
Distributed Inference in Dynamical Systems

Stanislav Funiak Carlos Guestrin
Carnegie Mellon University

Mark Paskin
Google

Rahul Sukthankar
Intel Research

Abstract
We present a robust distributed algorithm for approximate probabilistic inference
in dynamical systems, such as sensor networks and teams of mobile robots. Using
assumed density filtering, the network nodes maintain a tractable representation
of the belief state in a distributed fashion. At each time step, the nodes coordinate
to condition this distribution on the observations made throughout the network,
and to advance this estimate to the next time step. In addition, we identify a
significant challenge for probabilistic inference in dynamical systems: message
losses or network partitions can cause nodes to have inconsistent beliefs about the
current state of the system. We address this problem by developing distributed
algorithms that guarantee that nodes will reach an informative consistent distribu-
tion when communication is re-established. We present a suite of experimental
results on real-world sensor data for two real sensor network deployments: one
with 25 cameras and another with 54 temperature sensors.

1 Introduction
Large-scale networks of sensing devices have become increasingly pervasive, with applications
ranging from sensor networks and mobile robot teams to emergency response systems. Often, nodes
in these networks need to perform probabilistic dynamic inference to combine a sequence of local,
noisy observations into a global, joint estimate of the system state. For example, robots in a team
may combine local laser range scans, collected over time, to obtain a global map of the environment;
nodes in a camera network may combine a set of image sequences to recognize moving objects in a
heavily cluttered scene. A simple approach to probabilistic dynamic inference is to collect the data
to a central location, where the processing is performed. Yet, collecting all the observations is often
impractical in large networks, especially if the nodes have a limited supply of energy and commu-
nicate over a wireless network. Instead, the nodes need to collaborate, to solve the inference task
in a distributed manner. Such distributed inference techniques are also necessary in online control
applications, where nodes of the network need estimates of the state in order to make decisions.

Probabilistic dynamic inference can often be efficiently solved when all the processing is per-
formed centrally. For example, in linear systems with Gaussian noise, the inference tasks can be
solved in a closed form with a Kalman Filter [3]; for large systems, assumed density filtering can
often be used to approximate the filtered estimate with a tractable distribution (c.f., [2]). Unfortu-
nately, distributed dynamic inference is substantially more challenging. Since the observations are
distributed across the network, nodes must coordinate to incorporate each others’ observations and
propagate their estimates from one time step to the next. Online operation requires the algorithm
to degrade gracefully when nodes run out of processing time before the observations propagate
throughout the network. Furthermore, the algorithm needs to robustly address node failures and
interference that may partition the communication network into several disconnected components.

We present an efficient distributed algorithm for dynamic inference that works on a large family
of processes modeled by dynamic Bayesian networks. In our algorithm, each node maintains a
(possibly approximate) marginal distribution over a subset of state variables, conditioned on the
measurements made by the nodes in the network. At each time step, the nodes condition on the
observations, using a modification of the robust (static) distributed inference algorithm [7], and
then advance their estimates to the next time step locally. The algorithm guarantees that, with
sufficient communication at each time step, the nodes obtain the same solution as the corresponding
centralized algorithm [2]. Before convergence, the algorithm introduces principled approximations
in the form of independence assertions in the node estimates and in the transition model.

In the presence of unreliable communication or high latency, the nodes may not be able to condi-
tion their estimates on all the observations in the network, e.g., when interference causes a network
partition, or when high latency prevents messages from reaching every node. Once the estimates are
advanced to the next time step, it is difficult to condition on the observations made in the past [10].
Hence, the beliefs at the nodes may be conditioned on different evidence and no longer form a con-
sistent global probability distribution over the state space. We show that such inconsistencies can
lead to poor results when nodes attempt to combine their estimates. Nevertheless, it is often possible
to use the inconsistent estimates to form an informative globally consistent distribution; we refer to
this task as alignment. We propose an online algorithm, optimized conditional alignment (OCA),
that obtains the global distribution as a product of conditionals from local estimates and optimizes
over different orderings to select a global distribution of minimal entropy. We also propose an al-
ternative, more global optimization approach that minimizes a KL divergence-based criterion and
provides accurate solutions even when the communication network is highly fragmented.

We present experimental results on real-world sensor data, covering sensor calibration [7] and
distributed camera localization [4]. These results demonstrate the convergence properties of the
algorithm, its robustness to message loss and network partitions, and the effectiveness of our method
at recovering from inconsistencies.

Distributed dynamic inference has received some attention in the literature. For example, par-
ticle filtering (PF) techniques have been applied to these settings: Zhao et al. [11] use (mostly)
independent PFs to track moving objects, and Rosencrantz et al. [10] run PFs in parallel, sharing
measurements as appropriate. Pfeffer and Tai [9] use loopy belief propagation to approximate the
estimation step in a continuous-time Bayesian network. When compared to these techniques, our
approach addresses several additional challenges: we do not assume point-to-point communication
between nodes, we provide robustness guarantees to node failures and network partitions, and we
identify and address the belief inconsistency problem that arises in distributed systems.

2 The distributed dynamic inference problem
Following [7], we assume a network model where each node can perform local computations and
communicate with other nodes over some channel. The nodes of the network may change over
time: existing nodes can fail, and new nodes may be introduced. We assume a message-level error
model: messages are either received without error, or they are not received at all. The likelihood of
successful transmissions (link qualities) are unknown and can change over time, and link qualities
of several node pairs may be correlated.

We model the system as a dynamic Bayesian network (DBN). A DBN consists of a set of state
processes, X = {X1, . . . , XL} and a set of observed measurement processes Z = {Z1, . . . , ZK};
each measurement process Zk corresponds to one of the sensors on one of the nodes. State processes
are not associated with unique nodes. A DBN defines a joint probability model over steps 1 . . . T as

p(X(1:T),Z(1:T)) = p(X(1))︸ ︷︷ ︸
initial prior

×
T∏

t=2

p(X(t) |X(t−1))︸ ︷︷ ︸
transition model

×
T∏

t=1

p(Z(t) |X(t))︸ ︷︷ ︸
measurement model

.

The initial prior is given by a factorized probability model p(X(1)) ∝
∏

h ψ(A(1)
h), where each

Ah ⊆ X is a subset of the state processes. The transition model factors as
∏L

i=1 p(X(t)
i |Pa[X(t)

i]),
where Pa[X(t)

i] are the parents of X(t)
i in the previous time step. The measurement model factors

as
∏K

k=1 p(Z(t)
k |Pa[Z(t)

k]), where Pa[Z(t)
k] ⊆ X(t) are the parents of Z(t)

k in the current time step.
In the distributed dynamic inference problem, each node n is associated with a set of processes

Qn ⊆ X; these are the processes about which node n wishes to reason. The nodes need to collab-
orate so that each node can obtain (an approximation to) the posterior distribution over Q(t)

n given
all measurements made in the network up to the current time step t: p(Q(t)

i | z(1:t)). We assume that
node clocks are synchronized, so that transitions to the next time step are simultaneous.

3 Filtering in dynamical systems
The goal of (centralized) filtering is to compute the posterior distribution p(X(t) | z(1:t)) for
t = 1, 2, . . . as the observations z(1), z(2), . . . arrive. The basic approach is to recursively com-
pute p(X(t+1) | z(1:t)) from p(X(t) | z(1:t−1)) in three steps:

1. Estimation: p(X(t) | z(1:t)) ∝ p(X(t) | z(1:t−1))× p(z(t) |X(t));
2. Prediction: p(X(t),X(t+1) | z(1:t)) = p(X(t) | z(1:t))× p(X(t+1) |X(t));
3. Roll-up: p(X(t+1) | z(1:t)) =

∫
p(x(t),X(t+1) | z(1:t)) dx(t).

Exact filtering in DBNs is usually expensive or intractable because the belief state rapidly loses
all conditional independence structure. An effective approach, proposed by Boyen and Koller [2],
hereby denoted “B&K98”, is to periodically project the exact posterior to a distribution that satisfies
independence assertions encoded in a junction tree [3]. Given a junction tree T , with cliques {Ci}
and separators

{
Si,j

}
, the projection operation amounts to computing the clique marginals, hence

the filtered distribution is approximated as

p(X(t) | z(1:t−1)) ≈ p̃(X(t) | z(1:t−1)) =

∏
i∈NT

p̃(C(t)
i | z(1:t−1))∏

{i,j}∈ET
p̃(S(t)

i,j | z(1:t−1))
, (1)

where NT and ET are the nodes and edges of T , respectively. With this representation, the es-
timation step is implemented by multiplying each observation likelihood p(z(t)

k |Pa[Z(t)
k]) to a

clique marginal; the clique and separator potentials are then recomputed with message passing,
so that the posterior distribution is once again written as a ratio of clique and separator marginals:
p̃(X(t) | z(1:t)) =

[∏
i∈NT

p̃(C(t)
i | z(1:t))

] / [∏
{i,j}∈ET

p̃(S(t)
i,j | z(1:t))

]
. The prediction step is

performed independently for each clique C(t+1)
i : we multiply p̃(X(t) | z(1:t)) with the transition

model p(X(t+1) |Pa[X(t+1)]) for each variable X(t+1) ∈ C(t+1)
i and, using variable elimination,

compute the marginals over the clique at the next time step p(C(t+1)
i | z(1:t)).

4 Approximate distributed filtering
In principle, the centralized filtering approach described in the previous section could be applied to a
distributed system, e.g., by communicating the observations made in the network to a central location
that performs all computations, and distributing the answer to every node in the network. While
conceptually simple, this approach has substantial drawbacks, including the high communication
bandwidth, the introduction of a single point of failure to the system, and the fact that nodes do not
have valid estimates when the network is partitioned. In this section, we present a distributed filtering
algorithm where each node obtains an approximation to the posterior distribution over subset of the
state variables. Our estimation step builds on the robust distributed inference algorithm of Paskin et
al. [7, 8], while the prediction, roll-up, and projection steps are performed locally at each node.

4.1 Estimation as a robust distributed probabilistic inference
In the distributed inference approach of Paskin et al. [8], the nodes collaborate so that each node
n can obtain the posterior distribution over some set of variables Qn given all measurements made
throughout the network. In our setting, Qn contains the variables in a subset Ln of the cliques
used in our assumed density representation. In their architecture, nodes form a distributed data
structure along a routing tree in the network, where each node in this tree is associated with a
cluster of variables Dn that includes Qn, as well as any other variables, needed to preserve the flow
of information between the nodes, a property equivalent to the running intersection property in
junction trees [3]. We refer to this tree as the network junction tree, and, for clarity, we refer to the
junction tree used for the assumed density as the external junction tree.

Using this architecture, Paskin and Guestrin developed a robust distributed probabilistic infer-
ence algorithm, RDPI [7], for static inference settings, where nodes compute the posterior distribu-
tion p(Qn | z) over Qn given all measurements throughout the network z. RDPI provides two crucial
properties: convergence, if there are no network partitions, these distributed estimates converge to
the true posteriors; and, smooth degradation even before convergence, the estimates provide a prin-
cipled approximation to the true posterior (which introduces additional independence assertions).

In RDPI, each node n maintains the current belief βn of p(Qn | z). Initially, node n knows
only the marginals of the prior distribution {p(Ci) : i ∈ Ln} for a subset of cliques Ln in the
external junction tree, and its local observation model p(zn |Pa[Zn]) for each of its sensors. We
assume that Pa[Zn] ⊆ Ci for some i ∈ Ln; thus, βn is represented as a collection of priors over
cliques of variables, and of observation likelihood functions over these variables. Messages are then
sent between neighboring nodes, in an analogous fashion to the sum-product algorithm for junction
trees [3]. However, messages in RDPI are always represented as a collection of priors {πi(Ci)}
over cliques of variables Ci, and of measurement likelihood functions {λi(Ci)} over these cliques.
This decomposition into prior and likelihood factors is the key to the robustness properties of the
algorithm [7]. With sufficient communication, βn converges to p(Qn | z).

In our setting, at each time step t, each prior πi(C
(t)
i) is initialized to p(C(t)

i | z(1:t−1)). The
likelihood functions are similarly initialized to λi(C

(t)
i) = p(z(t)

i |C(t)
i), if some sensor makes an

observation about these variables, or to 1 otherwise. Through message passing βn converges to
p̃(Q(t)

n | z(1:t)). An important property of RDPI that will be useful in the remainder of the paper is:
Property 1. Let βn be the result computed by the RDPI algorithm at convergence at node n. Then
the cliques in βn form a subtree of an external junction tree that covers Qn.

4.2 Prediction, roll-up and projection
The previous section shows that the estimation step can be implemented in a distributed manner,
using RDPI. At convergence, each node n obtains the calibrated marginals p̃(C(t)

i | z(1:t)), for i ∈
Ln. In order to advance to the next time step, each node must perform prediction and roll-up,
obtaining the marginals p̃(C(t+1)

i | z(1:t)). Recall from Section 3 that, in order to compute a marginal
p̃(C(t+1)

i | z(1:t)), this node needs p̃(X(t) | z(1:t)). Due to the conditional independencies encoded in
p̃(X(t) | z(1:t)), it is sufficient to obtain a subtree of the external junction tree that covers the parents
Pa[C(t+1)

i] of all variables in the clique. The next time step marginal p̃(C(t+1)
i | z(1:t)) can then

be computed by multiplying this subtree with the transition model p(X(t+1) |Pa[X(t+1)]) for each
X(t+1) ∈ C(t+1)

i and eliminating all variables but C(t+1)
i (recall that Pa[X(t+1)] ⊆ X(t)).

This procedure suggests the following distributed implementation of prediction, roll-up, and
projection: after completing the estimation step, each node selects a subtree of the (global) exter-
nal junction tree that covers Pa[C(t+1)

i] and collects the marginals of this tree from other nodes in
the network. Unfortunately, it is unclear how to allocate the running time between estimation and
collection of marginals in time-critical applications, when the estimation step may not run to com-
pletion. Instead, we propose a simple approach that performs both steps at once: run the distributed
inference algorithm, described in the previous section, to obtain the posterior distribution over the
parents of each clique maintained at the node. This task can be accomplished by ensuring that these
parent variables are included in the query variables of node n: Pa[C(t+1)

i] ⊆ Qn,∀i ∈ Ln.
When the estimation step cannot be run to convergence within the allotted time, the variables

Scope[βn] covered by the distribution βn that node n obtains may not cover the entire parent
set Pa[C(t+1)

i]. In this case, multiplying in the standard transition model is equivalent to as-
suming a uniform prior for the missing variables, which can lead to very poor solutions in prac-
tice. When the transition model is learned from data, p(X(t+1) |Pa[X(t+1)]) is usually com-
puted from the empirical distribution p̂(X(t+1),Pa[X(t+1)]), e.g., pMLE(X(t+1) |Pa[X(t+1)]) =
p̂(X(t+1),Pa[X(t+1)])/p̂(Pa[X(t+1)]). Building on these empirical distributions, we can obtain
an improved solution for the prediction and roll-up steps, when we do not have a distribution
over the entire parent set Pa[C(t+1)

i]. Specifically, we obtain a valid approximate transition model
p̃(X(t+1) |W(t)), where W(t) = Scope[βn] ∩ Pa[X(t+1)], online by simply marginalizing the em-
pirical distribution p̂(X(t+1),Pa[X(t+1)]) down to p̂(X(t+1),W(t)). This procedure is equivalent
to introducing an additional independence assertion to the model: at time step t + 1, X(t+1) is
independent of Pa[X(t+1)]−W(t), given W(t).

4.3 Summary of the algorithm
Our distributed approximate filtering algorithm can be summarized as follows:

• Using the architecture in [8], construct a network junction tree s.t. the query variables Qn

at each node n cover
(⋃

i∈Ln
C(t)

i

)
∪

(⋃
i∈Ln

Pa[C(t+1)
i]

)
.

• For t = 1, 2, . . ., at each node n,
– run RDPI [7] until the end of step t, obtaining a (possibly approximate) belief βn;
– for each X(t+1) ∈ C(t+1)

i , i ∈ Ln, compute an approximate transition model
p̃(X(t+1) |W(t)

X), where W(t)
X = Scope[βn] ∩ Pa[X(t+1)];

– for each clique C(t+1)
i , i ∈ Ln, compute the clique marginal p̃(C(t+1)

i | z(1:t)) from
βn and from each p̃(X(t+1) |W(t)

X), locally, using variable elimination.
Using the convergence properties of the RDPI algorithm, we prove that, given sufficient commu-

nication, our distributed algorithm obtains the same solution as the centralized B&K98 algorithm:
Theorem 1. For a set of nodes running our distributed filtering algorithm, if at each time step there
is sufficient communication for the RDPI algorithm to converge, and the network is not partitioned,
then, for each node n, for each clique i ∈ Ln, the distribution p̃(C(t)

i | z(1:t−1)) obtained by node n
is equal to the distribution obtained by the B&K98 algorithm with assumed density given by T .

1 2 3 4

(a) BK solution

1 2 3 4

(b) alignment rooted at 1

1 2 3 4

(c) alignment rooted at 4

1 2 3 4

(d) min. KL divergence
Figure 1: Alignment results after partition (shown by vertical line). The circles represent 95% confidence
intervals in the estimate of the camera location. (a) The exact solution, computed by the BK algorithm in the
absence of partitions. (b) Solution obtained when aligning from node 1. (c) Solution obtained when aligning
from node 4. (d) Solution obtained by joint optimized alignment.

5 Robust distributed filtering
In the previous section, we introduced an algorithm for distributed filtering with dynamic Bayesian
networks that, with sufficient communication, converges to the centralized B&K98 algorithm. In
some settings, for example when interference causes a network partition, messages may not be prop-
agated long enough to guarantee convergence before nodes must roll-up to the next time step. Con-
sider the example, illustrated in Figure 1, in which a network of cameras localizes itself by observing
a moving object. Each camera i carries a clique marginal over the location of the object M (t), its
own camera pose variable Ci, and the pose of one of its neighboring cameras: π1(C1,2,M

(t)),
π2(C2,3,M

(t)), and π3(C3,4,M
(t)). Suppose communication were interrupted due to a network

partition: observations would not propagate, and the marginals carried by the nodes would no
longer form a consistent distribution, in the sense that π1 ,π2 ,π3 might not agree on their marginals,
e.g., π1(C2,M

(t)) 6= π2(C2,M
(t)). The goal of alignment is to obtain a consistent distribution

p̃(X(t) | z(1:t−1)) from marginals π1, π2, π3 that is close to the true posterior p(X(t) | z(1:t−1)) (as
measured, for example, by the root-mean-square error of the estimates). For simplicity of notation,
we omit time indices t and conditioning on the past evidence z(1:t−1) throughout this section.

5.1 Optimized conditional alignment
One way to define a consistent distribution p̃ is to start from a root node r, e.g., 1, and allow each
clique marginal to decide the conditional density of Ci given its parent, e.g.,

p̃1(C1:4,M) = π1(C1,2,M)× π2(C3 |C2,M)× π3(C4 |C3,M).

This density p̃1 forms a coherent distribution over C1:4,M , and we say that p̃1 is rooted at node 1.
Thus, π1 fully defines the marginal density over C1,2,M , π2 defines the conditional density of C3

givenC2,M , and so on. If node 3 were the root, then node 1 would only contribute π1(C1 |C2,M),
and we would obtain a different approximate distribution.

In general, given a collection of marginals πi(Ci) over the cliques of a junction tree T , and a
root node r ∈ NT , the distribution obtained by conditional alignment from r can be written as

p̃r(X) = πr (Cr)×
∏

i∈(NT −{r})
πi(Ci − Sup(i),i |Sup(i),i), (2)

where up(i) denotes the upstream neighbor of i on the (unique) path between r and i.
The choice of the root r often crucially determines how well the aligned distribution p̃r approx-

imates the true prior. Suppose that, in the example in Figure 1, the nodes on the left side of the par-
tition do not observe the person while the communication is interrupted, and the prior marginals π1 ,
π2 are uncertain aboutM . If we were to align the distribution from π2 , multiplying π3(C4 |C3,M)
into the marginal π2(C2,3,M) would result in a distribution that is uncertain in both M and C4

(Figure 1(b)), while a better choice of root could provide a much better estimate (Figure 1(c)).
One possible metric to optimize when choosing the root r for the alignment is the entropy of the

resulting distribution p̃r. For example, the entropy of p̃2 in the previous example can be written as

Hp̃2
(C1:4,M) = Hπ2 (C2,3,M) +Hπ3 (C4 |C3,M) +Hπ1 (C1 |C2,M), (3)

where we use the fact that, for Gaussians, the conditional entropy of C4 given C3,M only depends
on the conditional distribution p̃2(C4 |C3,M) = π3(C4 |C3,M). A naı̈ve algorithm for obtaining
the best root would exploit this decomposition to compute the entropy of each p̃2, and pick the root
that leads to a lowest total entropy; the running time of this algorithm is O(|NT |2). We propose a
dynamic programming approach that significantly reduces the running time. Comparing Equation 3

with the entropy of the distribution rooted at a neighboring node 3, we see that they share a common
term Hπ1 (C1 |C2,M), and Hp̃3

(C1:4,M)−Hp̃2
(C1:4,M) = Hπ3 (S2,3)−Hπ2 (S2,3) , 42,3. If

42,3 is positive, node 2 is a better root than 3, 42,3 is negative, we have the reverse situation. Thus,
when comparing neighboring nodes as root candidates, the difference in entropy of the resulting
distribution is simply the difference in entropy their local distributions assign to their separator. This
property generalizes to the following dynamic programming algorithm that determines the root r
with minimal Hp̃r

(X) in O(|NT |) time:

• For any node i ∈ NT , define the message from i to its neighbor j as

mi→j =
{
4i,j if mk→i < 0, ∀k 6= j

4i,j + maxk 6=j mk→i otherwise
,

where 4i,j = Hπj (Si,j)−Hπi (Si,j), and k varies over the neighbors of i in T .

• If maxk mk→i < 0 then i is the optimal root; otherwise, up(i) = argmaxk mk→i.

Intuitively, the message mi→j represents the loss (entropy) with root node j, compared to the best
root on i’s side of the tree. Ties between nodes, if any, can be resolved using node IDs.

5.2 Distributed optimized conditional alignment
In the absence of an additional procedure, RDPI can be viewed as performing conditional alignment.
However, the alignment is applied to the local belief at each node, rather than the global distribution,
and the nodes may not agree on the choice of the root r. Thus, the network is not guaranteed to
reach a globally consistent, aligned distribution. In this section, we show that RDPI can be extended
to incorporate the optimized conditional alignment (OCA) algorithm from the previous section.

By Property 1, at convergence, the priors at each node form a subtree of an external junction tree
for the assumed density. Conceptually, if we were to apply OCA to this subtree, the node would have
an aligned distribution, but nodes may not be consistent with each other. Intuitively, this happens
because the optimization messages mi→j were not propagated between different nodes.

In RDPI, node n’s belief βn includes a collection of (potentially inconsistent) priors {πi(Ci)}.
In the standard sum-product inference algorithm, an inference message µm→n from node m to node
n is computed by marginalizing out some variables from the factor µ+

m→n , ψm ×
∏

k 6=n µk→m

that combines the messages received from nodem’s other neighbors with nodem’s local belief. The
inference message in RDPI involves a similar marginalization, which corresponds to pruning some
cliques from µ+

m→n [7]. When such pruning occurs, any likelihood information λi(Ci) associated
with the pruned clique i is transferred to its neighbor j.

Our distributed OCA algorithm piggy-backs on this pruning, computing an optimization message
mi→j , which is stored in clique j. (To compute this message, cliques must also carry their original,
unaligned priors.) At convergence, the nodes will not only have a subtree of an external tree, but also
the incoming optimization messages that result from pruning of all other cliques of the external tree.
In order to determine the globally optimal root, each node (locally) selects a root for its subtree. If
this root is one of the initial cliques associated with n, then n, and in particular this clique, is the root
of the conditional alignment. The alignment is propagated throughout the network. If the optimal
root is determined to be a clique that came from a message received from a neighbor, then the neigh-
bor (or another node upstream) is the root, and node n aligns itself with respect to the neighbor’s
message. With an additional tie-breaking rule that ensures that all the nodes make consistent choices
about their subtrees [5], this procedure is equivalent to running the OCA algorithm centrally:
Theorem 2. Given sufficient communication and in the absence of network partitions, nodes run-
ning distributed OCA reach a globally consistent belief based on conditional alignment, selecting
the root clique that leads to the joint distribution of minimal entropy. In the presence of partitions,
each partition will reach a consistent belief that minimizes the entropy within this partition.

5.3 Jointly optimized alignment
While conceptually simple, there are situations where such a rooted alignment will not provide
a good aligned distribution. For example, if in the example in Figure 1, cameras 2 and 3 carry
marginals π2(C2,3,M) and π2′ (C2,3,M), respectively, and both observe the person, node 2 will
have a better estimate of C2, while node 3’s estimate of C3 will be more accurate. If either node
is chosen as the root, the aligned distribution will have a worse estimate of the pose of one of
the cameras, because performing rooted alignment from either direction effectively overwrites the
marginal of the other node. In this example, rather than fixing a root, we want an aligned distribution
that attempts to simultaneously optimize the distance to both π2(C2,3,M) and π2′ (C2,3,M).

(a) 25-camera testbed

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

time step

R
M

S
er

ro
r

Camera 7

Camera 10

Camera 3

(b) Convergence, cameras

0 20 40 60
0.2

0.25

0.3

0.35

0.4

0.45

R
M

S
er

ro
r

epochs per time step

35 nodes
54 nodes

(c) Convergence, temperature
Figure 2: (a) Testbed of 25 cameras used for the SLAT experiments. (b) Convergence results for individual
cameras in one experiment. Horizontal lines indicate the corresponding centralized solution at the end of the
experiment. (c) Convergence versus amount of communication for a temperature network of 54 real sensors.

We propose the following optimization problem that minimizes the sum of reverse KL diver-
gence from the aligned distribution to the clique marginals πi(Ci):

p̃(X) = argmin
q(X),q|=T

∑
i∈NT

D(q(Ci) ‖πi(Ci)),

where q |= T denotes the constraint that p̃ factorizes according to the junction tree T . This method
will often provide very good aligned distributions (e.g., Figure (d)). For Gaussian distributions, this
optimization problem corresponds to

minµC
i
,ΣC

i

∑
i∈NT

− log |ΣCi
|+ 〈Σ−1

i ,ΣCi
〉+

∑
i∈NT

(µi − µCi
)T Σ−1

i (µi − µCi
),

subject to ΣCi
� 0, ∀i ∈ NT , (4)

where µCi
, ΣCi

are the means and covariances of q over the variables Ci, and µi, Σi are the means
and covariances of the marginals πi . The problem in Equation 4 consists of two independent convex
optimization problems over the means and covariances of q, respectively. The former problem can
be solved in a distributed manner using distributed linear regression [6], while the latter can be
solved using a distributed version of an iterative methods, such as conjugate gradient descent [1].

6 Experimental results
We evaluated our approach on two applications: a camera localization problem [4] (SLAT), in
which a set of cameras simultaneously localizes itself by tracking a moving object, and tempera-
ture monitoring application, analogous to the one presented in [7]. Figure 2(a) shows some of the
25 ceiling-mounted cameras used to collect the data in our camera experiments. We implemented
our distributed algorithm in a network simulator that incorporates message loss and used data from
these real sensors as our observations. Figure 2(b) shows the estimates obtained by three cameras in
one of our experiments. Note that each camera converges to the estimate obtained by the centralized
B&K98 algorithm. In Figure 2(c), we evaluate the sensitivity of the algorithm to incomplete com-
munication. We see that, with a modest number of rounds of communication performed in each time
step, the algorithm obtains a high quality of the solution and converges to the centralized solution.

In the second set of experiments, we evaluate the alignment methods, presented in Section 5. In
Figure 3(a), the network is split into four components; in each component, the nodes communicate
fully, and we evaluate the solution if the communication were to be restored after a given number of
time steps. The vertical axis shows the RMS error of estimated camera locations at the end of the ex-
periment. For the unaligned solution, the nodes may not agree on the estimated pose of a camera, so
it is not clear which node’s estimate should be used in the RMS computation; the plot shows an “om-
niscient envelope” of the RMS error, where, given the (unknown) true camera locations, we select
the best and worst estimates available in the network for each camera’s pose. The results show that,
in the absence of optimized alignment, inconsistencies can degrade the solution: observations col-
lected after the communication is restored may not make up for the errors introduced by the partition.

The third experiment evaluates the performance of the distributed algorithm in highly-
disconnected scenarios. Here, the sensor network is hierarchically partitioned into smaller discon-
nected components by selecting a random cut through the largest component. The communication
is restored shortly before the end of the experiment. Figures 3(b) shows the importance of aligning
from the correct node: the difference between the optimized root and an arbitrarily chosen root is
significant, particularly when the network becomes more and more fractured. In our experiments,
large errors often resulted from the nodes having uncertain beliefs, hence justifying the objective
function. We see that the jointly optimized alignment described in Section 5.3, min. KL, tends
to provide the best aligned distribution, though often close to the optimized root, which is simpler

0 50 100
0

0.1

0.2

0.3

R
M

S
er

ro
r

Duration of the partition

fixed root
optimized root
unaligned

lower bound

upper bound

(a) camera localization

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

R
M

S
er

ro
r

Number of partitions

fixed root
optimized root
min. KL
unaligned

upper bound

lower bound

(b) camera localization

0 5 10
0

0.1

0.2

0.3

0.4

0.5

R
M

S
er

ro
r

Number of partitions

fixed root
optimized root
min. KL
unaligned

lower bound

upper bound

(c) temperature monitoring
Figure 3: Comparison of the alignment methods. (a) RMS error vs. duration of the partition. For the unaligned
solution, the plot shows bounds on the error: given the (unknown) camera locations, we select the best and worst
estimates available in the network for each camera’s pose. In the absence of optimized alignment, inconsisten-
cies can degrade the quality of the solution. (b, c) RMS error vs. number of partitions. In camera localization
(b), the difference between the optimized alignment and the alignment from an arbitrarily chosen fixed root is
significant. For the temperature monitoring (c), the differences are less pronounced, but follow the same trend.

to compute. Finally, 3(c) shows the alignment results on the temperature monitoring application.
Compared to SLAT, the effects of network partitions on the results for the temperature data are less
severe. One contributing factor is that every node in a partition is making local temperature obser-
vations, and the approximate transition model for temperatures in each partition is quite accurate,
hence all the nodes continue to adjust their estimates meaningfully while the partition is in progress.

7 Conclusions
This paper presents a new distributed approach to approximate dynamic filtering based on a dis-
tributed representation of the assumed density in the network. Distributed filtering is performed by
first conditioning on evidence using a robust distributed inference algorithm [7], and then advancing
to the next time step locally. With sufficient communication in each time step, our distributed algo-
rithm converges to the centralized B&K98 solution. In addition, we identify a significant challenge
for probabilistic inference in dynamical systems: nodes can have inconsistent beliefs about the cur-
rent state of the system, and an ineffective handling of this situation can lead to very poor estimates
of the global state. We address this problem by developing a distributed algorithm that obtains an
informative consistent distribution, optimizing over various choices of the root node, and an alterna-
tive joint optimization approach that minimizes a KL divergence-based criterion. We demonstrate
the effectiveness of our approach on a suite of experimental results on real-world sensor data.

Acknowledgments
This research was supported by grants NSF-NeTS CNS-0625518 and CNS-0428738 NSF ITR. S.
Funiak was supported by the Intel Research Scholar Program; C. Guestrin was partially supported
by an Alfred P. Sloan Fellowship.

References
[1] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods. Athena

Scientific; 1st edition (January 1997), 1997.
[2] X. Boyen and D. Koller. Tractable inference for complex stochastic processes. In Proc. of UAI, 1998.
[3] R. Cowell, P. Dawid, S. Lauritzen, and D. Spiegelhalter. Probabilistic Networks and Expert Systems.

Springer, New York, NY, 1999.
[4] S. Funiak, C. Guestrin, M. Paskin, and R. Sukthankar. Distributed localization of networked cameras. In

Proc. of Fifth International Conference on Information Processing in Sensor Networks (IPSN-06), 2006.
[5] S. Funiak, C. Guestrin, M. Paskin, and R. Sukthankar. Robust probabilistic filtering in distributed systems.

Technical Report CMU-ML-07-102, Carnegie Mellon University, 2007.
[6] C. Guestrin, R. Thibaux, P. Bodik, M. A. Paskin, and S. Madden. Distributed regression: an efficient

framework for modeling sensor network data. In Proc. of IPSN, 2004.
[7] M. A. Paskin and C. E. Guestrin. Robust probabilistic inference in distributed systems. In UAI, 2004.
[8] M. A. Paskin, C. E. Guestrin, and J. McFadden. A robust architecture for inference in sensor networks.

In Proc. of IPSN, 2005.
[9] A. Pfeffer and T. Tai. Asynchronous dynamic Bayesian networks. In Proc. UAI 2005, 2005.

[10] M. Rosencrantz, G. Gordon, and S. Thrun. Decentralized sensor fusion with distributed particle filters. In
Proc. of UAI, 2003.

[11] F. Zhao, J. Liu, J. Liu, L. Guibas, and J. Reich. Collaborative signal and information processing: An
information directed approach. Proceedings of the IEEE, 91(8):1199–1209, 2003.

