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Abstract— Human workers and robots are two major work-
forces in modern factories. For safety reasons, they are sepa-
rated, which limits the productive potentials of both parties. It
is promising if we can combine human’s flexibility and robot’s
productivity in manufacturing. This paper investigates the
modeling and controller design method of workspace sharing
human-robot assembly teams and adopts a two-layer interaction
model between the human and the robot. In theoretical analysis,
enforcing invariance in a safe set guarantees safety. In imple-
mentation, an integrated method concerning online learning of
closed loop human behavior and receding horizon control in the
safe set is proposed. Simulation results in a 2D setup confirm
the safety and efficiency of the algorithm.

I. INTRODUCTION

In modern factories, human workers and robots are two
major workforces. For safety reasons, the two are separated
by metal cages. Robots focus on repetitive work, such as
machining, while human workers focus on delicate work,
such as assembly. As a result, in many car factories, final
assembly is still done extensively and expensively by hand.
People have been curious for a long time about the possibility
of bringing human workers and robots together in production
lines.

The potentials of human-robot teams can be huge and can
solve a lot of problems in current manufacturing. One obvi-
ous advantage is that human-robot teams can be introduced
in flexible assembly lines to take the advantage of human’s
flexibility and robot’s productivity. With human workers
doing flexible work and robots doing assistive work that is
repetitive or requiring high precision, the overall productivity
can be boosted.

Recently, several manufacturers including BMW and Volk-
swagen launched cooperative robots in their final assembly
lines [1], [2]. In the BMW’s factory in Spartanburg, South
Carolina, the robot co-operates with a human worker to
insulate and water-seal vehicle doors. The robot’s job is to
glue down the materials held by the human worker with his
agile fingers. Before the introduction of these robots, workers
must be rotated off this uncomfortable task after one hour or
two to prevent elbow strain. Meanwhile, the introduction of
cooperative robots also poses new challenges to the controller
design of the robots, since the robots should be made safe
to human workers and also efficient in finishing their own
tasks [3], [4].

In human-robot cooperated manufacturing, robots interact
with humans in two ways [4]: workspace sharing and time
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Fig. 1: Human robot cooperation on car assembly [4]

sharing. In a workspace sharing system, humans and robots
perform separate tasks. They can do their jobs on any time
horizon. In a time sharing system, humans and robots jointly
perform one task, as discussed in the case of BMW’s cooper-
ative robot. In this paper, the workspace sharing system will
be studied as it forms the basic interaction type in cooperative
robotics. One possible scenario is shown in Fig.1. During the
final assembly of a car, the robot (with 2 degrees of freedom)
picks and feeds large assembly parts for the human (we only
model one human worker in the analysis, for simplicity),
while the human picks the tools and delicate parts to do the
assembly. In this scenario, the robot needs to approach its
goal without interfering with the human. This problem will
be formalized in section III.

This paper focuses on the modeling and controller de-
sign method of cooperative robots working in a human-
involved environment. The biggest challenge comes from
human factors [3]. We can model the human either as a
cost minimizer [5] or as a stochastic agent [6]. However, the
human’s utility function or the probability distribution of his
behavior is hard to obtain for sophisticated problems. In this
paper, we just assume that human’s motion control law can
be linearized locally, which will be discussed in section IV.
Another challenge is the robot motion-planning in a dynamic
and uncertain environment. Usually, the motion-planning
problem is formulated as an optimization problem, having
the safety in the hard constraints [7]. The author of [8] pro-
posed a safety-oriented method to solve the motion-planning
problem by introducing a supervisory loop to locally modify
the reference trajectory once the safety constraint is violated.
The system is guaranteed to go back to the safe region in a
finite time. In this paper, the optimization approach and the
safety-oriented approach will be combined to guarantee both
safety and efficiency.

The remainder of this paper is organized as follows: In
section II, a workspace sharing cooperative robotics problem
is proposed. In section III, theoretical analysis concerning
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the safe set is presented. In section IV, an online learning
algorithm of human behavior, and a receding horizon control
algorithm constrained in the safe set are proposed. In section
V, the simulation results are presented.

II. WORKSPACE SHARING INTERACTION MODEL
A. Interaction Model

There are two agents in the system, a robot (denoted by
R) and a human (denoted by H). We consider a two-layer
interaction model as shown in Fig.2. Both the robot and
the human listen to a manager on a set of goals they need
to approach, i.e. mgr for the robot and 7y for the human.
Assume that the two agents share the knowledge of mxr and
7. In the decision making center, the robot and the human
decide which goal to go at current time (i.e. Gr(t), Gu(t))
based on their observations of each other. Then the robot
generates the control signal ug(t) to approach its goal, while
the human generates the control signal ug (t). The two-layer
control offers the robot more freedom to pursue safety and
efficiency during the interaction with the human.!

B. System Model

Both the robot and the human are dynamic systems. For
simplicity, we just model their kinematics. In the scenario
shown in Fig.1, we take eight states to describe the system
dynamics. Let the state x; be the robot’s x-position, o the
robot’s x-velocity, x3 the robot’s y-position, x4 the robot’s
y-velocity, x5 the human’s x-position, zg the human’s x-
velocity, 7 the human’s y-position, and zg the human’s
y-velocity. The robot and the human control their motion
through the accelerations, ur,uy € R? respectively. Thus,
we have the following state equations for the robot and the
human:

Arwr(t) + Brur(t) )]

AHJUH(t) + BHU,H(t) 2)
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I'There are time differences between the human and the robot in decision
making and control. However, in our approach, the robot is basically playing
reactive strategy to the human’s motion as discussed in section III and IV.
The time difference is not a significant issue from the robot’s point of view,
if the robot can update his belief of the human’s dynamics fast enough.

Let « = [z R, 2 p]. The system’s dynamic equation is:

-4 o] 2 ] 3, o

This is a two-agent system. The two agents share the same
interest in that they both want to stay in the safe region (i.e.
do not collide with each other). However, their goals are not
identical. So there are conflicts of interests that need to be
solved.

C. Observation Model

In the present model, we assume no communication and
the only information the robot and the human can get
is the measured system states. Suppose the robot has the
measurements as follows (the subscript represents the agent
being measured, the superscript represents the agent taking
the measurement):

yi(t) = xr(t)+vE(t) @)

yir(t) = xu(t)+ i) (5)
Symmetrically, the human has the measurements:

yir(t) = ar(t)+vg (1) (©)

yir(t) = wu(t) + o (t) (7)

H R  H R ;
where vp , vy, v, vy are the measurement noises assumed

to be zero-mean, Gaussian, white and independent to each
other. The measurements are to be used by the human and
the robot in their decision making and control process.

D. System Requirements

In order to be profitable for manufacturers and safe for
human workers, the system needs to satisfy several require-
ments. In this paper, we consider the following two: (1)
The system should always be safe; (2) The motion of the
cooperative robot should be efficient. Mathematically, the
first condition states that the control effort should make the
safe set invariant to the system. The second condition states
that the robot needs to do optimal control in that safe set.

III. THEORETICAL ANALYSIS
A. Geometry

Since the safety constraint is usually a geometric con-
straint, we consider the geometry first and define several
important quantities as follows. To start with, define the
relative state as

dx(t) = xzr(t) —xp(t) (8)

The relative distance vector is denoted by dyei(t) and the
relative velocity vector by vye(¢). Then the normed distance,
the dot product between the relative distance and the relative
velocity and the normed velocity are

l[deat(®)||? = da(t)T Prdx(t) ©)
drei(t) Veel(t) = dx(t)T Pyda(t) (10)
|[vrer(t)|[? da(t)T Psdx(t) (11)
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Define the scalar distance as d(t) = ||dyei(t)||- The first
and the second order derivatives of the scalar distance are
drel(t)'vrel(t)

d(t)
- [[Vrer(t)|* + drel(t)-arer(t)

) = aw -

d(t) (12)

(drel(t)'vrel(t))2
d3(t)

(13)
where arei(t) = ug(t) — ug(t). Thus the relative degree
from d(t) to the inputs ur(t),up(t) in the lie derivative
sense is two.

B. Geometric Invariance for the Safe Set

Suppose the state space of the system can be divided
into two sets, the safe set and the unsafe set. The safety
requirement is to make the safe set invariant.

We describe the safe set by introducing a safety index
¢ : X — R, which is a functional on the state space. The
system is considered safe if the safety index is non-positive,
i.e. the set X4 = {x : ¢ < 0} is safe. The control strategy
that enforces ¢(t) < 0 when ¢(t) > 0 will make the set
X, asymptotically stable and make it invariant if ¢(¢¢) < 0,
where ?g is the start time. The proof is straightforward using
Lyapunov theorem [8].

Now we have the tool to enforce invariance in the safe set.
The problem left is how to define the safety index. Intuitively,
one candidate for the safety index ¢ is

¢O(t) = dmin — d(t)

where d,,;, > 0 is the minimum acceptable distance between
the robot and the human. However, since the relative degree
from d(t) to ug(t) is two, it is hard to design controllers
in this set. We consider a new safety index with a velocity
term, and take quadratic form of d(t) to make small relative
distance even more undesirable.

where k4 > 0 is a constant to adjust the relative emphasis
between the velocity term and the distance term. Then we
have the following proposition. (The proof is shown in
Appendix.)

Proposition 1. The set defined by {d : ¢(t) < 0,Vt >
to,d(to) > dmin} is guaranteed to be a subset of the set
{d : d(t) > dmm,Vt > to}.

So the set of safe control is

(14)

15)

Ur(t) = {ur(t) : ¢(t) <0, when ¢(t) > 0}

Notice that ||dye1(t)||? = (z1—25)2+ (23 —27)2, dre1(t) Vrel (t)
El“l - 565))(x2 —x6) + (w3 — z7) (x4 — 8), |[Vrel (H)||? = (v2 — m6)?
T4 — x8)°.

(16)

+

This set is dependent on aye)(t), thus ug(t), since ¢(t)
has the following expression:

o(t) = —2d(t)d(t) — kydl(t)

In order to get a safe action set, the robot needs to predict
the human’s future states, which will be discussed in IV-B.

a7

IV. IMPLEMENTATION
A. Discretization of the Model

In the real world, information is sampled and control
inputs are decided at each time step. Thus the continuous
time model needs to be discretized. Taking the sampling
interval to be T, we have the following discrete time state
equations:

zr(k+1) = A%zr(k) + Blug(k) (18)
zgk+1) = AYag(k) + Bhug(k) (19)
where
T2
1 Ts O 0 -5 0
==\ 00V oo |
0 0 0 1 g ?

B. Online Learning Algorithm of the Human Behavior

We assume that human’s motion control law can be
linearly approximated locally. When observing the hu-
man’s behavior, the robot can run expectation maximization
(EM) algorithm to get the human’s closed loop dynamics.
Suppose the human’s motion control law is uy(k) =
fyH(k), yH(k), Gy (k)), which can be locally linearized as

up (k) = Kyl (k) + Koyt (k) + K3Gp (k) (20)

When the robot is learning the human behavior, it can only
estimate y# (k) and Gy (k) in (20) by its own measurement
yE(k) and inference GE (k) (derivation of G (k) will be
discussed in IV-D.1). Define u% (k) = [yE(k)T, GE(k)T]T.
Substituting (20) into (19) and considering (4) (6) (7), we
can have the closed loop dynamic equation of the human?:

i (k+1) = Ayxg(k) + Byuse (k) +wg (k) (21)

Equation (21) and (5) define a linear Gaussian system with
unknown parameters. In order to estimate the states and learn
the parameters, the robot can run online EM algorithm [9].
Define Zy(k|k — 1) to be the a priori estimate of zp (k)
and Zy(k|k) the a posteriori estimate of xp (k). Let the
parameter matrix be C'(k) = [A% (k), B%(k)], and the data
vector be (k) = [2L(k|k),u$(k)T]T. The online EM
algorithm can be set-up as shown below.

Expectation step:

sk + 1k) = C(k)w(k) (22)
gp(k+1k+1) = (1—a)du(k+1k) +ayf(k+1) (23)

3In (21), A%, = A% + B Ky, By = [B4 Ko, BEKs). wy (k) =
B K1vE (k) + B4 Ka(vE (k) — vE(k)) is Gaussian.
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Maximization step:

Clk+1) = Clk)+ek+1)0T(k)F(k+1) (24
ek+1) = agk+1k+1)—2gk+1]k) (25)
Flk+1) = 1[F(k)7F(k)¢(k) T(k)F ()](26)

A+ T (R)E(R)y (k)

In the E-step, (22) is the dynamic update, and (23) is
the measurement update. « is the filter gain. It represents
how much we trust the current measurement. Usually, «
is set to be the Kalman filter gain. However, since our
dynamic system is time-varying, we use constant gain to
ensure that we always incorporate the information from the
measurements. In the M-step, (24) is the parameter update
which depends on the estimation error € in (25) and the
learning gain F' in (26). A is the forgetting factor. Since
the human behavior is time-varying, we use the forgetting
factor to make the parameter adaptation algorithm active all
the time. Sometimes, the human will adapt to the robot’s
motion. Sometimes, when the human is occupied, he may not
pay attention to the robot’s motion. The only assumption we
make is that human does not change very fast. For a certain
period of time, his motion is consistent so that the control law
can be approximated by linear functions and learned online.

C. Set of Safe Control

In the discrete time, the set of safe control is different
from the one in the continuous case. Instead of constraining
the derivative of the safety index, we constrain the value of
the safety index in the next time step (which is a stronger
constraint), i.e.

Ugr(k) = {ugr(k) : p(k +1) < 0} (27)
where
pk+1) = —dz(k+ 1) Pydz(k +1)
dz(k + 1) Podz(k + 1) 28)

 dz(k + 1) Pyda(k + 1)

Equation (28) is the discrete time version of (15), except
that we take ky = 1 and D* > d2, to account for the
uncertainties from the state measurement and prediction. All
calculations in (27) depend on the relative state. At time step

k, the prediction of dx(k + 1) is

dz (k+1|k) = I (k) + Bhug (k) (29)

where I (k) = A%ig (k|k) — 2g (k + 1]k) and 2r(k|k) is
the estimate of z (k) using Kalman filter. Since the input
acceleration only has limited effect on the position vector, we
approximate B&ur (k) by Brur(k). By (29), the inequality
in (27) becomes:

217 (k)PyBrug(k) > D*/IT (k)P I(k)

— (IT(R)PUI(K))? — I7 (K)Pol (k) (30)

So the set of safe control Ug (k) is a half plane.

D. Algorithm in the Decision-Making Level

1) Inference on the Human’s Goal: Though the robot
knows g, it does not know the exact human goal at
the current time step. Assume the human is always facing
towards his goal. Then the likelihood of G € my being the
human’s current goal is inversely proportional to the time
needed to reach G given the human’s velocity component
that is pointing towards G ((9) divided by (10)). So the most
likely goal is:

Gg (k) = arg minGGTrH
(t = — Wi W=C)" Pulyji (k) -G)
(g (F)—G)T P2 (yf; (k)—G)
2) Goal Generation for the Robot: We generate goals for
the robot according to the distance to the goal, the robot’s
current velocity and the distance to the human. Equation (32)
is the goal generation equation. The first term in (32) is the
absolute value of the time needed to travel to the closest point
to the goal given the robot’s current velocity ((10) divided
by (11)). The time will become negative if the robot is going
away from the goal. In order to take into account of possible
goal point overshoot when the robot is trying to avoid the
human, we consider the absolute value of the calculated time
(i.e. it is still worthwhile to go back if the overshoot is small).
The second term evaluates the distance from the goal point
to the human in a preview window H,. If the human is
wandering around one of the goal points of the robot, the
robot will be less likely to go to that goal point. kg is a
constant to adjust the ratio between the two terms.
T]g2

Galk) kom0

(&m(ilk)=G)T PL(&u (ilk)~G)

>0} 31)

= argminger, Jo = |
ke~ T (32)

In order not to frequently change goals during operation, a
threshold is added, i.e. the robot can only change from G4
to Grew if (33) is satisfied for AJ > 0.

JG(Gnew) + AJ < JG(Gold)
E. Optimal Control

(33)

To make the robot approach the goal safely and efficiently,
we use receding horizon control with the preview horizon
H,.. The optimization problem is formulated as follows:

H,+ko
minJ = Y {uh(i)Rrur(i)
i=ko
+(zr(i) — Gr(i))" Qr(zr(i) — Gr(i)}
s.t. ur(ko) € Ur(ko); [ur(i)| < umaz, Vi (34)

The cost function is analogous to one in the standard linear
quadratic regulator (LQR) where Rr € R?*2, Qpr € R**4
are positive definite. kg is the current time step. The safety
requirement is put as a hard constraint while the efficiency
term is being optimized. Only the safety requirement at kg-
th time step is enforced. At the next time step, the robot
will solve this optimization again and the safety requirement
for (ko + 1)-th time step is then considered. w4, is the
maximum acceptable acceleration.
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Fig. 3: (a) Suboptimal solution; (b) Simulation environment

TABLE I: Parameters in the Simulation

Symbol Name Value
«@ Filter gain 0.8
Umax Maximum acceptable acceleration 10
A Forgetting factor 1 or 0.98
H, Preview horizon 5
Ts Sampling interval 0.1s
D* Safety threshold 10

V. SIMULATION

The simulation environment (20 x 20) is shown in Fig.3b.
Both the human and the robot are represented by circles of
radius 1, while the robot is in red and the human in blue. The
thin blue and the thin red circles are the goals for the human
and the robot respectively. They are randomly generated in
order to test the robot in different scenarios. The goals do
not have any order. When there are less than three goals for
an agent, new goals will be generated to keep the simulation
running. The human-robot team needs to reach as many goals
as possible without colliding with each other in a given time.

There are two simulation versions. One simulates the hu-
man behavior by computer (non-human involved simulation),
and the other directly reads the human input through a multi-
touch pad (human involved simulation). Under direct human
control, the human-robot team can clear 83 goals in 100s on
average, compared to 41 goals on average under simulated
human case. This shows that the human understands a way
to make the team operate more efficiently.

In the simulation, to make the calculation fast, we adopt
a suboptimal way in solving (34). We first calculate the
unconstrained optimal control input u.y¢, then map it to
the set of safe control. The final control input wugqfe is
marked in blue in Fig.3a. The calculation complexity is
greatly reduced in this case, while the performance is not
affected. The parameters in the simulation are shown in
Table.l. Animations are available in the accompanying video.

A. Non-Human Involved Simulation

1) Learning Performance: Fig.4 shows the learning per-
formance of the human behavior with and without a forget-
ting effect (A = 1 or 0.98). The simulated human changed
control law at £k = 500. The first plot is the learning
gain versus time, while the second and third plots are the
normed errors between the estimated and the true A} and B}

- — — —forgetting factor=1
Es /\’\A— forgetting factor=0.98
s
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Fig. 4: Learning performance under different forgetting fac-
tor with simulated human
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Fig. 5: Learning performance under A = 0.98 with human
control

matrices respectively. The learning gain is higher for smaller
forgetting factor. The estimation performance before the 500-
th time step is good in both cases. But the error convergence
rate is faster under A = 0.98 for £ > 500. Thus the EM
algorithm with a forgetting factor is a good learning tool of
time-varying behavior.

2) Safety Performance: Fig.6 shows the human-avoidance
behavior of the robot. At the starting point, the robot (red
circle) and the human (blue circle) were close to each other’s
goal. When the simulation started, the robot was not quite
sure how the human would behave. But the robot did slow
down when observing that the human was approaching, since
a large relative velocity towards each other violated the safety
constraint. Then the robot detoured a little bit. Just at the
moment the robot started to detour, the simulated human
started to approach his next goal. Thus the robot followed the
human in a safe distance and reached its goal successfully.

B. Human Involved Simulation

1) Learning Performance: Fig.5 shows the learning per-
formance with A = 0.98 under human control. The first plot
is the learning gain, while the second and third plots are the
norms of the learned A*(k) and B(k) matrices and their
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Fig. 7: Safety performance - human avoidance by changing goal point

updating amount at each time step. The estimated values are
consistent.

2) Safety Performance: Fig.7 shows the safety perfor-
mance when the human mistakenly stayed on one of the
robot’s goals. In this simulation, there are two goals for
the robot. At the starting point, the robot was to go to the
lower goal. Then the human occupied that goal unexpectedly.
The robot wandered around for a while. After learning that
the human would not move, the robot changed its goal to
the upper one and reached it successfully. This behavior
demonstrates the effectiveness of the safety measure at the
decision-making level.*

VI. CONLUSION

In this paper, we proposed a two-layer interaction model
for a workspace sharing human-robot team. The human’s
closed loop dynamics is linearized locally and learned by an
online EM algorithm. Motion control for the robot is done
in a dynamic safe set (dependent on the relative distance
and velocity). An integrated design method for the controller
and the decision-making center concerning inference on the
human’s goal, online learning of the human’s closed loop
behavior, optimal goal generation for the robot and receding
horizon control in the safe set were proposed. The validity
of the algorithm was confirmed by simulation. In the future,
this algorithm will be implemented on a real robot. Problems
such as sensor deficiency and multi-rate sensing and control
are to be solved.

APPENDIX

Proof of Proposition 1: Suppose the proposition statement
is not true. Thus U = {t : ¢(t) < 0,d(t) < dmin} is

4The robot may go to the upper goal directly if it has already learned
that the human would stay on the lower goal for a while. However, in
our simulation, the robot does not have the prior knowledge of the human
behavior. Thus we still consider the robot’s action as efficient.

not empty, which implies that 3o, s.t. d2,, — ksd(ta) <
d*(t) < d?,,. Since d is a continuous function of ¢,

F = d Y([d(t2),dmin]) N [to,t2] is a closed set in the
time horizon [to,t2]. Pick the largest connected set in F
containing t9, and denote it by T' = [t1, t3]. Thus d(t1)
dpmin, and d(t) < dpin, Yt € (t1,t2]. In order to satisfy
d(t) < 0, d(t) needs to satisfy d(t) > 0, ¥Vt € (t1,t5]. So
d(tz) = d(tr) + [*d(t)dt > d(t;) = dpin, which is a
contradiction. Thus 3'[d 2 @(t) < 0,Vt > to,d(tg) > dmint C
{d : d(t) > dmm,Vt > to}.
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