Integrated Debugging of Large Modular Robot Ensembles

Benjamin D. Rister, Jason Campbell, Padmanabhan Pillai, and Todd C. Mowry

Abstract— Creatively misquoting Thomas Hobbes, the pro- Based on our frustrations with debugging large modular
cess of software debugging imasty, brutish, and all too long robot simulations, we have developed a novel execution
This holds all the more frue in robotics, which frequently 5n5vsis tool that can capture extensive runtime informa-
involves concurrency, extensive nondeterm|n|5|sm, event-driven
components, complex state machines, and difficult platform tlon including state. tran§|t|pns, |nt§rmodule messaglng, .and
limitations. Inspired by the challenges we have encountered Variable values. With this information, the tool permits in-
while attempting to debug software on simulated ensembles teractive visualization and analysis of a program'’s operation,
of tens of thousands of modular robots, we have developed a poth during and after execution. While originally designed to
new debugging tool particularly suited to the characteristics of debug modular robot code, many aspects of this tool appear

highly parallel, event- and state-driven robotics software. Our | t to oth bot soft d i |
state capture and introspection system also provides data that f€'€vant to other robot soitware and even to general purpose

may be used in higher-level debugging tools as well. We report Programming.
on the design of this promising debugging system, and on our ~ We distinguish between several classes of errors experi-

experiences with it so far. enced in modular robotic systems: algorithmic errors, imple-
mentation errors, and physical errors. Algorithmic errors are

I. INTRODUCTION .
encountered when an algorithm does not always (or ever)
As ever-more-powerful embedded computers and PG%yrectly perform its task due to logical flaws. For instance,

have become ubiquitous, robotics software designers haxgjistrinuted algorithm might never converge to a consensus.
exploited this additional computational horsepower to Pelimplementation errors come from improper coding of an

form increasingly complex tasks, including vision processélgorithm, not the algorithm itself; one example would be

ing, online learning, and sophisticated planning operationisai”ng to properly lock a shared data structure. Finally,

Many modern robot designs rely on multiple software modsysical errors are caused by the underlying hardware, such
ules executing as concurrent threads, either time-sliced g¢”, component failure or actuator inaccuracies.
spread across multiple cooperating CPUs. While this IN-"Our tool is designed to help when debugging algorithmic

creased software complexity can help enable more sophislizgrs and many implementation errors. Physical errors and
cated functionality, it comes at the cost of a greater likelihoody e jow-level implementation errors lie outside the scope
of implementation or algorithmic errors as well as bug$y this work.

due to concurrency, nondeterminism, and subtle interactions
between the multiple threads of execution. Debugging such Il. RELATED WORK
multithreaded robotics software is challenging even when A. Interactive Debuggers

is run on a simulated platform, and yet more difficult on the There is a long history of work on interactive debugging

actual embedded hardware itself. software (e.g., gdb [1] and its many counterparts), and they

Software development for modular and metamorphig, e peen indispensable tools to programmers for many
robotic systems compounds these issues, as it involves sy qes. From the perspective of debugging modular robotic
tems of many robots, each with one or more threads stems, however, the problem with these tools is that they

execution. Programs for even modest modular robot ense 'e designed to look at a particular instant in tintiené

bles may involve hundreds of concurrently executing threadg,q o ngitivity on a particular threadtfread insensitivity
The Claytronics project [9] envisions using thousands to mil- Thread insensitivity:When examining a multithreaded

lions Of tiny modula_r robotsc(atoms,short for “Claytronic_:s program using a traditional interactive debugger, the interface
atoms”) that dynamically reconfigure to render and an'matl?pically works on only a single thread at a time. Although
3D scenes and structures. Our current simulations routiney¥Ju can switch between threads, it may be unclear which
involve over 50,000 robot modules (each with at least ongyeaq contains the information that you need. Furthermore,
independent stream of execution), and in the near future We o qer 1o understand the relationships between the states
expect to simulate over a half-'m|II|on modules. Debuggllng)f different threads, you must switch back and forth to get
software and algorithms at this scale of concurrency is @¢ormation about those relationships. It is also well known

daunting task. that breakpoints are awkward to implement and interpret in
B. Rister is with the School of Computer Science, Carnegie MeIIormlJlt"[hr(:"a-dG(_:i SyStem$ [3], [6] since they are defined from

University, bdr@cs.cmu.edu the perspective of a single thread.

_J. Campbell and P. Pillai are with Intel Research Pittsburgh, Time insensitivity:Traditional debuggers are designed to

{jason.campbell , padmanabhan.s.pillai }@intel.com h h fth icular i .
T. Mowry is with both Carnegie Mellon University and Intel ResearchS1OW & sSnaps ot of the program state at a particular instant in

Pittsburgh tcm@cs.cmu.edu time. Unfortunately, by the time that a symptom of problem

Arrows, colors, and annotations are all |___
dynamically generated by the debugger [EESHI e =

Experiment File: |./DATA/shapemotion.exp

World File: [./DATAftesterworld |
of Catoms: |52
of Time Steps: | 20000
Physics Time Step: |0.010000
Simulator Time Step: |0.050000
Save Every # Steps: |0
Running Code Modules: W.Shapervmtu

FeatureMap: |2D 6

Steps: | |Advance
| & Render to Disk 49 About DPRSIM |
‘ \)Show Shadows

‘ Bcatom Speech ‘ @DPRSim Help ‘

133

U ‘\Slmulatlon Step: (568/20000) [mag: 0, phys: 0, sim: 14, gr: 179] ‘

‘ o Start / Pause

J’ "Scrubber control" allows moving

visualization back and forth through time

Simulation progress:
Simulation can continue
independent from visualization

Fig. 1. An example debugging visualization of a Claytronics researcher’s experiment using planar catoms. Long green arrows are displayed to indicate
each catom’s eventual goal, and blue arrows indicate its current estimation of its subgroup’s center of mass. A “scrubber” control, like that found in media
players, allows the programmer to browse through the historical state of the program independent from the simulation’s progression.

becomes obvious, the root cause of the problem has ofteaveral experiences to concretely frame classes of needed
occurred sometime in past (possibly on a different threadynmprovement in this area.

To uncover the root cause of a problem, programmers muRt Messaging in a Hierarchy
typically resort to an iterative process of re-running thée”

program, setting earlier and earlier breakpoints in an effort One researcher is developing a hierarchical computation
to “sneak up” on the bug from behind (often guided by leap§amework to manage scale and dynamism in large mod-
of intuition). Unfortunately, parallel systems are frequentlylar robotic ensembles. After the introduction of a new
non-deterministic, making an iterative approach problematgommunications protocol into the system, messages were
at best. Even if the program can be replayed deterministicaljgver arriving at their destinations. Debugging this issue was

(e.g., through simulation), this process can be extreme rticularly difficult because a message could pass through
time-consuming. thousands of modules on the way to its eventual destination,

In contrast with previous thread-insensitive, time2nd there was no indication of where along these paths

insensitive debuggers, the tool that we present in this paplle messages were being lost. It was furthermore unclear
allows us to easily analyze program behawoross threads Whether the problem lay in the construction of the routing

and across time tables or in the implementation of the routing itself.
This developer’s only foothold in the problem was that the
B. Tools Designed for Specific Classes of Bugs simulator could be made deterministic—a luxury not present

Tools such as Purify [10] and race-condition detectors [é many systems (particularly physical ones). Once a problem

; o .- case had been identified, he was able to compileriintf
are very good at solving the specific problem for which .
: . . . statements to follow the progress of a particular message,
they are built, but offer little leverage against generic bugs. . . .
. ; oI ~'work out on paper the causality relationships between cer-
One potential way to surmount this restriction is by using_. . . .
: . . ain values, and iterate back through the causality chain
a debugging-oriented programming framework such as Va

grind [7] or Pin [5]. Unfortunately, while these frameworks recompiling-in neyvprmtf s each sftep along the way). He'
- : . eventually determined that the routing tables could contain
can ease the task of writing new debugging tools, this process

is still 100 labor-intensive for dav-to-dav debuagin incorrect entries. These entries were first spottisdally in
y y 9ging. a mass of numbers because they were entirely different than

lIl. EXAMPLE SCENARIOS their counterparts in other modules.

While designing our debugging tool, we gathered informaB- Spanning Tree Construction
tion and stories from programmers about their experiences Another researcher we studied is developing a toolkit
in debugging modular robot algorithms. We present of thesgf fundamental algorithms for coordinating actions in lo-

. . . TABLE |
cal neighborhoods, such as spanning tree construction aed
ODE INSTRUMENTATION FEATURES AVAILABLE TO THE PROGRAMMER

distributed locking. He altered the simulator to color code

the 3D rendering of modules based on the progress of an MONITOREDVAR(int,varName)
internal state machine in order to try to discover the reason MONITOREDCLASS(className, parentClass)
for anomalous behavior. The researcher quickly discovered B'-Os%ﬁp%'\‘sPTQST("S'Q”IPOSI name")

. signpost name
that a module was in an unexpected state. (signp)

In order to understand how the module came to be in
its unexpected state, the researcher needed to know which
messages were arriving during a short time span at a small
set of nodes in the much larger ensemble. Unfortunately,
due to technical reasons, this simulation counlot be run
deterministically. The point of failure was different each run
and could only be identified after running the algorithm for A i . ' X
varying, usually substantial amounts of time. while leaving other sites such as function local variables

This bug remained unsolved until the use of an early proto- Unaddressed.
type of our system. The capture phase of the implementationOur tool is logically separated into three phases of data
was complete by that point, and we were able to extraghanagement: A) capture, B) aggregation/storage, and C)
the information needed by the researcher from our databagecessing/presentation. The capture phase requires a mech-
manually. anism for obtaining information about events and the state of
the program, and is the source of all information about the
program. Once acquired, this data must be stored somewhere

As our debugger is specifically for use in diagnosindgn a usable form—the task of the aggregation and storage
errors in Claytronics modular robotic algorithms, there arghase. Processing and presentation operations then alternate
several constraints and assumptions in place that influencad information is presented to the user, who queries the
our design and development: debugger, resulting in additional processing and information

o Focus Initially on Simulation:The ideas behind the to present.
work can also be applied to physical implementations
of our modular robotic ensembles; however, the marf> Capture
ufacturing of our hardware at the scales we desire Capture of program state and execution details requires
remains several years away. Thus, our focus is omaking a tradeoff between generality, programmer ease, and
the simulated programming environment in which weperformance. Ideally, our tool would be able to capture all
currently perform our research. Nonetheless, when deelevant information all of the time, without any direct action
scribing our simulator-based tool, we will point outby the programmer, and at low overhead, but these desires
some important design points pertinent to future worloften conflict in implementation requirements.
on a hardware-based implementation. Conversely, as theScalar value monitoring In our solution, scalar class
simulator itself is a research system, we allow ourselvesstance variables may be included in the captured data
to exploit our control over the runtime environment toby changing a declaration such ast varName; to
improve the programmer’s experience. MONITOREDVAR(int,varName); . This macro substi-

« Embrace a “Legacy” C++ CodebaseWhile other tutes atemplated wrapper classnitored _value around
languages provide much richer support than C++ fothe scalar value that intercepts all operations performed on
introspection, the combination of our existing C++the variable, allowing us to capture not only every value
codebase and our use of third-party code and librariesver adopted by the variable, but also the origin and uses of
(including an entire physics engine) meant that changinidpose values. When operating inside the space of monitored
language platforms was not an option. variables, full causality data can also be maintained through

« Reward Programmer InteractiorAutomating analyses our instrumentation of the operations on the values—we can
is an important part of our debugger; however, we fediorm a link from the inputs of the operation, if they are
that the programmer has the best understanding of tieonitored, to the result.
program. Debugging is an inherently interactive process, It's important to note thaho other code must be changed
so we adopt the goal of providing good debugging rein order to capture the entire history of a monitored instance
sults for no programmer effort, with better results beingariable. This makes our system extremely amenable to lazy
available for a proportionate amount of programmeinstrumentation during the development of the program. The
effort. programmer may simply tag variables as they are needed,

« Address Current Needs Firsfis a research system, therather than having to guess in advance which info may
engineering effort required to implement the debuggdve buggy or pertinent to other bugs (and potentially hurt
must be considered more carefully than in other enviperformance by capturing excess data), or worse, to have to
ronments where techniques may be previously estabhange coding habits to accommodate the debugger.
lished, systems may be in less continual refinement, Object class monitoring Classes are similarly

and/or engineering teams may be larger. We emphasize
practicality and to produce tools that will actually be

used. For instance, as most important state is stored
in class instance variables in our system, we focus on
these locations as our primary instrumentation points,

IV. DEBUGGING TOOL STRUCTURE

Before instrumentation: is automatically inserted into each function by a simple

class exampleClass : public exampleParent { automated script during the compilation process to mark
int examplelnstanceVar: the entrance and exit from_ the function. This prowd.es a
void doStuff() { stack trace for every operation performed on the monitored
for(ir(;t gO: i;]exalrzrllpl%nstanceVar: i++) { values. The programmer can easily add additional signposts
osometningkElse(); : . . .
doAnotherThing(); in Iocatlons V_/here he or she would like better resolution. e.g.
} as done in Figure 2.
} Causality splicing The signposts and value tracking pro-
} T duce threads of causality for values. For a given value,

we know which other monitored values contributed to the

Alter Instrumentation: generation of that value, as well as the traces of signposts

MONITOREDCLASS (exampleClass, exampleParent) through the code that led to their assignments. However, there
MONITOREDVAR(int,examplelnstancevar); are some causal relationships that this does not capture.
void doStuff() { For instance, when one catom sends a message to another,
for(int i=0; i<examplelnstancevar; i++) { the message is created, handled in some simulator-internal
slggfr:‘(&ﬁilr%'\gs%g?(loop signpost’); ways, and then _Iater reappears at the de_stination in the
SIGNPOST("between something and another"); local event handling code. This leaves us with two threads
doAnotherThing(); of causality—the one leading to the sending, and the one
} } commencing from the receipt—but without any relationship
oL between them. We splice together these causality threads by
} instrumenting the pertinent data structures in the simulator,

embedding a pointer to the previous causality thread into the
Fig. 2. = Example class code before and after instrumentation. Aftefyessage structure itself.
annotating the instance variable declarations, no further modifications to the
code are needed to track changes to the variable’s value. (In particalar, ;
annotations are required when the variable is ujédote that the signpost B. Aggregation and Storage

markers areentirely optionaland in this case have been added because The main design decision in creating the storage part of
tsr:eect[i)(;ggc:fa?omdg nominally wanted better localization of events within th'fhe system was how much processing of the data should
happen at capture time and how much should be deferred to
when the user is performing queries. It is both impractical
handled by a simple substitution of the macrcand unnecessary to try to perform all analyses at capture
MONITOREDCLASS(className, parentClass) time, but some form of processing can significantly simplify
for the usual class className : public the implementation of queries. Additionally, there are perfor-
parentClass , which both turns the class into a subclassnance concerns involved in selecting different points along
of monitored _class and inserts an instrumentedthis line—see Section V for more information.
instance variable into the class itself. Because this instanceFor our implementation of the debugging tool, we chose a
variable is constructed with each instance of the clasSQL database (SQLite [4]) as a good compromise, requiring
itself, and destructed when the instance is destructed, ntinimal a priori data structure, and providing a rich query
allows us to execute code at precisely those times witholgnguage and optimized implementation for subsequent anal-
needing to modify the code or prototype of the monitoregses. The database schema is relatively straightforward, and
class’s constructor, and without forcing the programmer ts based around three tables which track signposts, events,
manually insert instrumentation in those locations. Agaimgnd values. The online state manager only needs to maintain
no other code must be changed besides that localiz¢hie row ID of the most recent insertion in each table for
modification to gain the full benefits of the monitored classcross-referencing purposes; all detailed information can be
The monitored _value s, monitored _class es, and immediately discarded following insertion.
instrumented instance variables inside monitored classes allThe storage phase is also the most interesting one in terms
register themselves into an index over the memory spacaf, moving the debugger into a real distributed, physical
identifying each class’s location and extent. “Belongs-totnsemble. In the case of physical robots, the data streams
relationships can be calculated with this data, allowing ugenerated by each module will need to be exported across
to reason about and display information concerning eagdome external transport. This process will almost certainly
specific instantiation of the variables and classes. We cédre bandwidth-limited when confronted with the debugging
determine which class, code module, and catom any particurformation from millions of modules. We will need to
lar variable belongs to, and, conversely, find a variable basedinimize the size of the data stream, likely sacrificing
on the same criteria. In a philosophical sense, these are thgbstantial information and/or real-time qualities.
addresses to all of the “needles” in our “haystack!” In contrast, our simulator-based desktop implementation
Signpost markingTo mark locations of note, “signposts” is only concerned with the size of the data being stored
may be placed in the code both automatically by the systemasmuch as the resulting disk accesses may impact perfor-
and manually by the programmer. A special type of signposhance. In the simulator, “performance” is a soft restriction,

Settings | Historian

1

. (D
1) |Arrow(Catom‘center,Consemsus‘des| E}

2) |.Arrow(catom‘center,Consemsus‘ceﬂ =
3) | | l :l

‘ Catom.center ‘—b ‘ Consensus.dest ‘

‘ Catom.center ‘—P

Congsensus.centerofimass

[alpha:0.25|]

[@ Apply These Transforms l

Fig. 3. Part of the configuration used to generate Figure 1. The programnfeif- 4. An example visualization where the color of each rendered module
has specified that arrows should be drawn from each catom’s center ifo based upon its internal state. In this case, the lighter-colored catoms
the point contained in the “dest’ and “centerofmass” variables in th&ave self-identified as part of a larger structure, while the darker catoms
“Consensus” code module. Using our debugger's interface, the programnfi€¢ attempting to move away. Despite the very large number of modules
can interactively configure many attributes of the display based upon thésible, the programmer can easily identify which self-assigned role each
captured state of the system across time. catom has taken.

as we can simply wait for operations to finish, whereas §&n be highlighted, unimportant ones can be faded out, and
real ensemble would need to proceed regardless of whetrfigtributed data structures can be rendered through arrows in

the debugger was able to keep up. the real space of the world.
) Figure 1, near the beginning of the paper, shows an
C. Presentation example visualization generated by our system which uses

Unlike classical debuggers, our debugger is designed tbe ability to render arrows in the visualized product. The
answer questions, not just present facts. Substantial proceas-ows are dynamically generated and colored based upon
ing may be required to generate the representation presentbd monitored state of the catoms. The user has (at debug
to the user from the raw data which was captured durinyme) decreased the opacity of the catoms in order to see
the run. There are four main aspects to our user presenthe lines more clearly. The “north” point in each cylindrical
tion: spatial visualization, state-space visualization, causalitpbot is marked by a small white dot. Figure 3 shows part
tracing, and captured state browsing. of the configuration used to produce Figure 1.

Spatial visualizationThe human brain can quickly assim- 19ure 4 is another visualization example, this time using
ilate very large amounts of information visually. We exploitour ability to color catoms based on their internal state. The

this by providing very flexible customization of the (typically algorithm being run during this simulation starts with a solid

3D) rendering of the physical configuration of the systemP!0Ck of catoms, and attempts to form a shape by removing

The displayed location, color, transparency, and textual labgYerything but the intended shape. As the different self-
of each catom can be adjusted dynamically based upon aﬂ§slgned roles result in thg catoms belng_ colored c_zllffer_ently,
monitored state. Lines and arrows can also be generathlf Programmer can easily spot any discrepancies in the
automatically and rendered based upon monitored state $2Pe being formed, or errant catom behavior. The marked
well. slider allows the user to scroll the visualization and state
Additionally, because we have the entire historical statftrospection back and forth through time.
available, we are able to provide the user with the ability State-space visualizatiotn addition to the 3D visualiza-
to smoothly review data from any point in the simulationtion in a “real world” space, we also provide 2D graphs for
without any need to rerun. Such “time travel” alone can sav@ata values. The distribution of values across time (how a
users many hours of (re)simulation time. particular variable changes over time) or space (which values
The most basic application of this visualization is changin@ variable has across all modules) can be valuable informa-
the colors of the catoms in response to their internal statdon when debugging a large modular robotic ensemble.
Other, more sophisticated possibilities are also available For instance, the first graph of Figure 5 shows the distribu-
through a collection of simple value transformers that cation of a “level” variable partway into the construction of the
be hooked together to form arbitrarily complex expressionsierarchy mentioned in Section IlI-A. While the distribution
on the catom’s state. is proper for a hierarchy, given that most of the nodes are
For instance, one can instruct the debugger to “superinieaf nodes (at level 0), the dropoff between levels 0 and
pose on each catom the sum of its variables ‘varName’ aridis proportionately much sharper than between subsequent
‘otherVar,’ but only if ‘anotherVar'==2." Important catoms levels. The programmer could then ask the debugger to show

1000 —952

900 -+
800 -

700 ~
600 -

500 +
400 -

300 +

Number of catoms

200 +

100 +

27
o7

10 1

1 2 3

Values of Hierarchy.level

Each bar represents an individual catom

(0]
o
|

The numbers are the fanouts

7071

N
o

66

o

o

self.catomID)

I\

o

Number of catoms where

(parent

N W b U1 O
o

o

i

-
o

alllll
o Lol

[e)] N
o o
|

III“ I

Catoms where (level=1)

U1
o

self.catomID)
w b
o o

Number of catoms where

(parent

N
o

Catoms where (level=2)

the fanout for the higher levels to see what the distributions
are, as shown in the second and third graphs.

This type of information is simply not handily accessible
in a traditional debugging system. Moreover, if this tool were
available during the debugging described in Section IlI-A,
the errant values in the routing table would have clearly stood
out as outliers in such a visual representation.

Captured state browsingAs with most debuggers, the
programmer can access the captured state of the system.
Unlike temporally insensitive debuggers, which are snapshot-
based, the programmer can scroll this state view backwards
and forwards in time. This functionality is also the jumping-
off point for the state-space visualization and causality
tracing features of the debugger—by selecting a monitored
variable, the time and space distributions may be generated,
or the value history and causality chain of a particular value
displayed.

Causality tracing When a value is selected by the user, the
debugger displays the trace of signposts (including function
calls) leading to the operation. If the value was derived from
other monitored values, say through computation or basic
assignment, the contributing values are also displayed and
can be used to follow the causality chain further. Thus,
when a value is determined to be in an invalid state, the
programmer can easily determine what other piece of invalid
state caused the visible anomaly, and determine the original
cause.

In the presentation and analysis phase of the debugger,
the structure and sophistication of the earlier phases pays off
dramatically through the ability to automate these analyses
and convey processed information in an effective way to the
programmer. All of the work that the debugger performs
saves the programmer from having to do that work manually,
whether mentally or on paper. Parsing, collating, and process-
ing data is why computers exist, and properly exploiting this
produces a large improvement in the debugging experience.

V. PERFORMANCE

We measure the performance characteristics of our de-
bugger on the most extensive code moduie date—the
hierarchical computation framework described in Section IlI-
A. The simulation was run on a world containing 8008
catoms, and involved two simultaneous instances of hier-
archical computations using the framework. Each instance
of the code module contained three monitored variables:
hostCatom , parent , andlevel . These three variables
represent the most frequently used variables in the modular
robot code in question. We also included one “dummy”
variable which was never accessed, to demonstrate that the
overhead scales with the amount of use each monitored
variable receives rather than the number of variables being
monitored.

Fig. 5. An example state-space debugging visualization of variables and

attributes in a hierarchical computation structure. The second and third 1code written for our simulated catoms takes the form of a “code module”
graphs caused the initial realization that there was a fanout problem in thghich encapsulates a single unit of behavior. To ease development, these
hierarchical system. If the system were working correctly, the graph woulglan be enabled or disabled in simulations without recompiling the simulator

be approximately flat.

itself, and interact with the rest of the simulator through a well-defined API.

TABLE Il
OVERHEAD BY INSTRUMENTATION. 8008CATOMS RUN AGGREGATION
AND ELLIPSIS CODE MODULES FOR25 SIMULATOR TICKS.

the capture phase (with all instrumentation above enabled)
incurs an overhead of about 0.51x of the baseline time. The
remainder of the overhead belongs to the storage phase.

Time Overhead | DB size How much of the overhead of the storage phase is due

mm:ss multiple to the storage of the raw data, and how much is due to

baseline| 1:30 nla n/a the structuring and indexing provided by the database? To
world state | 0:08 009% | 17MB answer this question, we temporarily bypassed the database
signposts| 8:48 587x | 1.7GB and dumped the raw, unstructured data directly to disk and
hostCatontﬂ (Z):gg é.ggx 26014’\1/\I/IBB found that the storage phase was approximately 9x faster.
pfg\‘f; 081 o:53§ BOMB However, in a sense, th.e most important benchmgrk is .the
dummy | 0:00 ox OMB duration between the time between when the simulation
oal | 1411 9.45x 2GB starts and the time when the debugging information may

be accessed in a reasonable way, not the time when the
simulation completes. Feeding the data into a database online

Th AblehostC . the simul interf during the simulation also allows for debugging before the
e variablehostCatom s part of the simulator interface |, g complete, without having to carefully manage and

and provides the gateway to the catom’s internal state. ltﬁrocess a constantly-growing file of raw data.

accessed multiple times in virtually every function in ever Disk usage and data compressiowe consider the disk
coge r;noctijulle, arnd :er‘:f]u'tsrmirgnl ?VS;??(eTof 2(r)1teverr]1;s p&éage of 2GB quite acceptable for this purpose, particularly
code module per catom per simulator tick. “ere a as the database will generally be transient, existing only for

s o o aneaan o e, GLalon of e debugin sesion.Ioner trm storae
' g€ Ofg desired, or if disk space is at a premium, compression is

events each per code module per catom per tick. Accord'rf’ﬁghly effective on this data. The 2GB database compresses

to the author of the hierarchical framework, monitorin . - .
these variables would be sufficient to debug about 90% ggfwn to 244 MB usinggzip --best -, for a compression

roblems encountered to date in that system tio of about 89%.
P Y ' High compressibility also bodes well for implementation

A. Instrumentation Overhead in a real physica.l mpdular robo_tics ensemble, where inter—
) module communications bandwidth may be at a premium.

Table Il shows the amount of overhead incurred by th@g the data compresses well, we can transmit substantially
debugger, broken down into the different areas of instrumeRyre information across a limited bandwidth connection, at

tation. The total slowdown Was'9.45x, placing our techniqug,e expense of the CPU resources needed to perform the
betwgen the overheads_of tradltlonal_ general purpose er%mpression and decompression at each end.
gers like gdb, and more intense special-purpose analysis tools
like Purify and Valgrind. o . B. Presentation
Most of the overhead is incurred by the signposts—64%,
to be precise. We track the entire history of signposts that are The processing performed during the storage phase pays
encountered to provide the maximal amount of informatio@ff in a snappy, responsive interface during the presentation
to the user about the code paths that led to the events @kinformation to the user. As it is generally hard to quantify
or she is interested in. However, of the approximately 20w responsive an interface feels, we present some basic
million signposts we record, only about 8 million are directlynumbers and descriptions to convey the experience of using
referenced by recorded events. If the user is willing to receiveur debugger.
only the information about the file and function in which The spatial rendering of the system through processed
each event occurred, without intermediate signpost tracésstorical data runs at a comfortable 30fps for most simulated
between the events, the time overhead from the signposterlds on a desktop machine equipped with modern acceler-
can be reduced to approximately 2x the baseline runtinaed 3D graphics. This is approximately 2x slower than when
(from 5.87x), reducing the overall runtime to about 7.45xrawing directly from the current state of the simulator. The
the baseline. user can smoothly scroll through time using the slider in the
The dummy variable had no measurable impact on the runterface, and the world follows gracefully, only exhibiting
time, and used no database space. The overhead of morisible lag on the largest of simulated worlds.
toring variables is proportional to the number of accesses Generation of a state visualization showing the distribution
to the variables, and does not necessarily grow linearly af all values across time or space typically will complete in
additional variables are monitored. Although we are onlpbout 5 seconds, a short wait given the benefit received from
monitoring 3 variables in each code module, because thede analysis. Without the structure of the database, generation
are the most accessed variables, the overhead we measureaf ihe analysis can take several minutes or more.
a significant portion of the overhead that would be measured The basic introspection interface, being simpler and in-
if all instance variables were monitored. volving minimal processing, is instantaneous from the user’s
Breakdown by phaseWith the storage phase disabled,perspective.

C. Resource Limits to gain research experience with this type of a debugging
Our simulator infrastructure is primarily limited in scaling €nvironment with a more modest engineering overhead than

by memory consumption—the amount of state maintained compiler-based §o|ution would jncur. .
for each catom overwhelms the memory system far before More generally, it may be possible to take our experience
the speed of simulation becomes unbearably slow. in building a temporally-sensitive, parallelism-facilitating de-

The debugging instrumentation adds a memory overhe&ygger in the context of modular robotics gnd move towards
of about 20 bytes per monitored variable or class (dependifige creation of a tool that would apply outside the context to
on the name of the variable, which must be stored with it}V ich we have limited ourselves here. Every programmer has
Compared to the remainder of the state maintained abo@ SOme point wished they could simply click on a variable
each catom, this is non-trivial, but usually not large. In th@nd ask why it has the value that it has—perhaps such a
experiments mentioned above, memory consumption witlgol is not out of the question. This will require techniques
our instrumentation enabled rested about 10% above tff monitor other types of values, such as those belonging to
baseline memory consumption. global, static, and function local variables.

In a physical modular robotics ensemble, we anticipate Finally, as the project's hardware development continues,
that bandwidth will be the limiting factor. As discussedWe will likely wish to use a similar tool in the non-simulated

above, the data streams we create are highly amenableSkstem as well. The stronger real-time requirements of a
compression. physical system coupled with the distributed nature of the

computation will require extensions and changes to the tool
VI. SUMMARY as described here.
We have built a debugger for Claytronics modular robotic VIl A CKNOWLEDGMENTS
ensembles that isemporally-awareand explicitly attempts '
to assist the programmer in debugging within the highly We thank Casey Helfrich and Michael Ryan, who are the
parallel environment. Historical state from all stages oPfimary developers of DPRSim and implementers of many
execution is available and can be easily accessed by tAbthe user interface components of the debugging tool. We
programmer. Visualizations in “physica] Space" and graph@lso thank the other deVElOperS of catom COde, inClUding
in data space exploit the visual processing capabilities ®fichael De Rosa, Ram Ravichandran, Stano Funiak, David
human beings to efﬁcienﬂy and effective|y convey very |argé:hristensen, Preethi Bhat, and Seth Goldstein for aIIOWing
amounts of information in a way comprehensible to thélS to observe their debugging practices, and for answering
programmer. Finally, our tool has demonstrated effectivene8de authors’ questions about their methodologies.
against the types of real-world bugs encountered during
actual Claytronics development, and is moving into regular _
use- bY th_e researchers on the project. [1] So?ts\;ar-g;gdtSNU Project Debugger. http://www.gnu.org/
Limitations: At present, our debugger does not handle[2] Thomas Ball and James R. Larus. Efficient path profiling. In
pointers; as with most times they come up in program International Symposium on Microarchitectuages 46-57, 1996.

; ; J. Fowler and W. Zwaenepoel. Causal distributed breakpoints. In
anaIySIS, they pose formidable Cha"enges' Nonetheless, V\E’J Proceedings of the 10th International Conference on Distributed

have found the tool applicable in a wide variety of scenarios computing Systems (ICDG$)ages 134-141, Washington, DC, 1990.

without pointer support, and have not yet felt any strong llDEEFE ﬁorgpﬁﬁer Sggiﬁty- htto/isali

; . Richard Hipp. ite.http://sqlite.org .

Impetus FO add S_UCh support. There are also Comerucases Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur

subclassing monitored classes that can confuse the “belongs- kiauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim
to” analysis, but to date, this has remained a theoretical Hazelwood. Pin: building customized program analysis tools with

Smitatiae : dynamic instrumentation. I€onference on Programming Language
limitation—no user has yet encountered any of them in actual Design and Implementation (PLDIZ00S.

practice. [6] B. P. Miller and J. D. Choi. Breakpoints and halting in distributed
Similarly, while our system for causality weaving is tied programs. InProceedings of the 8th International Conference on

into our particular simulator’s implementation, the possibility BE‘”%’;" I%"Ergpggﬂ?pﬁ{::e&sc igg/Dcsages 316-325, Washington,

of more generic causality weaving is an interesting prospectz] Nicholas Nethercote and Julian Seward. Valgrind: A program super-
However, as messaging is the only case where this has Vvision framework.Electronic Notes in Theoretical Computer Science
; : ; : 2003.

been_requ”ed_ to date, V_/€ decided to d_lreCtIy mStrumenIS] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro,
the simulator instead. This may change in future versions * and Thomas Anderson. Eraser: a dynamic data race detector for
as researchers grow more sophisticated in their Claytronics rlngu;t;threaded programsACM Trans. Comput. Syst15(4):391-411,
development over time. . [9] S.Goldstein, J. Campbell, and T. Mowry. Programmable maliE

Future work: Improvements to our approach to signpost- ~ computer 38, 6:99-101, May 2005.
ing, perhaps using techniques akin to path profiling [2], coulf0] Rational Software. Purify: Fast detection of memory leaks and access
provide a significant boost to performance. errors.

A future implementation of the capture system might be
best done by a compiler in alliance with a runtime environ-
ment, or even through modifications to a traditional debugger.

However, the implementation described above enables us

REFERENCES

