
Lecture Notes: Pointer Analysis

15-819O: Program Analysis (Spring 2016)
Claire Le Goues

clegoues@cs.cmu.edu

1 Motivation for Pointer Analysis

In the spirit of extending our understanding of analysis to more realistic languages, consider pro-
grams with pointers, or variables whose value refers to another value stored elsewhere in memory
by storing the address of that stored value. Pointers are very common in imperative and object-
oriented programs, and ignoring them can dramatically impact the precision of other analyses
that we have discussed. Consider constant-propagation analysis of the following program:

1 : z :“ 1
2 : p :“ &z
3 : ˚p :“ 2
4 : print z

To analyze this program correctly we must be aware that at instruction 3 p points to z. If this
information is available we can use it in a flow function as follows:

fCP v˚p :“ ywpσq “ rz ÞÑ σpyqsσ where must-point-topp, zq

When we know exactly what a variable x points to, we have must-point-to information, and
we can perform a strong update of the target variable z, because we know with confidence that
assigning to ˚p assigns to z. A technicality in the rule is quantifying over all z such that p must
point to z. How is this possible? It is not possible in C or Java; however, in a language with pass-
by-reference, for example C++, it is possible that two names for the same location are in scope.

Of course, it is also possible to be uncertain to which of several distinct locations p points:

1 : z :“ 1
2 : if pcondq p :“ &y else p :“ &z
3 : ˚p :“ 2
4 : print z

Now constant propagation analysis must conservatively assume that z could hold either 1 or
2. We can represent this with a flow function that uses may-point-to information:

fCP v˚p :“ ywpσq “ rz ÞÑ σpzq \ σpyqsσ where may-point-topp, zq

1

2 Andersen’s Points-To Analysis

Two common kinds of pointer analysis are alias analysis and points-to analysis. Alias analysis
computes sets S holding pairs of variables pp, qq, where p and q may (or must) point to the same
location. Points-to analysis, as described above, computes a relation points-topp, xq, where p may
(or must) point to the location of the variable x. We will focus primarily on points-to analysis,
beginning with a simple but useful approach originally proposed by Andersen (PhD thesis: “Pro-
gram Analysis and Specialization for the C Programming Language”).

Our initial setting will be C programs. We are interested in analyzing instructions that are
relevant to pointers in the program. Ignoring for the moment memory allocation and arrays, we
can decompose all pointer operations into four types: taking the address of a variable, copying a
pointer from one variable to another, assigning through a pointer, and dereferencing a pointer:

I ::“ ...
| p :“ &x
| p :“ q
| ˚p :“ q
| p :“ ˚q

Andersen’s points-to analysis is a context-insensitive interprocedural analysis. It is also a flow-
insensitive analysis, that is an analysis that does not consider program statement order. Context-
and flow-insensitivity are used to improve the performance of the analysis, as precise pointer
analysis can be notoriously expensive in practice.

We will formulate Andersen’s analysis by generating set constraints which can later be pro-
cessed by a set constraint solver using a number of technologies. Constraint generation for each
statement works as given in the following set of rules. Because the analysis is flow-insensitive,
we do not care what order the instructions in the program come in; we simply generate a set of
constraints and solve them.

vp :“ &xw ãÑ lx P p
address-of

vp :“ qw ãÑ p Ě q
copy

v˚p :“ qw ãÑ ˚p Ě q
assign

vp :“ ˚qw ãÑ p Ě ˚q
dereference

The constraints generated are all set constraints. The first rule states that a constant location lx,
representation the address of x, is in the set of location pointed to by p. The second rule states that
the set of locations pointed to by p must be a superset of those pointed to by q. The last two rules
state the same, but take into account that one or the other pointer is dereferenced.

A number of specialized set constraint solvers exist and constraints in the form above can be
translated into the input for these. The dereference operation (the ˚ in ˚p Ě q) is not standard
in set constraints, but it can be encoded—see Fähndrich’s Ph.D. thesis for an example of how
to encode Andersen’s points-to analysis for the BANE constraint solving engine. We will treat
constraint-solving abstractly using the following constraint propagation rules:

2

p Ě q lx P q

lx P p
copy

˚p Ě q lr P p lx P q

lx P r
assign

p Ě ˚q lr P q lx P r

lx P p
dereference

We can now apply Andersen’s points-to analysis to the program above. Note that in this
example if Andersen’s algorithm says that the set p points to only one location lz , we have must-
point-to information, whereas if the set p contains more than one location, we have only may-
point-to information.

We can also apply Andersen’s analysis to programs with dynamic memory allocation, such as:

1 : q :“ malloc1pq
2 : p :“ malloc2pq
3 : p :“ q
4 : r :“ &p
5 : s :“ malloc3pq
6 : ˚r :“ s
7 : t :“ &s
8 : u :“ ˚t

In this example, the analysis is run the same way, but we treat the memory cell allocated at
each malloc or new statement as an abstract location labeled by the location n of the allocation
point. We can use the rules:

vp :“ mallocnpqw ãÑ ln P p
malloc

We must be careful because a malloc statement can be executed more than once, and each time
it executes, a new memory cell is allocated. Unless we have some other means of proving that
the malloc executes only once, we must assume that if some variable p only points to one abstract
malloc’d location ln, that is still may-alias information (i.e. p points to only one of the many actual
cells allocated at the given program location) and not must-alias information.

Analyzing the efficiency of Andersen’s algorithm, we can see that all constraints can be gener-
ated in a linear Opnq pass over the program. The solution size is Opn2q because each of the Opnq
variables defined in the program could potentially point to Opnq other variables.

We can derive the execution time from a theorem by David McAllester published in SAS’99.
There are Opnq flow constraints generated of the form p Ě q, ˚p Ě q, or p Ě ˚q. How many
times could a constraint propagation rule fire for each flow constraint? For a p Ě q constraint,
the rule may fire at most Opnq times, because there are at most Opnq premises of the proper form
lx P p. However, a constraint of the form p Ě ˚q could cause Opn2q rule firings, because there
are Opnq premises each of the form lx P p and lr P q. With Opnq constraints of the form p Ě ˚q
and Opn2q firings for each, we have Opn3q constraint firings overall. A similar analysis applies for
˚p Ě q constraints. McAllester’s theorem states that the analysis with Opn3q rule firings can be

3

implemented in Opn3q time. Thus we have derived that Andersen’s algorithm is cubic in the size
of the program, in the worst case.

2.1 Field-Sensitive Analysis

What happens when we have a pointer to a struct in C, or an object in an object-oriented language?
In this case, we would like the pointer analysis to tell us what each field in the struct or object
points to. A simple solution is to be field-insensitive, treating all fields in a struct as equivalent.
Thus if p points to a struct with two fields f and g, and we assign:

1 : p.f :“ &x
2 : p.g :“ &y

A field-insensitive analysis would tell us (imprecisely) that p.f could point to y. In order
to be more precise, we can track the contents each field of each abstract location separately. In
the discussion below, we assume a setting in which we cannot take the address of a field; this
assumption is true for Java but not for C. We can define a new kind of constraints for fields:

vp :“ q.fw ãÑ p Ě q.f
field-read

vp.f :“ qw ãÑ p.f Ě q
field-assign

Now assume that objects (e.g. in Java) are represented by abstract locations l. We can process
field constraints with the following rules:

p Ě q.f lq P q lf P lq.f

lf P p
field-read

p.f Ě q lp P p lq P q

lq P lp.f
field-assign

If we run this analysis on the code above, we find that it can distinguish that p.f points to x
and p.g points to y.

3 Steensgaard’s Points-To Analysis

For large programs, a cubic algorithm is too inefficient. Steensgaard proposed an pointer analysis
algorithm that operates in near-linear time, supporting essentially unlimited scalability in practice.

The first challenge in designing a near-linear time points-to analysis is to represent the results
in linear space. This is nontrivial because over the course of program execution, any given pointer
p could potentially point to the location of any other variable or pointer q. Representing all of
these pointers explicitly will inherently take Opn2q space.

The solution Steensgaard found is based on using constant space for each variable in the pro-
gram. His analysis associates each variable p with an abstract location named after the variable.
Then, it tracks a single points-to relation between that abstract location p and another one q, to
which it may point. Now, it is possible that in some real program p may point to both q and some

4

other variable r. In this situation, Steensgaard’s algorithm unifies the abstract locations for q and
r, creating a single abstract location representing both of them. Now we can track the fact that p
may point to either variable using a single points-to relationship.

For example, consider the program below:

1 : p :“ &x
2 : r :“ &p
3 : q :“ &y
4 : s :“ &q
5 : r :“ s

Andersen’s points-to analysis would produce the following graph:

x

p

r

y

q

s

But in Steensgaard’s setting, when we discover that r could point both to q and to p, we must
merge q and p into a single node:

x

pq

r

y

s

Notice that we have lost precision: by merging the nodes for p and q our graph now implies
that s could point to p, which is not the case in the actual program. But we are not done. Now
pq has two outgoing arrows, so we must merge nodes x and y. The final graph produced by
Steensgaard’s algorithm is therefore:

xy

pq

r s

To define Steensgaard’s analysis more precisely, we will study a simplified version of that
ignores function pointers. It can be specified as follows:

5

vp :“ qw ãÑ joinp˚p, ˚qq
copy

vp :“ &xw ãÑ joinp˚p, xq
address-of

vp :“ ˚qw ãÑ joinp˚p, ˚˚qq
dereference

v˚p :“ qw ãÑ joinp˚˚p, ˚qq
assign

With each abstract location p, we associate the abstract location that p points to, denoted ˚p.
Abstract locations are implemented as a union-find1 data structure so that we can merge two
abstract locations efficiently. In the rules above, we implicitly invoke find on an abstract location
before calling join on it, or before looking up the location it points to.

The join operation essentially implements a union operation on the abstract locations. How-
ever, since we are tracking what each abstract location points to, we must update this information
also. The algorithm to do so is as follows:

j o i n (e1 , e2)
i f (e1 == e2)

re turn
e1next = ∗e1
e2next = ∗e2
unify (e1 , e2)
j o i n (e1next , e2next)

Once again, we implicitly invoke find on an abstract location before comparing it for equality,
looking up the abstract location it points to, or calling join recursively.

As an optimization, Steensgaard does not perform the join if the right hand side is not a pointer.
For example, if we have an assignment vp :“ qw and q has not been assigned any pointer value so
far in the analysis, we ignore the assignment. If later we find that q may hold a pointer, we must
revisit the assignment to get a sound result.

Steensgaard illustrated his algorithm using the following program:

1 : a :“ &x
2 : b :“ &y
3 : if p then
4 : y :“ &z
5 : else
6 : y :“ &x
7 : c :“ &y

His analysis produces the following graph for this program:

1See any algorithms textbook

6

c b

y a

xz

Rayside illustrates a situation in which Andersen must do more work than Steensgaard:

1 : q :“ &x
2 : q :“ &y
3 : p :“ q
4 : q :“ &z

After processing the first three statements, Steensgaard’s algorithm will have unified variables
x and y, with p and q both pointing to the unified node. In contrast, Andersen’s algorithm will
have both p and q pointing to both x and y. When the fourth statement is processed, Steensgaard’s
algorithm does only a constant amount of work, merging z in with the already-merged xy node.
On the other hand, Andersen’s algorithm must not just create a points-to relation from q to z, but
must also propagate that relationship to p. It is this additional propagation step that results in the
significant performance difference between these algorithms.

Analyzing Steensgaard’s pointer analysis for efficiency, we observe that each of n statements
in the program is processed once. The processing is linear, except for find operations on the union-
find data structure (which may take amortized time Opαpnqq each) and the join operations. We
note that in the join algorithm, the short-circuit test will fail at most Opnq times—at most once for
each variable in the program. Each time the short-circuit fails, two abstract locations are unified,
at cost Opαpnqq. The unification assures the short-circuit will not fail again for one of these two
variables. Because we have at most Opnq operations and the amortized cost of each operation
is at most Opαpnqq, the overall running time of the algorithm is near linear: Opn ˚ αpnqq. Space
consumption is linear, as no space is used beyond that used to represent abstract locations for all
the variables in the program text.

Based on this asymptotic efficiency, Steensgaard’s algorithm was run on a 1 million line pro-
gram (Microsoft Word) in 1996; this was an order of magnitude greater scalability than other
pointer analyses known at the time.

Steensgaard’s pointer analysis is field-insensitive; making it field-sensitive would mean that it
is no longer linear.

4 Adding Context Sensitivity to Andersen’s Algorithm

We can define a version of Andersen’s points-to algorithm that is context-sensitive. In the follow-
ing approach, we analyze each function separately for each calling point. The analysis keeps track
of the current context, the calling point n of the current procedure. In the constraints, we track
separate values for each variable xn according to the calling context n of the procedure defining it,
and we track separate values for each memory location lkn according to the calling context n active
when that location was allocated at new instruction k. The rules are as follows:

7

n $ p :“ newk A

lkn P pn
new

n $ p :“ q ln P qn
ln P pn

copy

n $ x.f :“ y lx P xn ly P yn
ly P lx.f

field-read

n $ x :“ y.f ly P yn lz P ly.f

lz P xn
field-assign

n $ fkpyq ly P yn vfpzq “ ew P Program

ly P zk k $ e
call

To illustrate this analysis, imagine we have the following code:

i n t e r f a c e A { void g () ; }
c l a s s B implements A { void g () { . . . } }
c l a s s C implements A { void g () { . . . } }
c l a s s D {

A f (A a1) { re turn a1 ; }
}

// in main ()
D d1 = new D () ;
i f (. . .) {

A x = d1 . f (new B ()) ;
x . g () // which g i s c a l l e d ?

e l s e
A y = d1 . f (new C ()) ;

y . g () // which g i s c a l l e d ?

The analysis produces the following aliasing graph:

8

d1 OD

a1b

OB

x

a1c

OC

y

In this example, tracking two separate versions of the variable a1 is sufficient to distinguish
the objects of type B and C as they are passed through method f, meaning that the analysis can
accurately track which version of g is called in each program location.

Call-string context sensitivity has its limits, however. Consider the following example,
adapted from notes by Ryder:

i n t e r f a c e X { void g () ; }
c l a s s Y implements X { void g () { . . . } }
c l a s s Z implements X { void g () { . . . } }
c l a s s A {

X x ;
void setX (X v) { helper (v)h ; }
void helper (X vh) { x = vh ; }
X getX () { re turn x ; }

}

// in main ()
A a1 = new A () ; // a l l o c a t e s Oa1
A a2 = new A () ; // a l l o c a t e s Oa2
a1 . setX (new Y ()) Y ; // a l l o c a t e s OY
a2 . setX (new Z ()) Z ; // a l l o c a t e s OZ
X x1 = a1 . getX () ;
X x2 = a2 . getX () ;
x1 . g () ; // which g () i s c a l l e d ?
x2 . g () ; // which g () i s c a l l e d ?

If we analyze this example with a 1-CFA style call-string sensitive pointer analysis, we get the
following analysis results:

9

Context Variable Location Notes
‚ a1 Oa1
‚ a2 Oa2
Y this Oa1
Y v OY
h this Oa1
h vh OY

Oa1 x OY
Z this Oa2
Z v OZ
h this Oa1,Oa2 updated
h vh OY, OZ updated

Oa1 x OY, OZ updated
Oa2 x OY, OZ
‚ x1 OY, OZ
‚ x1 OY, OZ

Essentially, because of the helper method, one function call’s worth of context sensitivity is
insufficient to distinguish the calls to setX and helper for the objects Oa1 and Oa2. We could fix
this by increasing context sensitivity, e.g. by going to a 2-CFA analysis that tracks call strings of
length two. This has a very high cost in practice, however; 2-CFA does not scale well to large
object-oriented programs.

A better solution comes from the insight that in the above example, call-strings are really track-
ing the wrong kind of context. What we need to do is distinguish between Oa1 and Oa2. In other
words, the call chain does not matter so much; we want to be sensitive to the receiver object.

An alternative approach based on this idea is called object-sensitive analysis. It uses for the
context not the call site, but rather the receiver object. In this case, we index everything not by a
calling point n but instead by a receiver object l. The rules are as follows:

l $ p :“ newk A

lkl P pl
new

l $ p :“ q ll P ql
ll P pl

copy

l $ x.f :“ y lx P xl ly P yl
ly P lx.f

field-read

l $ x :“ y.f ly P yl lz P ly.f

lz P xl
field-assign

l $ x.fpyq lx P xl ly P yl vfpzq “ ew P Program

lx P thislx ly P zlx lx $ e
call

Now if we reanalyze the example above, we get:

10

Context Variable Location
‚ a1 Oa1
‚ a2 Oa2

Oa1 v OY
Oa1 vh OY
Oa1 x OY
Oa2 v OZ
Oa2 vh OZ
Oa2 x OZ
‚ x1 OY
‚ x1 OZ

In practice, object-sensitive analysis appears to be the best approach to context sensitivity in
the pointer or call-graph construction analysis of object-oriented programs. Intuitively, it seems
that organizing a program around objects makes the objects themselves the most interesting thing
to analyze.

The state of the art implementation technique for points-to analysis of object-oriented pro-
grams was presented by Bravenboer and Smaragdakis in OOPSLA 2009. Their approach gener-
ates declarative Datalog code to represent the input program, and a datalog evaluation engine
solves what are essentially declarative constraints to get the analysis result.

In an more recent POPL 2011 paper analyzing object-sensitivity, Smaragdakis, Bravenboer,
and Lhoták demonstrate that it is more effective than call-string sensitivity. They also propose a
technique known as type-sensitive analysis which tracks only the type of the receiver (and, for
depths ě 2, the type of the object that created the reciever, etc.), and show that type-sensitive
analysis is nearly as precise as object-sensitive analysis and much more scalable.

Acknowledgements

With grateful acknowledgement to Jonathan Aldrich for his provision of starting materials for
these notes.

11

