
A 3D Fax Machine based on Claytronics
Padmanabhan Pillai, Jason Campbell

Intel Research Pittsburgh
Pittsburgh, PA 15213

Gautam Kedia, Shishir Moudgal, Kaushik Sheth
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract— This paper presents a novel application of modu-
lar robotic technology. Many researchers expect manufacturing
technology will allow robot modules to be built at smaller and
smaller scales, but movement and actuation are increasingly
difficult as dimensions shrink. We describe an application — a 3D
fax machine — which exploits inter-module communication and
computation without requiring self-reconfiguration. As a result,
this application may be feasible sooner than applications which
depend upon modules being able to move themselves.

In our new approach to 3D faxing, a large number of sub-
millimeter robot modules form an intelligent “clay” which can
be reshaped via the external application of mechanical forces.
This clay can act as a novel input device, using intermodule
localization techniques to acquire the shape of a 3D object by
casting. We describe software for such digital clay. We also
describe how, when equipped with simple inter-module latches,
such clay can be used as a 3D output device. Finally, we evaluate
results from simulations which test how well our approach can
replicate particular objects.

I. INTRODUCTION

Consider a hypothetical scenario in the near future, where a
paleontologist is searching in a remote location for interesting
fossil remains. Having found an interesting bone fragment, she
records the site information, using GPS and local surveying
instruments, and takes numerous digital photographs to record
the context of the find. She then takes an impression of the
fragment in clay or plaster to facilitate its later reproduction
for wider study as well as display in museums.

Given present technologies, the latency between discovery
and access to fossil and object replicas will generally be mea-
sured in months. However, imagine in this future world, that
the clay-like material used to take the impression is electronic
in nature, comprised of a myriad of tiny modules which are
capable of inter-module communication and computation. This
intelligent clay measures its own shape and, by reflection, the
shape of the embedded fossil fragment, and generates a digital
representation of the fossil’s three-dimensional structure.

Like other digital representations, the shape can then can be
readily stored, manipulated, annotated, and transmitted. Within
moments, the field scientist can share her find with colleagues
across the globe. Those colleagues, using either similar clay-
like material or traditional rapid-prototyping equipment, can
then reproduce a facsimile of the fossil from the digital
representation. This scenario is illustrated in Fig. 1.

Can such intelligent clay be created? Key considerations in
answering this question include the physical and the electronic
properties of the components:

1) Physical Characteristics: Suppose this material is com-
posed of tiny, sub-millimeter particles that stick together, e.g.,

01001101010010011101010011101010

11101010101111010010101010100101

01110101001010010010100100100110

10101010011101010011101010111010

10101010010101010100101011101010

01010010010100100100110101001001

11010100111010101110101010101001

01010101001010111010100101001001

01001010010010010101010010010010

1. object to be faxed

Remote Site

Local

2. immersion / casting

3. digital clay performs
self-localization to

compute the 3D
shape of the object

6. shape data
is broadcast
into the vat

7. catoms which are part of the shape bond
to their neighbors the remaining catoms

are then swept away to leave the replica shape
–

5. recipient pours a suitable volume
into a vat the catoms

to establish a coordinate frame
of catoms

self-localize
–

4. shape data
stored / transmitted

via conventional means

Fig. 1. An overview of the 3D fax scenario

spheres covered with a self-cleaning nanofiber adhesive [1],
[2]. The combination of discrete parts and adhesion would
permit the required malleability for this application. In an
alternative implementation, the spheres could be covered with
thin insulated plates, permitting the spheres to adhere to each
other under software control through the establishment of an
appropriate electric field on each plate.

2) Electronic properties: Suppose further that each of these
particles is actually a micro-fabricated silicon sphere, its sur-
face covered with electronic circuitry. A 300 micron (radius)
sphere has a surface area of 1.13mm

�
. Current embedded

microprocessors can be fabricated in only 0.26mm
�

using
mature process technology [3]. With specialized design and
modest process improvements it is feasible that an entire
system can be embedded on such a sphere, including micro-
processor, memory, communications, power distribution, and
sensor circuits.

An ensemble of 1000 to 100,000 of such spheres can be
viewed as a modular robotic system taken to an extreme
scale — both in terms of the minuscule size of each module,
and the enormous number of cooperating units within the
system. The realization of such high-module-count robotic sys-
tems is the goal of several major research endeavors, including
our own work on claytronics [4]. In that broader effort we
are working with many collaborators to develop hardware that
can be scaled into the sub-millimeter range, mechanisms for
actuation, communication, and power, and the software and
programming methodologies required to control and handle
distributed systems consisting of millions of units. Our long-
term goal is general purpose programmable matter, which
can serve as a new medium for human-computer interaction

and enable a vast realm of new applications (telepresence;
immersive, tactile virtual environments; variable form input
devices; and new forms of dynamic art and entertainment).

This paper concerns itself with a much less grandiose vision,
and in particular with an application that may be feasible much
sooner than general purpose programmable matter. Actuation
and motion are challenging aspects of modular robotic sys-
tems, not only because of the size and required strength of
the actuators but also because of the complexity of planning
and controlling their use. For this paper we imagine pro-
grammable matter minus such actuation capacity, i.e., without
the ability to self-reconfigure or move. Even without motion,
inter-module communication still permits modules to localize
themselves relative to their neighbors, and by extension to
establish the geometry of the boundaries of the ensemble. In
this paper we present techniques for doing so and describe
their use for a 3D fax machine.

Although other technologies have been proposed to imple-
ment 3D faxing [5]–[7], the modular microrobot approach has
certain distinct advantages, notably size and speed. In contrast
to 3D fax machine approaches using serial (raster) input and
output devices such as a laser scanner [8], [9] and 3D printer
[10], programmable matter would acquire the 3D input shape
and generate the 3D output shape in parallel. Thus, rather
than taking hours to days the process could take seconds to
minutes. Laser scanners and 3D printers also remain many
times bulkier than the object being scanned/reproduced despite
years of commercial development. Similar results could be
achieved with a much smaller volume of programmable matter.
The resulting increase in portability and speed could make 3D
faxing more attractive than at present. Finally, depending upon
implementation details (nanofiber adhesives vs. electrostatic
attraction), the same robots may be capable of both input and
output at different times, as well as frequent reuse.

Demonstrating operation of 3D faxing via our method
requires thousands of functioning microrobot modules. Un-
fortunately our hardware prototyping efforts will be unable to
produce such quantities in the near to medium term. Thus, in
this paper we evaluate our 3D fax algorithms using a variety
of simulation techniques. While simulations do not reveal the
unexpected challenges and effects that physical testing can
uncover, simulation results are nonetheless meaningful for val-
idating high-level operation, verifying algorithmic feasibility,
and providing useful data for those in the community studying
software environments for programmable matter modules.

II. OVERVIEW

The process of remotely reproducing a facsimile of an
object requires three phases: acquisition, transmission, and
reproduction. In the first phase, the system senses the object
and creates a digital representation of the visible, external
structure. The shape information is then transmitted to the
remote site. Finally, using the transmitted data, a facsimile
of the object is reconstructed at the remote site.

We describe below how each of these phases can work
in the context of programmable matter. In order to make

our language more specific in the following, we adopt the
module design, capabilities, and nomenclature envisioned by
the Claytronics Project [4]. In this nomenclature, a connected
volume of programmable matter is termed an ensemble, a word
we use interchangeably here with mass. Individual units are
termed catoms, and in this paper we also use module and
particle to mean the same thing as catom.

A. Shape Acquisition

A variety of existing technologies can serve as the input
mechanism to a 3D fax machine. In particular, a variety of
structured light approaches, most based on scanning lasers,
are capable of producing medium to high resolution digital
representations of the 3D external structure of an object [8],
[9]. Multicamera stereo systems can also capture dense shape
information, though with a variety of limitations imposed
by non-Lambertian surfaces and the unsolved nature of the
correspondence problem. In applying programmable matter to
this task, several key differences are apparent.

1) Contact vs. non-contact sensing: Programmable matter
can read the shape of an object by direct contact with its
surface. Structured light (laser) and stereo approaches work
at some distance and hence impose constraints on object
curvature and self-shadowing [11]. While both at-a-distance
and programmable-matter-based techniques will likely have
difficultly with deep concavities, programmable matter is
less likely to misread moderate surface textures and simple
overhanging shapes.

2) Simplified geometries: Because of the relatively limited
geometric possibilities for sphere packing and the absence
of large unclosed loops or featureless spaces, the localiza-
tion problem for a programmable-matter ensemble can be
significantly easier than solving, for instance, a dense stereo
reconstruction or a sparse SLAM problem.

3) Parallel vs. serial read-in: Raster scanning techniques
face a resolution vs. speed trade off in which high spatial
sampling rates can only be achieved by substantially slowing
the scanning process and making more passes. Programmable
matter localization in contrast is a highly parallelizable oper-
ation. Resolution is a function of the catom size rather than
scan rate or the spatial frequency of scanning.

A claytronic ensemble performs self-localization by a multi-
phase peer-to-peer communication process between the indi-
vidual catoms in the ensemble. Each catom’s surface is cov-
ered with contact patches permitting communication between
neighbors. The particular surface site used to communicate
with a given neighbor identifies the relative geometry of that
neighbor to within a known tolerance for successful commu-
nication. The high degree of interconnectedness offered in a
packed or near-close-packed lattice allows quick convergence
for robust location estimation techniques [12].

A dense mesh of catom locations permits software running
on the ensemble to reason about its own shape and perimeter.
In particular, shapes of interior voids can be readily modeled
by detecting the absence of catoms. If an object is completely
embedded in a claytronic ensemble, then these regions without

particles will correspond directly to the volume occupied by
the object. If the material is carefully and tightly applied
against the object, then the details of its surface contours will
be faithfully reflected down to single-catom scale. Given the
known positions of the modules in a consistent coordinate
frame, a digital representation of the object’s surface contours
can be produced.

Unlike digital sampling in PCM systems where the Nyquist
frequency offers a sharp bound on sampling precision, catoms
can pack spaces down to the width of a single catom. However,
because reliable sampling requires high probability that catoms
will actually fill each concavity — an effect dependent upon
the pressures applied to manipulate the ensemble as well as
the chance incidence of any lattices — the single-catom bound
has a soft character. The likelihood of accurately modeling
a particular surface feature decreases as it approaches single
catom scale.

In the full vision of claytronics, the requirement that catoms
accurately engage with every contour would be easier to
achieve since the ensemble could self-reconfigure to improve
its fit against the surface. In this paper we assume the catoms
involved are not capable of self-reconfiguration. The user
of the system applies the claytronic material on the object
as if they are taking a traditional cast or making a mold.
Alternatively, if the catoms involved are constructed to have
low self-adhesion, we can expect the ensemble to act more
like an aggregate of discrete particles, e.g., a pile of sand. In
this case, the user can place the object in a container, and pour
the electronic particles around the object, shaking as necessary
to reduce trapped bubbles and completely cover the object.

B. Remote Transmission

After the 3D structure has been determined by digital shape
acquisition, many well known techniques can be used to
store, manipulate, and transmit it. A radio or optical bridge
would likely be used to extract the shape information from
the ensemble and transfer it to a traditional computing device
such as a laptop for storage or remote transmission.

C. Shape Reconstruction

In the final stage of a 3D fax system, the transmitted
data is used to reconstruct the structure of the object at the
remote site. One method of converting the digital description
to a physical replica is to use a 3D printer based on rapid
prototyping techniques such as fused deposition modeling or
stereolithography [10]. Such a device can create a physical
object from a digital representation by building up the structure
layer by layer or line by line. Typical spatial resolutions
are 50-300 microns and the machines often require costly
consumables and caustic solvents as part of the process.

With programmable matter, shape reconstruction can be
implemented in at least two different ways:

First, with a fully-functional claytronic ensemble, i.e., one
capable of self-reconfiguration, we could imagine the ensem-
ble reshaping itself on command to conform to the desired
shape. Because many catoms can move simultaneously this

process would be substantially faster than a raster or pla-
nar deposition process. However, this constructive approach
can be very complex, and scalable methods for such self-
reconfiguration motion planning are an open research question.

Second, with catoms incapable of self-reconfiguration but
equipped with simple inter-catom latches which can selectively
bond one module to another, a shape can be formed by what
we term digital sand casting. In digital sand casting we start
with a large mass and remove unneeded material, as in wood
or stone carving. First, an appropriate volume of catoms is
used to fill a closed structure such as a bucket. Power is
supplied to the ensemble and the desired shape is transmitted
to it. The catoms in the ensemble carry out self-localization
to identify the coordinate structure within which they sit.
Then, each catom evaluates whether it is or is not part of
the target shape. Those catoms which are part of the target
shape bond themselves together, while the other catoms simply
switch themselves off. The user then pours or sweeps off the
unbonded catoms to reveal the reconstructed shape. For all
but the smallest volume shapes this process should also be
substantially faster than incremental deposition as is typical in
rapid prototyping.

The first and second techniques are duals of one another,
though one may require a smaller volume of catoms and the
other less computation.

III. DESIGN

In this section, we look at the details of the software to
implement a 3D fax machine on a large collection of modular
robots acting as programmable matter. Critical to the success
of the system is the scalability of the distributed techniques
employed, as the number of units in the system can be very
large — running into many thousands or even millions of units.

A. Localization

The most critical algorithm in a programmable-matter-based
3D fax machine is that for self localization of the robotic
modules. The specifics of the algorithm will depend on the
characteristics of the modular robot hardware. Prior research
[12], also based on claytronics, has already described a lo-
calization algorithm based on local broadcast communication
to immediate neighbors, a capability that very short range RF
communication mechanisms such as near-field coupling could
enable. The localization technique described in [12] works for
highly connected lattices — in particular, hexagonal planar
(2D), hexagonal close-packed (3D) and face-centered cubic
(3D), but is unable to cope with less densely interconnected
lattices such as cubic packing.

In contrast to [12], we seek to perform localization in
both hexagonal and cubic lattice structures, as well as in
ensembles with mixed regions of varying lattice types and
parameters. Our approach is also motivated by a different
set of assumptions about the catom hardware, reflecting two
more years of work in our catom prototyping efforts. In
particular, we no longer expect local-neighborhood broadcast
communication, but rather envision catoms which are equipped

contact
patches

allow communication
between catoms

and serve to help
localize neighbors)

Fig. 2. Contact points on the surface of a module / catom

for directional communication with each of their immedi-
ate neighbors, but have no other communication facilities.
These characteristics could be satisfied by short range optical,
wired, or capacitively coupled communication mechanisms.
This peer-to-peer approach sacrifices broadcast and long range
transmission but offers higher reliability as well as directional
attribution for messages received and directional control for
outbound messages.

We model each catom as a spherical module with a collec-
tion of contact points spaced across its surface (see Fig. 2).
Each contact point serves as a communications interface
between modules. Only those contact points which actually
touch other catoms are active at any given time. Contact
points may also serve to distribute power [13], or implement
intercatom actuation mechanisms via, for instance, magnetic
or electric fields [14], but these techniques are beyond the
scope of this paper.

Each contact point is treated as a separate communication
channel. A catom knows a priori the positions of the contact
points on its surface and can compute the angle between and
the relative positions of pairs of its neighbors. We assume
that catoms are randomly oriented, but that adjacent pairs are
always aligned at a pair of surface contacts. That is, a pair
of neighboring catoms always touch precisely at the center of
two contact points. (In future work we plan to lift this aligned-
contact requirement.)

Localization Algorithm: Given this inter-module communi-
cation model, we have devised a fully distributed algorithm
to establish a consistent coordinate frame across a connected
ensemble and localize individual modules within it. This
algorithm proceeds as follows: Initially, all modules power
up unassigned to a location or coordinate frame. A module
is selected to be the seed (origin) of a new coordinate frame.
The seed sets its own position to be the origin and selects an
arbitrary orientation.

Modules knowing their location and orientation are said to
be fully configured. Since all modules have the same radius
(assumed to be 1 without loss of generality), every module
can infer the position of each adjacent module from its a
priori map of its surface contacts and the identity of the
specific contact through which the catom and corresponding
neighbor touch. Every fully configured module sends each of
its neighbors a message indicating the neighbor’s computed
position and the configured module’s own position. Each
unconfigured neighbor receiving such a message becomes a
partially configured module.

Fig. 3. Localization in a hexagonal lattice (2D shown for clarity): (a) initial
random seed sends positions to neighbors; (b) partially configured set of
neighbors know their positions (but not orientations); (c) with info from 2 or
more neighbors, the partially configured modules determine their orientations
and change to the fully configured state; (d) all fully configured modules
propagate position information to each of their neighbors; (e) the next wave
of neighbors determines their orientations; (f) continues

A partially configured module knows its position in the
coordinate frame, but does not know its orientation. It shares
its position information with its neighbors, but cannot defini-
tively tell the neighbors their positions. A partially configured
module, using its own position and the position of one
neighbor, can partly constrain its orientation relative to the
coordinate frame to one degree of rotational freedom. The
position information from a second, non-collinear neighbor
suffices to fully determine the partially configured module’s
orientation. Upon establishing its orientation thusly, the par-
tially configured module marks itself as fully configured and
can compute and propagate the positions of all its neighbors.

For hexagonal lattices (2D hex planar as well as the 3D
forms, HCP and FCC), this set of rules is sufficient to
localize all modules in a distributed manner. However, for
cubic lattices, modules have fewer neighbors yet six degrees of
freedom, and situations will arise where a partially configured
module has only one neighbor with a known position. In such
a case, the module will be unable to determine its orientation
and progress will stop. To treat the cubic case successfully,
we introduce an additional state transition: if an unconfigured
module receives the positions of two neighbors, � and

�
,

on orthogonal contacts (i.e., vectors from the center to the
contact points form a right angle), it assumes a cubic packing
relationship applies to those two neighbors and proceeds to
determine its position as follows. First, the module requests
the positions of all neighbors of � and

�
. In the case of square

planar or cubic packing, � and
�

will have one additional
neighbor in common, � . Using simple vector math, the module
computes its own position as ��� ��� � , and advances to
the partially configured state. This additional rule is sufficient
to fix the distributed localization algorithm for cubic packed
lattices (see examples in Figures 3 and 4).

B. Selecting Seeds

For the localization algorithm outlined above, we need a
single module to serve as the seed that determines the coordi-
nate frame. To this end, we use a simple stochastic approach:
each unconfigured module randomly decides with some small
probability � to become a seed of a new coordinate frame.
This random election is repeated periodically by modules

Fig. 4. Localization in a cubic lattice (2D shown for clarity): (a) initial seed,
sends locations to neighbors; (b) partially configured neighbors cannot deter-
mine their orientations; (c) unconfigured modules determine their positions
from two neighbors at right angles; (d) orientation determined from two or
more neighbors; (e) propagate positions; (f) continues

remaining in the unconfigured state to ensure at least one seed
is eventually formed even in very small systems. Each seed
picks a unique (or probabilistically unique) id, either from a
factory-programmed serial number or via a random number
generator. They initiate the localization process described
above, prepending the messages in the basic algorithm with the
id of the seed module for the coordinate frame. We deal with
multiple seeds and coordinate frames by prioritizing based on
the id of the seed. Higher id’s take precedence, and when
two regions of partially and fully configured modules grow
into each other, the modules configured in the coordinate
frame with the lower id are simply treated as unconfigured
and relocalized in the higher id coordinate frame. The seed
with the highest id ultimately wins, and all modules will be
localized in its coordinate frame.

C. Termination Detection

It is useful to know when the localization process is com-
plete so we can initiate the next step in the 3D fax application.
To detect termination in a scalable manner, we generate a
spanning tree over the entire ensemble of modules in parallel
to the localization algorithm.

The seed is treated as the root of the tree. When the seed
or any module turns into a fully configured module and sends
position information to its neighbors, we treat this message
as a request for the recipient to become a child node of the
module in the spanning tree. Each module receiving such a
message for the first time sets its parent to the sender and
returns an acknowledgment (ACK) message. If the module
already has a different parent, it returns a negative acknowl-
edgment, or NACK. Each module responding with ACK is
added to the children list of the parent module. If a module
receives a negative acknowledgment from all of its neighbors,
it is a leaf node, and it sends a subtree complete message to
its parent. Likewise, any module which has received a subtree
complete message from each of its children, sends a subtree
complete message to its parent.

As each module can send the completion message only
after hearing from all of its neighbors, all reachable modules
will be covered by the generated spanning tree. Furthermore,
as modules attempt to add neighbors as children only after
they are fully configured, each complete subtree will consist

Fig. 5. Dealing with grain boundaries: (a) different frame of reference on each
side of the boundary; the higher priority frame (brown / medium grey) extends
across bridge points but these modules lack sufficient information to determine
their orientations and progress halts; (b) using correspondences from multiple
bridge points, a transform between coordinate frames is determined, and
modules neighboring the bridge points switch frames; (c) orientations can be
determined when positions of two or more neighbors are known, allowing
the bridge modules and their neighbors to become fully configured; (d)
propagation of higher priority coordinate frame continues on other side of
the grain boundary

entirely of localized modules. Hence, by the time the seed has
received subtree complete messages from all of its children,
the termination of both the spanning tree algorithm and the
localization of all modules can be guaranteed, and reliably
determined.

D. Dealing with Grain Boundaries

When two regions with different lattice parameters abut, a
grain boundary is formed. Along this boundary, a slight gap
between the modules occurs, bridged by a few, widely spaced
points of contact. Each bridge point is typically a singleton
contact between two modules. As a result, a fully configured
module on one side of the grain boundary can create no more
than one partially configured module on the other side, and
the coordinate frame cannot grow across the grain boundary.
Using the algorithm from Section III-A without modification,
we will eventually end up with a different coordinate frame
on each side of the boundary.

At the bridge points, this situation can be detected (see
Fig. 5). If a fully configured module in coordinate space
� has a neighbor in coordinate space

�
that remains in a

partially configured state for a number of rounds, and id of�
	
id of � , the module determines that it is at a grain

boundary bridge point. It computes this neighbor’s position
in its own coordinate space � , and sends this with the position
for coordinate space

�
up the spanning tree to the root node,

seed � . This seed node collects several such correspondences,
and uses them to compute matrix �
��� , the transformation from
coordinate space � to

�
. �
��� is multicast down the spanning

tree to all modules in coordinate space � . We note that a similar
mechanism is employed in [12] to cross grain boundaries, but
availability of a broadcast medium, and lack of the spanning
tree algorithm change the implementation details.

Although we can apply the transform at each module to
immediately convert coordinate frames, we take a differ-

ent approach to ensure compatibility with the spanning tree
generation and termination detection for seed

�
. Here, each

fully configured module in � that is adjacent to a partially
configured module in

�
applies the transform and becomes a

fully configured module in coordinate space
�
. It then waits for

the partially configured neighbor to become fully configured,
and joins

�
’s spanning tree as a child of that neighbor. Only

after this does it begin to propagate the coordinate frame as in
the basic algorithm. Once this crossing of the bridge points is
accomplished, the higher priority coordinate frame takes over
just as in the case without grain boundaries.

E. Surface Detection

Once all of the modules in the ensemble have been localized
to a consistent coordinate frame, and termination of the
algorithm has been detected by the seed module, we begin
the next phase of the application to determine the surface
of an object embedded in the ensemble. In this phase, each
module determines locally whether the immediate neighbor-
hood is complete with respect to the lattice, or if one or
more neighbors are missing (see Fig. 6). A module with
missing neighbors is considered a surface-adjacent module.
It computes the positions of its missing neighbors, which
potentially correspond to points on or close to the surface
of the embedded object. The complete set of these missing
neighbor positions, with duplicates removed, is retrieved from
the ensemble to a laptop that can post process this information,
and store it or transmit it to a remote site.

Efficient extraction of this data can be facilitated as follows.
First, we pivot the root of the global spanning tree from the
seed module to a module that can communicate to the external
interface device. Next, we create a spanning tree on each
connected set of surface-adjacent modules, with a random root.
Missing neighbor positions are sent up the trees, to the root.
As duplicates can only occur locally, each surface-adjacent
module checks with its neighbors to ensure any points in
common are reported only once. The position data is streamed
from the roots of the surface adjacent spanning trees along the
global spanning tree, and to the external laptop.

If one places a module at each of the locations indicated
by the extracted data, a rendition of all of the detected surface
is formed. However, this includes more than just the surfaces
corresponding to the embedded object. In particular, the ex-
ternal surface, any bubbles or voids, and grain boundaries are
also included. We assume in this work that the modules were
densely packed and no voids were present. We note that along
grain boundaries, modules on both sides of the boundary report
missing neighbors, and, under the assumption of no voids
or bubbles, that modules placed at these points will overlap.
Using an efficient data structure for 3D proximity, e.g., oct-
tree, we can post-process the data to eliminate such positions
that would result in overlap, and thus remove the false surfaces
due to grain boundaries.

Finally, the same data structure is used to eliminate the
external surface. We start with a position known to be part
of the external surface, e.g., it has the largest value in some

Fig. 6. Surface detection: (a) modules surrounding original object perform
localization; (b) modules marked as surface-adjacent (shaded) have one or
more missing neighbors; (c) missing neighbors (dotted outlines) are candidates
for membership in the object surface; select one location known to be an
extremity (shaded); (d) grow connected components from that extreme point –
these correspond to the external surface and are removed, (e) revealing the
acquired positions for the object surface; (f) view of these points as a mesh

Fig. 7. Shape Reconstruction: (a) overlay mesh of output points over a full
lattice; (b) select modules that intersect mesh; these latch on to each other;
remove all other modules revealing replica (d); compare to original (c)

component axis. From this point, we grow a set of these
data points, iteratively adding those within 3 module radii
of any point within the set. Given that all grain boundaries
that can bridge between the external and object surface have
already been removed, and that the object surface itself is
sufficiently separated from the outside surface, this set of
points corresponds to just the external surface, and is removed
from the data set.

These processing steps, since they deal with the entire set of
surface points, are best done on an external computer, rather
than on the memory- and processing-limited claytronic mod-
ules. This external machine may also be able to compress the
representation of the surface prior to storage or transmission.
Efficient encoding of 3D surface models has been the subject
of considerable research and is beyond the scope of this paper.

F. Shape Reconstruction

In the shape reconstruction step, we start with solid volume
of claytronic material, with a single lattice structure and a
known frame of reference. Fig. 7 illustrates this process.
We take the set of surface positions from the input phase,
and perform translation, rotation, and scaling as needed to
fit all of the points to the new coordinate frame and within
the destination volume. This set of surface points will not,
in general, correspond to module positions in the output

ensemble. So, as a preprocessing step, we consider the set
of points as vertices of connected triangular regions that form
a surface mesh. By looking at the known lattice locations in
the target ensemble, we can determine which modules will
intersect with the mesh. The positions of these surface modules
are fed to the target mass. The modules corresponding to those
positions effect bonds to any of their neighbors which are
also members of the position set. All other modules simply
remain inert, or actively repel one another. The user then
removes the unwanted modules (e.g., by wiping, shaking, or
sweeping), revealing a replica of the original object, subject to
reorientation and scaling to fit within the volume of the target
ensemble.

IV. EXPERIMENTS

The algorithms described above have been implemented on
top of a software simulation environment for claytronics [15].
This environment supports both the execution of code and
communication between claytronic modules in a simulated
ensemble. In this section, we evaluate how well our system
acquires and reproduces the shape of various trial objects.

A. Simulation set up

The simulator takes as an input the code that must be run
on the modules, and a file specifying the state of the world.
For our purposes, this state consists of the actual positions of
the modules in the ensemble. This information is used only
by the simulator and is not accessible to the code running on
the simulated modules. The simulator does not support objects
other than the modules themselves in the world.

To simulate a mass of catoms wrapped around an object,
we construct a large cubic packed lattice of spherical modules.
The object to be modeled is represented as an arbitrary volume
described by equations. Using these equations, we eliminate
modules from the lattice that would overlap with the object.
This results in a hollowed out region that corresponds to the
modules displaced by the object that would be embedded in
the mass. Although the object shapes can be arbitrary, for
simplicity of evaluation we mainly consider rectangular prisms
and spheres here.

We execute our algorithms on the simulated modules, and
retrieve the points that they compute as the object surface. We
produce the claytronic replica of object by placing modules at
the computed locations, and then evaluate how closely these
match with the original objects.

To quantify replication fidelity, we define a mean squared
error (MSE) metric between the computed set of points and the
object surface, rotated and translated to match the coordinate
frame of the output. For each point in the output set, we
find the closest point on the object surface, and compute the
distance between the two points. The mean of the squared
distances for all points in the output set gives the MSE. This
metric indicates how close the computed points conform to
the target surface, and quickly explodes if the system outputs
points that are far away.

input shape
(before digital casting)

output shape
(after faxing process)

Fig. 8. Examples of 3D faxing input and output

We also compute the MSE from the object surface to the
output points. Taking uniform random samples of points on the
surface, we compute the distance between the surface samples
and the corresponding nearest points in the output set. The
MSE is computed for a large number of random samples on
the object surface. This metric ensures coverage of the object
surface, and will become large very quickly if parts of the
object surface do not have a nearby point in the output set.

B. Simulation Results

1) Qualitative: All aspects of the algorithms described have
been observed to function correctly in simulation (at least
for the scenarios developed so far). Localization succeeds,
even in the presence of multiple seeds, and achieves its goal
of determining the positions of all modules in a consistent
coordinate frame. Termination of the localization phase is
correctly detected. The surfaces are correctly detected and the
interior surface is successfully distinguished from the exterior
surface. Finally, the system successfully generates a list of
points it believes define the surface of the object.

2) MSE analysis: Fig. 9 shows the MSE computed for
multiple runs of the simulation, with varying sized cubes as the
input objects. The radius of the catoms is fixed to 1. The first
plot shows MSE from output points to the object surface, as a
function of the object size (in terms of volume). This remains
in a tight range, mainly between 0 and 1, indicating that the
system does indeed produce a list of points that correspond
closely to the object surface. The second plot, of MSE from
surface samples to the output points, also remains in a very
tight range around 1, indicating that we get good coverage of
the object surface with the output points.

Fig. 10 shows results for experiments in which the radius of
the catoms has changed. Here, both metrics indicate that the
error quickly diminishes as the size of the module decreases.
Very small modules can produce very accurate replicas of an
object’s surface.

3) Time complexity: The localization algorithm requires
what is essentially flooding of the initial ensemble of modules

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2000 4000 6000 8000 10000 12000 14000

M
S

E
 (O

ut
pu

t t
o

S
ur

fa
ce

)

Object Volume

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2000 4000 6000 8000 10000 12000 14000

M
S

E
 (S

ur
fa

ce
 to

 O
ut

pu
t)

Object Volume

Fig. 9. MSE for rectilinear objects of varying volume, catom radius=1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2

M
S

E
 (O

ut
pu

t t
o

S
ur

fa
ce

)

Catom Radius

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2

M
S

E
 (S

ur
fa

ce
 to

 O
ut

pu
t)

Catom Radius

Fig. 10. MSE for various rectilinear objects, varying catom radius

to communicate a consistent coordinate frame. The time to
accomplish this increases roughly with the diameter of the
network formed by the modules. This is reflected in Fig. 11,
which shows the runtime (in number of simulator steps,
roughly corresponding to message passing intervals) of our
algorithms for various sized input configurations. (Please note
that these numbers do not include the time it would take to
serially extract all of the generated output points from the
ensemble. This time will scale proportionally to the object
surface area.)

V. CONCLUSIONS

In this paper we have described novel 3D input and output
devices constructed around an intelligent clay formed of a
myriad of tiny modular microrobots. We also presented an
algorithm for digital casting, i.e., acquisition of a 3D shape
from the inverse of a modular robot ensemble’s perimeter.

Two key limitations of this paper are the reliance of our
evaluations on regular lattices, and the absence of real hard-
ware testing. In the very near future we plan to extend the
simulation analysis to study the impact of grain boundaries,
uncertainty in orientation and alignment, and amorphous, non-
lattice ensembles.

We are also working toward the design and construction of
larger numbers of suitable robot modules but do not anticipate
completing a quantity sufficient to demonstrate digital casting

 70

 80

 90

 100

 110

 120

 130

 140

 1000 1500 2000 2500 3000 3500 4000 4500 5000

S
im

ul
at

io
n

ru
nt

im
e

Number of catoms in ensemble

Fig. 11. Run time of system for various ensemble sizes

or 3D output for several years. (Indeed, few modular robot
research efforts have ever built more than 100 units.)

Areas for future work include consideration of variable
module sizes as well as techniques to better model the ob-
ject surface from module positions. In the absence of self-
reconfigurability, variable module size may confer few advan-
tages to digital casting and 3D output since the application
will be unable to directly choose the distribution of modules.
However a multi-step 3D output strategy in which a rough
skeleton is formed out of larger modules, and the skeleton
is subsequently surrounded by smaller modules which can
selectively latch themselves onto the skeleton could improve
fidelity versus a single-stage approach.

ACKNOWLEDGMENT

The authors would like to thank M. Satyanarayanan, Seth
Copen Goldstein, Todd Mowry, Brian Kirby, Rahul Suk-
thankar, and Piyush Kedia for their suggestions and insights.

REFERENCES

[1] M. Sitti and R. Fearing, “Synthetic gecko foot-hair micro/nano-structures
as dry ad hesives,” Journal of Adhesion Science and Technology, vol. 17,
no. 8, pp. 1055–1074, 2003.

[2] A. Geim, S. Dubonos, Grigorieva, I.V., K. Novose lov, A. Zhukov,
and S. Shapoval, “Microfabricated adhesive mimicking gecko foot-hair,”
Nature Materials, vol. 2, pp. 461–63, 2003.

[3] Advanced RISC Machines Ltd. (ARM), “Arm7tdmi core datasheet,”
http://www.arm.com/products/CPUs/ARM7TDMI.html.

[4] “Claytronics project website,” http://www.cs.cmu.edu/ � claytronics/.
[5] “Project to build a 3d fax machine,” http://graphics.stanford.edu/projects/

faxing/.
[6] B. Curless and M. Levoy, “A volumetric method for building complex

models from range images,” in Proc. SIGGRAPH 1996, vol. 30, 1996,
pp. 303–312.

[7] Reyes, “World’s first 3d fax machine,” http://www.ices.utexas.edu/
� reyes/self/3D fax.html.

[8] Cyberware, “3d laser scanner,” http://www.cyberware.com/.
[9] XYZ RGB Inc., “3d scanning white paper,” http://www.xyzrgb.com/

html/whitepaper.html.
[10] A. Novac, “Rapid prototyping homepage,” http://www.cc.utah.edu/� asn8200/rapid.html.
[11] G. Turk and M. Levoy, “Zippered polygon meshes from range images,”

in Proc. SIGGRAPH 1994, 1994, pp. 311–318.
[12] G. Reshko, “Localization techniques for synthetic reality,” Master’s

thesis, Carnegie Mellon University, 2004.
[13] J. Campbell, P. Pillai, and S. C. Goldstein, “The robot is the tether:

Active, adaptive power routing for modular robots with unary inter-robot
connectors,” in IEEE IROS, 2005.

[14] B. Kirby, J. Campbell, B. Aksak, P. Pillai, J. Hoburg, T. Mowry, and
S. C. Goldstein, “Catoms: Moving robots without moving parts,” in
AAAI (Robot Exhibition Abstract), 2005.

[15] “Dynamic physical rendering simulator (unpublished),” http://www.
pittsburgh.intel-research.net/dprweb/.

