
linear process that selects next comic panels based on the
contents of previous panels, choosing randomly among
indistinguishably-valid choices. The concepts we represent
formally are transitions, frames, and visual elements,
which we define below. There are two levels on which
to make sense of these terms: the symbolic level, i.e.
the intermediate, human-readable program datastructures
representing a comic, and the rendered level, designed to
be consumed by human visual perception.

A visual element (VE) is a unique identifier from an
infinite set, each of which is possible to map to a distinct
visual representation. We do not explicitly tag visual
elements with their roles in the narrative, such as characters,
props, or scenery, making the symbolic representation
agnostic to which of these narrative interpretations will
apply. In the visual rendering, of course, our representation
choices will influence readers’ interpretation of VEs’
narrative roles.

A frame is a panel template; at the symbolic level, it
includes an identifier or set of tags and a minimum number
of required visual elements. The reason a frame specifies

a minimum number of VEs is to allow for augmentation
of the frame with pre-existing elements: for example,
the monologue frame requires at least one visual element,
indicating a single, central focal point, but other visual
elements may be included as bystanding characters or
scenery elements. At the rendering level, a frame includes
instructions for where in the panel to place supplied visual
elements. A panel is a frame instantiated by specific visual
elements.

Finally, a transition is a specification for how a panel
should be formed as the next panel in a sequence, which
we describe formally below.

Transition types were first described by McCloud (1993)
as a means of analyzing comics. He gave an account of
transitions including moment-to-moment, subject-to-subject,
and aspect-to-aspect, referring to changes in temporal state,
focal subjects, and spatial point-of-view. As Cohn (2013,
Chapter 4) points out, these transition types are highly
contextual; they presume the audience has a semantic model
of the story world in which the comic takes place. For
the sake of computational generation, we derived a more
syntactic notion of transition defined purely in terms of
frames and (abstract) visual elements. For example, while
McCloud could refer to an action-to-action transition as
one where a character is depicted carrying out two distinct
actions, we have no notion of character and action, so
instead must refer to which visual elements appear and in
which frame. The rendering of a frame itself may position
VEs in such a way that an audience would read certain
actions or meaning into it; however, this kind of audience
interpretation is not modeled to inform generation.

Formal Transition Types

We introduce six formal transition types: moment, add,
subtract, meanwhile, and rendez-vous, each of which
specifies how a next panel should be constructed given the
prior sequence.

e Moment transitions retain the same set of VEs as the
previous panel, changing only the frame.

e Add transitions introduce a VE that didn’t appear in the
previous panel, but might have appeared earlier (or might
be completely new). A new frame may be selected.

e Subtract transitions remove a VE from the previous panel
and potentially choose a new frame.

e Meanwhile transitions select a new frame and show only
VEs that did not appear in the previous panel, potentially
generating new VEs.

e Rendez-vous transitions select a random subset of
previously-appearing VEs (from anywhere in the se-
quence) and selects a new frame to accommodate them.

Implementation

Our generator accepts as inputs length constraints (minimum
and maximum) and a number of VEs to start with in the
first panel. Its output is a sequence of panels (frame names
and VE sets) together with a record of the transitions that
connect them.
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Figure 3: Example of generator output. While the narrative
here is ambigious, we read several things into it: the
repetition of the grey (largest) rectangle in every frame
suggests it as a focal point, and the sudden appearance of the
pink (smallest) rectangle suggests an interloper removing
the grey rectangle from its initial context (established by the
blue rectangle and yellow circle). Together with the names
of the frames (reported in symbolic form above the comic),
we can read the sequence as follows: the grey rectangle
whispers to the blue rectangle, then is carried off by a pink
rectangle, who whispers to the grey rectangle and then aids
the grey rectangle.

The generation algorithm is:

1. Generate transition sequence by choosing transitions
uniformly at random, constrained by supplied minimum
and maximum length.

2. Generate unique identifiers matching the number of
specified starting VEs.

3. Feed transition sequence and starting VEs to the panel
sequencer, which selects a next frame and VE set for
each new panel based on each transition type’s definition
(described above). Generate new VEs when necessary,
updating the running pool of previously-used VEs at each
iteration.

We implemented this algorithm in OCaml and addi-
tionally implemented a front-end, a web-based renderer
(not linked here for anonymous review). The renderer
assigns each frame type to a set of coordinates given by
percentage of the vertical and horizontal panel size, and
then renders panels by placing visual elements at those
coordinates. Visual elements are represented by randomly
generated combinations of size, shape (circle or rectangle),
and color. An example of the generator’s output can be seen
in Figure 3.

Constraining Generation with Cohn Grammars

Generating random transition sequences may result in
nonsensical output, such as ending a comic with a
meanwhile frame in which completely new visual elements
are introduced at the end of the comic, but not connected to
previous elements; see Figure 4 for an example.

In an attempt to understand the global structure of
comic panel sequences, Cohn (2016) and his colleagues
investigate the linguistic structure of visual narratives.
They claim that understandable comics follow a grammar
that organizes its global structure. Instead of transition

Figure 4: Example of underconstrained output. The
final panel does not maintain relatedness to the preceding
sequence.

types, Cohn’s grammar of comics consists of grammatical
categories (analogous to nouns, verbs, and so on) indicating
the role that each panel plays in the narrative. These
categories are establisher, initial, prolongation, peak,
and release, which allow the formation of standard
narrative patterns including the Western dramatic arc of
initial — peak — release. Formally, Cohn gives the following
grammar as a general template for comic “sentences,” or
well-formed arcs:

(Establisher) — (Initial (Prolongation)) — Peak — (Release)
Symbols in parentheses are optional. In our expression of
this grammar (and in several of Cohn’s examples), we also
assume that prolongations may occur arbitrarily many times
in sequence.

Grossman built a generator based purely on Cohn’s arc
grammar,” picking hand-annotated panels for each of an
initial, peak, and release slot in the comic. However, this
generation scheme does not manipulate the internal structure
of the comic panels, allowing for less variability in the
output than our scheme with visual elements and frames.
Additionally, codifying the syntactic structure of individual
panels allows us to characterize relatedness between panels
as described by Saraceni (2016). In our second iteration
of the generator, we combine two approaches to discourse,
using global Cohn grammars to guide the local selection of
syntactically-defined transitions.

In particular, we enumerate every possible category
bigram in Cohn’s grammar, such as initial to prolongation,
prolongation to peak, and so on, and describe sets of
transition types that could plausibly model the relationship.
This mapping is given below:

Establisher Initial {Moment, Subtract, Add, RendezVous}
Establisher Prolongation ~ {Moment, Subtract, Add}

Establisher Peak {Add, Meanwhile}

Initial Prolongation ~ {Moment, Subtract, Add}

Prolongation  Prolongation ~ {Moment, Subtract, Add}

{Subtract, Add, RendezVous }

{Subtract, Add, Meanwhile, RendezVous }
{Subtract, Add, RendezVous }

Prolongation ~ Peak

Initial Peak
Peak Release
This particular mapping is guided by our intuition
rather than any kind of systematic symbolic reasoning—
we aim to rule out obvious-seeming syntactic errors, e.g.

nttp://www.suzigrossman.com/fineart/
conceptual/Sunday_Comics_Scrambler



"sequence": [ [ "Establisher” ], [ "Initial® ], [ "Peak” ], [ "Release” ] 1,
"comic": [

[ { "name": "blank", "elements": [ 1, 2, 3, 4 ] }, [ "Momenmt" ] ],

[ { "name": "whisper", "elements": [ 1, 2, 3, 4 ] }, [ "Meanwhile" ] ],

[ { "name": "dialog", "elements": [ 6, 5 ] }, [ "RendezVous" ] ],

[ { "name": "aid", "elements": [ 4, 3, 1, 2 ] }, [ "End" ] ]

Figure 5: Example of grammatically-constrained output.
This example shows a common pattern in grammatically-
constrained output, introducing a new visual element with
a Meanwhile transition for the peak, then releasing with a
Rendez-vous.

Figure 6: Example of grammatically-constrained output
illustrating a longer sequence with just three visual
elements. Potential narrative readings include the green
circle throwing the smaller red circle; the larger red circle
can be seen as a different entity or as the extension of the
smaller one. The peak of this arc is the second-to-last panel.

a meanwhile transition at the end of an arc, but other
constraints are not so easily expressed. For instance, perhaps
a prolongation should be realized as a repetition of the
previous transition, but this information is not available
in the bigram model. In future work, we would like to
refine the theoretical grounding of the relationship between
transitions and grammatical categories.

With this mapping established, we randomly generate
an instance of the arc grammar and populate it with an
appropriate set of transitions, after which point we simply
hook the transition sequence up to the same panel selector
from before.

Examples of the constrained generator’s output can be
found in Figures 5 and 6.

Related Work

As discussed in the Introduction, the pipeline model of
narrative generation has been the dominant paradigm to
narrative generation. In this section we review some

exemplars of that model, with special focus on systems
that have been covered in the computational creativity
community.

Guerrero Romdn and Pérez y Pérez (2014) developed
a nuanced computational model of social norms to drive
the interaction of characters in the simulation of the story
world. Their work defers the development of the main
plot to MEXICA (Pérez y Pérez and Sharples 2001),
a computational implementation of a cognitively-oriented
account of writing. However MEXICA itself is primarily a
story-level reasoner, since it leaves unspecified how the story
structures that it generates via computational engagement
and reflection are realized into narrative text.

While MEXICA itself follows the pipeline model
of narrative generation, its engagement—reflection (E-R)
model of authorship is relevant to our work. The E-R
cycle represents a tandem-process model, which is similar
to our account of discourse reasoning. In MEXICA,
the plot elaboration component (the engagement phase)
is responsible for constructing an initial story framework,
which is refined by a critic (the reflection phase). In
our work, the discourse elaboration component (the local
reasoner) is responsible for constructing an initial discourse
structure, which is refined by a critic (the global reasoner).
Further, the E-R cycle is a cognitively-oriented narrative
generation process; Pérez y Pérez and Sharples leveraged
information on how humans cognitively engage with the
narrative authorship process in order to inform their system
design. In our work, we too took a cognitive orientation by
looking at how humans parse comic discourse structure to
inform the design of our comic discourse generator.

Montfort et al. (2013) developed a blackboard archi-
tecture called Slant for story generation that integrates
several different sub-components systems to generate a
story. While the system’s architecture is primarily dedicated
to the specification and refinement of rules to generate
plot structure, Slant does include a sub-component called
Verso, which reasons over narrative discourse as a way to
further constrain the narrative plot. In particular, Verso
detects aspects of the verbs used during the generation
of plot structure, and determines the in-progress story’s
match to a specific genre.> Once a specific genre has
been identified, Verso poses additional constraints to the
plot generator via the Slant blackboard. Slant is thus
not strictly a pipeline model architecture, but unfortunately
the constraints identified during discourse reasoning cannot
themselves inform further discourse reasoning. In our
approach, we hope to identify discourse-driven narrative
generation that informs or constrains both the generation
of the underlying plot structure, as well as the further
generation of narrative discourse.

Most relevant to the work we pursue here is the work
by Pérez y Pérez, Morales, and Rodriguez (2012), who
developed a visual illustrator to their MEXICA system.
They sought to verify the degree to which their 3-panel

3Verso’s operationalization of genre differs from the literary
sense of the term, but a full discussion of this is beyond the scope
of our work.



comic generator elicited in readers the same sense of
story as a textual realization of the same MEXICA-
generated plot.  While this system still follows the
pipeline model of narrative generation, we see their
work as complementary: they developed an experiment
methodology through which it is possible to empirically
assess if their palette of designed visual elements denote
story concepts as intended. Future work in discourse-
driven comic generation will have to address this point
going forward, and Pérez y Pérez, Morales, and Rodriguez
provide a step toward understanding the gap between story
concepts and the computational symbols meant to encode
them. A potential improvement to their system that the
authors identify as most important was: “to provide the
Visual Narrator with mechanisms that allow more freedom
during the composition process” (Pérez y Pérez, Morales,
and Rodriguez 2012). Our work here aims to provide just
that.

Future Work

There are three main avenues that we would like to explore
to further develop this work: refining our discourse model,
expanding the system’s expressivity, and evaluating the
generator.

First, while our interpretation serves as a promising proof-
of-concept for concretely interpreting theories of panel
relatedness and visual grammar, we have identified a few
limitations of our specific implementation choices. First
of all, our choice to represent a panel as a frame and,
independently, a set of VEs, means that VEs’ relationship to
the frame, or a VE’s role in prior frames, is not available or
manipulable. By analogy with textual and verbal language,
if a panel is analogous to a sentence, then we have grammar
at the paragraph (narrative arc) level, but not at the sentence
level. Second, our choice to generate a transition sequence
constrained by a grammar and then feed the transitions to a
panel generator, itself a kind of pipeline model, means that
the panel generator cannot reflect on the grammatical role of
panels to guide its selection.

In a second iteration of the project, we would make the
following changes:

e Use linguistic theories to generate panel internals by
assigning grammatical roles to VEs that pertain to their
visual rendering (such as character, prop, or backdrop),
then use those roles consistently across panel sequences.

e On the visual rendering level, modify visual elements and
frame descriptions to reason over notions such as scaling,
zooming, backdrops, layers, and overlap among visual
elements. We intend to study theories of semantic scene
composition, such as (Zitnick and Parikh 2013), as a more
principled basis for panel generation.

e Reformulate transitions in terms of edits on previous
panels that they are meant to be related to, rather than
simply repeating VE sets. Constrain the choice of frame
as well.

The second avenue of future work is to extend the
system’s expressivity. Currently, our system cannot reason
about the following key aspects of comics:

e Text and images together, including captions and speech
bubbles

e Hierarchically structured comics, such as two-
dimensional panel arrays that need to have coherence
and cohesion at the level of panel rows, and multi-page
comics or graphic novels that need coherence and
cohesion at the level of comic pages.

e Interactive comics. The Storyteller # system in particular
suggests an intriguing basis for comic-based play in
which players select visual elements to populate a panel,
and a reasoning engine finds a frame that connects it
narratively to the panels on either side. Such a system
could also form the basis of a mixed-initiative comic
design tool.

Our third avenue of future work is to empirically evaluate
our system. We have several potential evaluation plans, each
investigating distinct hypotheses about our approach.

One candidate involves analyzing the style and variety of
our comic generator’s output; i.e. our system’s expressive
range (Smith and Whitehead 2010). For this, and as
suggested by Smith and Whitehead, we would need to
identify appropriate metrics for describing the generated
output, which “should be based on global properties .. .and
ideally should be emergent qualities from the point of
view of the generator”” A textually-focused candidate
metric is the number and type of transitions that are
generated on average in a large sample of generated
comics. A cognitively-focused candidate metric is the
average number of unique readings that an audience
comes up with for generated comics. Further, these
metrics should be evaluated in the context of the discourse
grammar’s cyclomatic complexity (McCabe 1976), which
in our case is low; such an analysis will yield insight
into the representational power that the grammar has for
generating narrative discourse, relative to the system’s
overall computational complexity.

Another candidate evaluation involves analyzing the level
of comprehension that our generated comics afford an
audience. While there has been work in understanding how
people read into narratives involving abstract shapes (e.g.
Heider and Simmel 1944), this evaluation would be
more concerned with whether the discourse categories (as
discussed by Cohn) that guide the selection of transitions
are recognizable by an audience during comprehension.
Cohn (2015) discusses a methodology through which panel
discourse categories can be analytically identified; this
analysis would ask whether comic panel categories can
be analytically identified by an audience when they are
intentionally selected by our generative system.

Conclusion

In this work we have presented a discourse-driven approach
to narrative generation in contrast to most existing work
within the computational creativity community, which has

*http://www.storyteller—game.com/p/
about-storyteller.html



primarily followed a pipelined approach. We initially de-
signed our system to pay attention to mostly textual factors
in comic discourse: the repetition of comic actants across the
narrative provides a minimal cohesive backbone on which
to pin comic understanding. However, as discussed, this
form of generation could generate non-sensical output (e.g.
ending comics with a meanwhile discourse transition). We
therefore appealed to more cognitively-oriented factors via
the theory of visual grammar, which helped structure the
output in a way that enables other senses of relatedness to
contribute to the output’s coherence. Thus, through our
small-scale system, we have begun to explore the scale and
limits of human story sense-making faculties, as well as
how they come to bear on narrative generation systems:
in our case, through both local and global procedures,
which inform cohesion and coherence, respectively. Our
algorithms and implementation offer a promising starting
point for the computational investigation of discourse-driven
narrative.

More broadly, our work highlights the importance of
looking to human cognition as a point of departure for
the design of narrative generators. Other scholars (e.g.
Gervas 2009, Szilas 2010) have argued the same point; our
system provides a computational system that demonstrates
it. Concretely, the reason for this is that humans bring
significant cognitive faculties to bear on the process of
narrative comprehension (Herman 2013). An instance of
this narrative intelligence is our unique ability to fill in
the blanks in the liminal spaces of discourse, which (at
least) relies on our focalized perspectives into the story
world (Genette 1983). As our generated comics show,
our narrative sense-making abilities allow us to intuit and
impose narrative structure on the sequence of depicted
images, due to how we fill in the blanks left unspecified in
our comics. Therefore, this mental process has a significant
role in our appreciation of the narrative artifact, and should
have an equally significant role in the generation of it.
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